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Abstract

The objective of this work is to present an alternative localization method based on the use of neural networks, using
experimental training data as a modeling basis. For this purpose, test sources are applied on the test object to yield input
data for a neural network. Subsequently, the trained neural network can be applied to recorded data from material fail-
ure of the test object. The presented method is validated using a type Ill carbon-fiber-reinforced polymer pressure vessel
with metallic liner and is compared with an established localization method using the time difference of arrivals. It was
shown that the neural-network-based method is not only superior by a factor of 6 in accuracy but also results in a lower
scattering of the localized source positions by a factor of | I. For the neural-network-based approach, the localization
accuracy is only limited by the theoretical localization accuracy, which is based on measurement errors of the acquisition
chain and the subsequent determination of the time of arrival of the detected signal. Source localization using neural net-
works on the basis of experimental training data thus is very promising to approach the limits of theoretical measure-
ment accuracy.
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Introduction localization is based on the idea that sensors placed at
different distances to the source detect the respective
acoustic wave at different times. This difference in arri-
val time At is then used by various algorithms to inver-
sely calculate the source position.®

In fiber-reinforced polymer (FRP), an additional
challenge for the localization of emission sources arises
from the acoustic anisotropy and inhomogeneity of the
material. Due to the presence of the fiber architecture,
the sound velocities, attenuation, and dispersion prop-
erties differ to a certain extent, causing substantial chal-
lenges for the application of established source
localization algorithms. These usually assume isotropic
sound velocities and neglect attenuation effects.
Therefore, an approach which can be applied to realis-
tic structures including hybrid joints or a combination

Carbon-fiber-reinforced polymers (CFRP) are a mate-
rial of choice in light-weight applications due to their
high strength to weight and stiffness to weight ratio.!
Due to their broad range of microscopic failure
mechanisms, the prediction of their functional failure is
not straightforward. Therefore, high safety margins are
currently applied during the design process of such
fiber-reinforced structures. To predict critical material
failure, the detection of areas that are imminent to rup-
ture is a key. Acoustic emission monitoring to localize
these areas during loading is one particularly interest-
ing approach in this context.>* The acoustic emission
signals of microscopic failure events are recorded in
situ during loading and are used to localize the acoustic
emission source positions by an array of sensors at the
surface of the structure.” The acoustic signals emitted
by the source are in the range of the ultrasonic fre- Institute for Physics, Experimental Physics Il, University of Augsburg,
quency band and start to propagate as guided waves  Augsburg, Germany
for the thin structures usually used for fiber-reinforced .
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of materials is still challenging.” There is also the possi-
bility of different propagation paths in structures such
as pressure vessels. Here, the acoustic waves may travel
within the contained liquid directly across the vessel or
as guided wave along the circumferential direction of
the vessel.® Moreover, the acoustic emission source
localization in pressure vessels is especially challenging
due to the filament winding production process and the
resulting non-uniformity in the fiber layup.”™""

To enable an improved accuracy of source localiza-
tion, new methods were presented by Blahacek et al.,'?
Scholey et al.,'® Chlada et al.,'"* and Kundu et al.'> A
recent publication'® gives a broad comparison of estab-
lished methods used for the acoustic emission source
localization in isotropic and anisotropic structures.

One specific method related to the work presented in
this article is known as Af method. In this method, the
At values are calculated for certain grid points on the
test object beforehand. Consequently, during the acqui-
sition of signals, it is possible to relate the measured A¢
values to the known grid positions.

Another idea is the application of machine learning
algorithms to achieve a generalized approach for the
localization of acoustic emission sources in arbitrary
complex systems. Neural networks are known to be
well suited for the purpose of functional approximation
of such multidimensional non-linear problems. The use
of artificial neural networks (ANN) allows using differ-
ent input parameters for the localization, so that it is
possible to approach the source localization problem
both by Az values'? and attenuation or frequency-based
approaches.” As it has been shown previously, the use
of such neural-network-based approaches allows to
compensate effects of acoustic anisotropy'”!'® and is
able to compensate the effect of obstacles in the propa-
gation path."’

In this article, acoustic emission source localization
using ANN is presented in application to a type III
CFRP pressure vessel with metallic liner. Test signals
are excited at distinct positions on the entire pressure
vessel using pencil lead break (Hsu—Nielsen) sources
and using a piezoelectric pulser. The localization results
of the neural network approach are then compared to
the accuracy of state-of-the-art source localization
approaches.

Theory

In order to allow for an objective judgment of source
localization approaches, it is necessary to establish the
ultimate limits of the source localization concept as
such. The accuracy of every localization approach is
limited by the experimental uncertainty of the system.
Technically, these limitations are caused both by the

experimental conditions and the acquisition system.
Another limitation of the localization accuracy is given
by the changes in the Az values caused by a change in
source position. These factors are examined in detail in
the following and are explained in relation to source
localization procedures.

Classical source localization method

The At-based source localization uses the arrival time dif-
ference between waves detected at two sensors as an input
value. The classical localization method makes use of
equation (1), where ¢ is the propagation speed, and the
respective sensor locations 7; detect the arrival times ¢
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Equation (1) may be used to define a hyperbola of 7y at
constant value of At=1¢ — t, for two sensors at coordi-
nates 7. In this definition, one sensor is located at the
focal point 7; of the hyperbola of the respective A¢ value
with the transverse axis of the hyperbola reaching from
sensor 1 to sensor 2. For a two dimensional (2D) locali-
zation problem, such hyperbolas does not result in a
unique 2D coordinate for a specific Ar value, since the
source might be located at any position along the
hyperbola. Adding one more sensor to this 2D prob-
lem, two further hyperbolas may be constructed in the
same fashion for each sensor pairing and their respec-
tive Az values. The intersection of these hyperbolas then
defines the source coordinate 7, of the acoustic emis-
sion. However, equation (1) uses a constant sound
velocity c. It is possible to modify this equation if a
known bidirectional velocity characteristics is present
in the investigated object. Equation (1) can then be
rewritten as follows
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where x,, and y,, are the sensor positions in the x and y
directions on the surface of the investigated object,
respectively. The values of x, and y, are the coordinates
of the source position, and ¢} and ¢ are the squared
velocities in the two principal directions offering an
additional degree of freedom for the localization of the
acoustic emission sources (Figure 1).

As a solution algorithm for the equation system (2),
Nelder and Mead?® as well as “BFGS,” which stands
for “Broyden—Fletcher—-Goldfarb—Shanno,” and the

“L-BFGS-B” (limited memory algorithm for bound
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Figure |. Pressure vessel with sensors |-7 and point grid.

constrained optimization) algorithm can be used. The lat-
ter allows a bound constraint and was developed in 1995.
It is also possible to use other zero-, first-, or higher-order
optimization methods, but since the approximated func-
tion of equation (2) is of a smooth hyperbolic nature,
there is no significant gain in accuracy using higher-order
optimization algorithms in the investigated experiment.
The advanced L-BFGS-B algorithm will be used for the
classical source localization method in this investigation
and will serve as a benchmark for further developments.
Hence, this method will be referred to as the classical
approach in the following.

Computation of At gradients and source localization
accuracy

The maximum accuracy of the measurement system is
dependent on the sensor positions and the position of
the acoustic emission source as well as on the data basis
(A7 values) used for the localization procedure and its
quality. Acoustic emission source localization based on
At values leads to a spatial variation of the localization
sensitivity. This means that an identical shift in position
Ar at different locations on the test object will lead to
different shifts in the respective Az values.
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Figure 2. Representation of the gradient of At values for a pair
of two sensors (dots) along the outer surface of a pressure vessel.

The At values of two sensors are directly obtained
using formula (1). To determine the source localization
error, the gradient of the Az values may be calculated.
Figure 2 shows a vector field representation of the
At-value gradient for spatial variation along the outer
surface of a pressure vessel using an isotropic sound
velocity of 5100 m/s for a set of two sensors (marked in
red). This vector field is calculated as gradient of for-
mula (1) in all spatial directions

6(1‘,‘ — 1) = 6 <M> (3)

c

For improved visibility, only half of the vessel sur-
face is depicted in Figure 2. Here, only the gradient of
At values for the two sensors marked in red is shown.
For these, it may be observed that the change in the Af
values is maximal directly between the two sensors, and
it decreases with distance from the sensors. The maxi-
mum gradient of Ar values expected in the investigated
pressure vessel is approximately 277 ps/m and the min-
imum is 226 ps/m. These values directly result from
equation (3) using the known source and sensor posi-
tions and assuming a quasi-isotropic sound velocity,
which was chosen as average sound velocity measured
in our pressure vessel. It can also be seen that the
change with spatial distance is lower in the immediate
vicinity of the sensors.

These estimates represent a rough approximation of
the real conditions in the CFRP/steel pressure vessel
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and are meant to serve as an estimate for the determi-
nation of the uncertainty of source localization. It
should be noted that the material for these assessments
is assumed to be isotropic and thus only represents a
first approximation, but was found to be in good
accordance with the results from our experimental
measurements.

Limitation of source localization accuracy based on
At values

In order to derive the source localization accuracy in
our experimental setup, this section provides an over-
view on relevant sources of uncertainty. Typically, dis-
tinction is made between statistical variations and
systematical variations of a value. In the following two
subsections, the impact of several experimental para-
meters on the quantities entering equations (1) and (2)
is discussed. In the third subsection, the resultant lower
limit of source localization accuracy is derived. To
facilitate the reading, all parameters are discussed in
application to the experimental setup described in sec-
tion “Experimental setup” and as shown in Figure 1.

Parameters with statistical variation. As first step, only
parameters with statistical variation are discussed. All
following derivations use the conventional definition

o= \/1/(11 -DY, WX — X)? of the standard devia-
tion o of n measurements. The parameter X, is the ith

measurement value and X =1/n)"7_, X; is the empiri-
cally determined mean value.

Uncertainty of the grid position. This uncertainty is
based on the finite thickness of the grid lines and the
accuracy of drawing the grid. The grid lines were
applied using a white marker with a variable thickness
of approximately 0.4-3 mm depending on the applied
pressure. The deviation of the grid position relative to
the nominal value was quantified at 10 different points
on the pressure vessel, which resulted in a total uncer-
tainty of *1.67 mm with Gaussian distribution. This
uncertainty has a direct influence on the localization
results since it affects the position of the source coordi-
nate 7.

Uncertainty of the test source position. This uncertainty
is caused by the possible deviation of the test source
position relative to the source coordinate 7. Since the
test source is manually attached to each grid position,
the resultant deviation is statistically distributed. The
uncertainty of the test source position is approximately
the same for both types of test sources used herein
(cf. section “Experimental setup”) and is assumed to be

a Gaussian distribution. Under best conditions, we
assessed a deviation from the intended position up to
4 mm. The resultant uncertainty quantified as standard
deviation of 15 measurements was found to be
+2.16 mm. This value has a direct influence on the
location results, since it affects the source coordinate 7.

Uncertainty of arrival time extraction. One major uncer-
tainty is given by the extraction of the arrival times
from the waves. Since the initial part of the wave is a
rising slope, the exact definition of a signal arrival is
generally difficult. The methods using constant threshold
values to detect the signal arrival depend substantially on
the slope of the initial part of the wave and, therefore, may
cause scatter of the so obtained At values. But even versa-
tile approaches for picking the time of arrival like the
Akaike information criterion (AIC)*! are sometimes error-
prone. Specifically for the AIC function, the absolute mini-
mum is sometimes way apart from the real signal arrival.
This happens for instance, when multiple guided wave
modes arrive at distinct times with later arriving modes
being stronger than the first mode. For a set of signals, the
deviation of arrival times to the real value may be assumed
to be randomly distributed. To quantify the uncertainty
for this parameter, 10 randomly selected waves were exam-
ined and the mean deviation between manual and auto-
mated signal arrivals was quantified. The so obtained
uncertainty was *=3.24 ps and is assumed to be Gaussian
distributed with direct influence on the arrival times ¢;.

Parameters with systematic variation. Systematic influences
can affect a measurement by a constant offset or by lin-
ear or even non-linear scaling. Therefore, the measure-
ment result should ideally be compensated with respect
to all known systematic variations, which is hard to
achieve in practice.

Influence of test source dimension. Since the test sources
used in the experiments have a finite dimension, their
influence is discussed first. The piezoelectric pulser used
in the experiments has a diameter of 17.8 = 0.5 mm,
and the Hsu—Nielsen source has a diameter of
0.5 = 0.01 mm. Scatter of both values was found to be
specific for the respective piezoelectric pulser and the
respective pencil lead. The distribution of this para-
meter is assumed to be uniform and the uncertainty of
this parameter on the test source position 7 is direct.

Influence of sensor dimension. There is an aperture
effect which is caused by the piezoelectric sensors which
have a diameter of 17.8 = 0.5 mm. The detection of
the wave is therefore distributed over a certain area.
The assumed source—sensor distance may thus range



from X + 8.9 mm to X — 8.9 mm depending on the
angle of incidence.

Uncertainty caused by dispersion and attenuation. There
are various dispersion effects which can affect the arri-
val time measurement more or less significantly. The
effects of dispersion can be subdivided into chromatic
and modal dispersion. Chromatic dispersion is depen-
dent on the wavelength and the type of wave (i.e. longi-
tudinal or transversal). The impact on the detected
wave depends on the specific materials and in compo-
sites also on the propagation direction.*

Since a fracture process is not monochromatic, the
wave propagates with lower velocity at lower frequen-
cies.?” This leads to the effect that higher frequencies of
an acoustic wave are detected first and therefore deter-
mine the time of arrival.

However, in thin-walled structures such as the pres-
sure vessel studied herein, modal dispersion occurs as
well. Modal dispersion arises for guided waves, such as
Lamb waves typically found in plates, which can be
described by the Rayleigh-Lamb equation.”®> The
modal dispersion effect overrules the chromatic disper-
sion in such structures by some orders of magnitude. In
the case of Lamb waves, the acoustic wave propagates
as characteristic symmetric and asymmetric modes
which will be referred to as Sx and Ax, respectively.
The index x is an integer which starts with 0 for the fun-
damental mode and 1, 2, 3, ... for higher-order modes.
If the fundamental symmetric mode SO is excited by the
acoustic emission source, it will define the time of arri-
val since this is the fastest wave mode at reasonably low
frequencies. If this is not excited, other modes will
determine the first signal arrival. This plays a signifi-
cant role in classical source localization since the propa-
gation velocity of the modes can change substantially
resulting in a respective error in the source position
calculation.

This only exemplifies the high complexity of a
dispersion-based influence on the accuracy of localiza-
tion algorithms. Also, this influence is not always feasi-
ble to consider explicitly, since it is strongly dependent
on the sensor position, the propagation path, and the
source type.

Another significant effect to consider for the locali-
zation accuracy is the attenuation. This takes place in
the form of geometric spreading of a wave from a point
source which propagates circular in all directions.
Additionally, dispersive losses due to scattering or
frequency-dependent absorption may take place. As
demonstrated by Hosten,** the frequency-dependent
attenuation is different for longitudinal or transversal
waves and the attenuation coefficient increases with
frequency. This may result in a detection of the high-
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frequency components of the SO mode for nearby sen-
sors, whereas distant sensors may only detect the low-
frequency components of the A0 mode.

Uncertainty caused by other effects. The factors dis-
cussed above are generally known and may have the
highest impact on the localization accuracy. However,
there are plenty of other factors that can also affect the
localization accuracy more or less significantly. Factors
like the sampling rate influence the temporal measure-
ment directly with a standard deviation of *£28.87 ns,
which can be neglected in comparison with the other
parameters. Also, the uncertainty caused by the sensi-
tivity variation of the sensor can be important. Each
acoustic emission sensors is known to have a unique
sensitivity within a given frequency range. Due to reso-
nances it is possible that the sensitivity is magnitudes
higher for a specific narrow frequency range than for
other non resonant frequencies. It is possible that sig-
nals which are within a resonance of an acoustic sensor
are predominantly detected, whereas others which may
have the same or even higher amplitudes are detected
with a lower amplitude or not at all. This leads to a sys-
tematic influence of the sensor to the measurement and
the results.

It is also possible that inhomogeneities in the mate-
rial are present which interfere with the wave. This is,
for example, the case if holes or fixtures are attached to
the structure. Also, voids or other defects in composite
materials may cause a disturbance of the wave field.
Such an inhomogeneity or discontinuity can even dis-
tort the wave propagation in a way that no direct path
from the source to the acoustic sensor exists. Therefore,
the signal arrival time is based on indirect reflections
and causes respective measurement errors.

Furthermore, there are also purely thermal effects
which will not only cause thermal expansion of the
involved geometries but may also contribute signifi-
cantly to the noise level, as well as to the properties of
materials and thus the transmission characteristics.

These are just a couple of examples to mention in
the context of this work. A detailed discussion of all
effects is not part of this publication and also not sub-
ject to the assessment of uncertainty in this case.
Instead, Table 1 summarizes the discussed parameters
with a significant relevance to the localization problem
in the presented setup including their influences on the
measurement parameters determining the source locali-
zation accuracy.

Absolute limit of source localization accuracy based on At
values. For a technical classification of a localization
algorithm and its accuracy, it is possible to perform a
relative comparison with existing methods. However,



638

Table I. Uncertainties of different parameters influencing the source localization accuracy.

Abbreviation Distribution Influence Experimental error

Parameters with statistical variation

Uncertainty of the grid position Olyrid Gauss Direct *1.67 mm

Uncertainty of the test source position or Gauss Direct *2.16 mm

Uncertainty of arrival time extraction Otextraction Gauss Indirect *+3.24 ps
Parameters with systematic variation

Diameter of the Hsu—Nielsen source Alcross Uniform Direct +0.5 mm

Diameter of the piezoelectric sensor Algensor Uniform Direct *+17.8 mm

knowing the absolute limit of source localization accu-
racy in a specific setup allows determining whether the
method may still be improved or has already converged
to its technical limits.

To derive the lower limit of source localization accu-
racy, only the parameters with statistical variation will
be taken into account. This is due to the challenge to
account for the effects of systematic variations in para-
meters as found in Table 1. Nevertheless, neglecting
these uncertainties will simply lead to a more optimistic
lower limit, that is, in reality the source localization
accuracy will even be less.

In the first approximation, the parameters discussed
in Table 1 are uncorrelated, which allows the use of the
simplified version of Gauss’ formula for a specific
parameter y

Here, o, is the total standard deviation of the para-
meter y which is ¢, t,, 7, or 7y with respective units of
length or time. The standard deviation o; is the uncer-
tainty of every single parameter i considered in Table 1,
which is relevant for the respective parameter y.

The uncertainties of #; and #, directly contribute to
the expected localization uncertainty. To approximate
the influence of #; and ¢,, we use the average maximum
gradient of arrival time differences in the vessel evalu-
ated as 252 ps/m as derived in section “Computation
of At gradients and source localization accuracy.”

Applying equation (4) and the values of Table 1, the
resultant source localization error of 7 and 7, is evalu-
ated as =2.7 mm. The uncertainty of #; equals £3.24 ps
which leads to an additional source localization error of
+1.29 cm. Since the origin of both error contributions
can be expected to be uncorrelated, we can apply equa-
tion (4) for the second time and yield =1.31 cm as the
final source localization error. This provides the abso-
lute limit of source localization accuracy within our
experimental setup.

Here, it is worth noting that the presented neural
network approach directly incorporates systematic

parameter variations, since these are implicitly modeled
in the training stage (cf. section “Neural-network-based
source localization”).

Neural-network-based source localization

The basic idea behind neural networks is that through
the connection of simple individual elements, a network
is created that can capture or process complex informa-
tion. As research in the field of ANN has its origins in
neuroscience, the terminology of neuroscientists is gen-
erally used to describe elements and processes in ANN.
For example, the basic nodal elements of the networks
are called artificial neurons. These neurons are coupled
via weighted connections to form a network.

The advantage of these networks is their capability
to recognize patterns and symbolic contexts from
examples without using explicit analytical functions to
describe this context. This is usually achieved through
a modeling phase, where an ANN structure is trained
based on a representative dataset. Hence, this process is
generally called the “learning” or “training” of the net-
work. During this phase, a symbolic functional relation
between the input data and output data is approxi-
mated that reproduces the characteristics inherent to
the system. Subsequent to the modeling phase, the
ANN can be used for predicting the output data values
based on arbitrary input data values.

In general, there are unsupervised and supervised
learning methods, which differ in that unsupervised
algorithms cluster the measured values according to
their internal structure,>* whereas supervised methods
try to model a symbolic functional relationship that is
inherent in the system. The function approximation
required in the case of acoustic emission source localiza-
tion requires a direct relation between an input dataset
to a corresponding set of output data. Therefore, only
supervised learning methods are suitable for this pur-
pose. The network used in our case is called the feed-
forward network because no internal feedback loops
are present. The network output is compared with the
target pattern and fed back only at the end of one itera-
tion cycle.



Distinction is made between the input layer, the out-
put layer, and the layer of “hidden” neurons, also called
the hidden layer. The number of neurons in the hidden
layer significantly determines the maximum complexity
of the network.

Any neuron in the network obeys the following
formula

L@ W) —0)=f, inwi—0> (5)
x=1

where X is the input vector with elements X, ..., X,
This input vector can be originated from external
sources (i.e. the input data) or could be passed from
other neurons in the network. The sum of the input
vector is multiplied by the weights w; and is also called
the transfer function f,. Here, 6 represents an addi-
tional constant bias of a neuron which can be influ-
enced directly during the training. Thus, the input
vector components can be either increased or decreased
independently. The resulting transfer function is input
to the activation function fy of the neuron. Typically,
in neural networks, hyperbolic, linear, and Gaussian
activation functions are used.

An ANN with purely linear activation functions is
only able to approximate linear problems because cou-
pling of any number of linear elements still only yields
a linear function. Such linear neurons are hence used to
correct linear offsets that may occur in a data structure.

In principle, whether a sigmoidal (hyperbolic tan-
gent) or radial (Gaussian) basis function is chosen is
irrelevant if suitable training and a sufficient number of
neurons are provided. However, the choice of the basis
function should match the expected value distribution
of the used data. A radial basis function better fits
problems that are of radial symmetry in their structure,
whereby non-radial problems can also be modeled by
just scaling the flanks of a radial function. The sym-
metric part of the radial basis functions is then scaled
so that it resides in the untrained or non-relevant
regions outside the investigated data structure. Because
no symmetrical data structure is expected for a general
source localization problem, a hyperbolic activation
function is used instead. This has also been experimen-
tally found to be the most suitable activation function.

For the acoustic emission source localization,
networks with a fixed number of neurons are used.
Adjustment parameters are the threshold value of indi-
vidual neurons, as well as the gain and inhibiting con-
nections. It is also possible to delete or re-establish
connections.

During the modeling phase, the network weights are
changed according to the input and output parameters
of the dataset. A critical issue during this modeling
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phase is the “training algorithm” of the network which
is used to achieve a sufficient approximation. To this
end, the current network output is compared with the
desired output and the network weights are then opti-
mized accordingly via a feedback loop. The training
method that is most suitable for this type of function
approximation problem is called backpropagation and
is a standard procedure, which is described in detail by
Bishop.>

The input dataset or training dataset is usually sub-
divided into fit points and validation points. Using the
fit points, the network weights are adjusted. The valida-
tion points are not used for the weight adjustment, but
for the decision whether the trained neural network is
able to predict unknown (the validation) points. These
two datasets serve the functions of modeling and evalu-
ating the neural network during the training phase. In
further derivatives of neural networks, there is another
set of unknown test points that are used to rate the final
quality of the present training state of the completed
neural network.

The quality of the neural network can be evaluated
using fit and validation points. Typically, if the number
of neurons and layers is gradually increased, the fit
quality improves accordingly. Such improvement can
be evaluated on the basis of the R* (root-mean-square
error (RMSE)) and the average deviation of the pre-
dicted output data to the known output data. The opti-
mal number of neurons and layers is reached when the
model quality does not change significantly by adding
additional neurons or layers.

The training procedure, the resulting neural net-
works, and their approximation quality are influenced
directly by the chosen error function. Usually, a quad-
ratic error function is used, which calculates the devia-
tions between the network output generated from a
given input and the target value (known output value).
The resulting deviations are then squared and summed
over all points using formula (6)

E_lN(4_.)2 6
—2;01 Vi ()

The variable E is the resulting error over all patterns, N
is the number of training data points, y is the predicted
output value for a known input x, and o is the known
output value.

The minimum of this error corresponds to the opti-
mum model. The choice of a quadratic error function,
however, is only advisable if the model is not domi-
nated by outliers or if the number of training points is
high. If the training point density is low, a single strong
outlier (e.g. a measurement error) can significantly dis-
tort the network because the network does not decide
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whether training points are relevant or just measure-
ment errors. At a high number of training data points,
however, the weight of a single outlier is less strong.
Therefore, it is very important to use the best possible
input data for the training phase, especially if the over-
all number of training points is low. From the view-
point of neural network optimization, the “best” data
basis exhibits least scatter and correlates as high as pos-
sible to the source location coordinates.

The required number of training points is dependent
on the number of neurons and the complexity of the
system. For the fit of a neuron in the network, the offset
of each neuron and the input weights must be adjusted.
This means one needs a number of weights at least as
large as the degrees of freedom leading into the neurons
and an additional offset. In practice, it has been proven
that at least twice as many training points are required
as the number of weights present in the network.

However, there are no strictly defined limits for the
number of training points. As a rule, higher number of
training points results in a more accurate neural net-
work approximation, and vice versa. If a target accu-
racy is required, additional training data points can be
iteratively added to the model to increase the neural
network quality.

If the training data points face some outliers despite
a previous cleaning of data points using plausibility
(e.g. by specifying a maximum A¢ value), the choice of
error function needs to be adjusted. In this case, the use
of the sum of the absolute values is recommended. This
does not emphasize strong outliers and offers the
advantage of a strong weighting and an equally distrib-
uted error weighting of all training points

1
E:§Z|Oi—%‘| ()
i=1

It is also useful to apply an additional penalty
method that is added to the error function to limit the
magnitude of change in the weights during each itera-
tion of the training phase. These limits usually lead to
better generalization and yield a more smooth func-
tional approximation. More detailed information on
these implications can be found in the standard litera-
tures such as in the studies by Bishop®’ or Haykin.*

A large error during the training phase indicates too
few degrees of freedom or too few neurons in the net-
work. On the opposite side, a small error during the
training phase in comparison with the validation error
may indicate that the network does not adequately gen-
eralize the data structure. The latter would imply that
the network has too many degrees of freedom, and the
number of neurons should be reduced. Following such
guidelines, the probability of overfitting is reduced.

This effect may occur when too many neurons are used
in the network. If neural networks are trained repeti-
tively using the same dataset, it is possible to evaluate
the overall network quality by the distribution of the
individually achieved network qualities and their result-
ing deviations from the input data.

Experimental setup

In this section, the experimental setup used in this study
is described. For the detection of acoustic emission sig-
nals, seven multiresonant sensors (type WD; Mistras)
were mounted on a type III CFRP pressure vessel with
metallic liner using suction cup holders. To provide a
suitable acoustic transmission, a medium viscosity sili-
cone paste (Baysilone) was used as a couplant. All sig-
nals were detected using a PCI-2 acquisition system
with 40 dB preamplification, 45 dB threshold level, and
20 MSPS sampling rate. A sixth-order Butterworth
bandpass was chosen to range from 1 kHz to 3 MHz.
The data acquisition software AEWin is used, whereas
further analysis is done with the software language R
using the statistical package “constrOptim,” the
“neuralnet” package, and the software environment
SPSS.

Acoustic emission signals were introduced using two
different test source types to ensure the excitation of
different frequency ranges. As one type, the classical
Hsu—Nielsen source was used,”” and as second type, a
piezoelectric pulser was used to also excite dominant
frequency parts above 100 kHz (cf. Figure 4). For the
latter, the applied rectangular pulse had a rise time of
2 ns and a duration of 20 ws, followed by a falling edge
of 2 ns and a maximum amplitude of 10 V. These set-
tings were experimentally found to be the best compro-
mise between signal amplitude and frequency
bandwidth of the resulting acoustic emission signal.
These two test source types are intended to simulate
the broad bandwidth of acoustic signals that may occur
in real CFRP structures. For the determination of the
signal arrival, AIC is used.®

The pressure vessel is 1.08 m long and has a diameter
of 33.3 cm. The lateral surface has a length of 79 cm,
and the dome has a radius to the top of 14.5 cm. Five
of the seven sensors are located on the cylindrical sur-
face and two more sensors sit on the dome of the vessel,
as shown in Figure 1. The cylindrical part of the vessel
has 12 X 18 grid lines, which are further branched on
the spherical dome to yield additional 19 partitions. At
all 444 junction points of the grid, an acoustic signal is
excited by each of the test source types. Furthermore,
two cases are distinguished in the following. As first
configuration, the source localization is carried out
using an empty vessel, and then, as second configura-
tion, using the vessel filled with water. This means the



total database of signals was 12,432 acoustic emission
signals generated and measured, which will be used for
the source localization procedure in four test cases.

To maintain consistency of the approach and to
ensure comparability between the classical localization
method and the method using ANN, for both localiza-
tion procedures, the same Az values are used as input
database. All Az values of seven sensors are used,
whereas the vessel surface is projected to a 2D grid.
That means there are 21 sensor pairings.

Due to the arrangement of the acoustic emission sen-
sors on the vessel surface, it can be depicted that it is
not useful to use all pair-wise combination of seven sen-
sors for source localization since it is expected that sig-
nals occurring close to the vessel bottom exhibit the
longest propagation distance to the sensors on the ves-
sel dome and thus suffer most from attenuation and dis-
persion, which causes a high error of the determined Az
values. For this reason, only five sensor pairs are used
simultaneously which means the calculated source posi-
tion is overdetermined twice. The most likely source
position is then determined from the scatter of source
positions of all subset combinations from five out of
seven sensor pairings. The subset combination with
least scatter respectively the lowest error is chosen for
the determination of the final source position. The pos-
sible values for the x value are limited by the physical
size of the tank ranging from —10 to 80 cm, whereas
zero is an arbitrarily defined symmetry axis. The y
direction is limited from —20 to 150 cm accordingly.
The sound velocities used for the localization procedure
are 5636 m/s in the x direction and 4230 m/s in the y
direction. Both velocities were obtained from previous
measurements of arrival time differences evaluated
along the axial and circumferential axis of the pressure
vessel. To this end, two WD (Wideband Differential)
sensors with 200 mm distance spacing and 15 test
source positions were used as data basis.

Using the techniques described in section “Neural-
network-based source localization,” a two-layer net-
work with 4 X 4 neurons with a hyperbolic tangent
activation function was chosen. This number of
neurons was found to be optimal by gradually increas-
ing the number of neurons and iteratively checking the
according fit quality parameters described in section
“Neural-network-based source localization.” The opti-
mal number of neurons and layers is reached when the
model quality does not change significantly by adding
additional neurons or layers. The initial learning rate is
chosen as 0.001 which can be varied by the network
during training with a change rate coupled to the error
function.

Up to 5000-10,000 models are fitted to one training
dataset and the best one is selected based on the model
parameters. If all 444 waves of the dataset would be
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used for the neural network training and validation,
one could reach arbitrarily accurate source coordinates.
To avoid such overfitting of the source coordinates, we
use only one quarter from the dataset (i.e. 111 waves)
as statistically representative subset for training and
validation. The training dataset is further subdivided
into 74 fit points for the training and 37 validation
points. As input data structure, all 21 Az values are
used with an output vector of x and y coordinates. For
the selected 111 test data points on the vessel surface,
the resulting model quality is consistently repeatable
with respect to the variance of the model parameters. A
further increase in the training data density leads to
models with lower variance, but a substantial decrease
in this variance was found to be inhibited by the scatter
of the measurements. Aside from the 111 test data
points, the remaining three quarters of data points are
unknown test point positions, which are further used to
determine the localization accuracy.

Results

Acoustic emission wave propagation

In order to understand the impact on source localiza-
tion accuracy, some common aspects of wave excitation
and propagation in the type III pressure vessel are dis-
cussed first.

As pointed out in section “Experimental setup,” two
different acoustic emission test sources were used to
yield different parts of the frequency spectra. In general,
the types of signals encountered in hybrid CFRP/metal
structures can cover a broad bandwidth and may excite
multiple modes.”® Hence, it is important to replicate the
acoustic emission signals of different failure mechan-
isms in their key characteristics when being used as
input data for Az-value-based source localization.

To compare the differences in bandwidth, the Choi—
Williams distribution of one signal of each test source is
shown in Figure 3. The top figure shows the time—
frequency profile of a signal due to a Hsu—Nielsen
source placed in 523 mm distance to the sensor. The
source position is on the surface directly opposite the
sensor position, so the signal traveled 180° around the
vessel to the sensor position. For the Hsu—Nielsen
source, the signal is found to be predominantly a low-
frequency signal width, a bandwidth up to 100 kHz.
The high-frequency parts are less intense, but still pres-
ent as seen by the faster mode in the beginning of the
signal between 150 and 280 ws. These weak modes
likely fall below the detection limit (e.g. noise level) after
a certain distance of propagation and therefore may
yield unstable evaluation of the signal arrival times.

The bottom image of Figure 3 shows the signal due
to excitation from a piezoelectric pulser after detection
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Figure 3. Frequency—time profile of an acoustic emission signal
detected in 523 mm distance to the sensor (top: Hsu—Nielsen
source; bottom: piezoelectric pulser).

in 523 mm distance. It can be observed that a frequency
range up to 300 kHz is excited. In particular, the mode
in the beginning of the signal is more intense than for
the Hsu—Nielsen source. Therefore, this test source type
offers a different bandwidth, which can be used to rep-
resent other signal types as seen in testing of composite
materials.

Another effect relevant to the investigation of pres-
sure vessels, which is described in the literature, is the
possibility of a water path propagation.® This possibil-
ity arises due to two propagation paths if source and
sensor are approximately on the opposite sides of the
vessel. Here, the acoustic propagation path as guided
wave on the wall of the pressure vessel and the direct
propagation path through the contained liquid are
coexistent. Although the direct propagation path in the
contained liquid is shorter, the sound velocity in liquids
is typically much slower than in the fiber-reinforced
wall. Hence, the origin of the first signal arrival is not
always straightforward to attribute to the guided wave
or the direct signal arrival, respectively. Also, the
guided wave propagation in a liquid-solid—gas
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Figure 4. Acoustic emission signals from different test sources
in water-filled and empty pressure vessel detected at 523 mm
distance.

configuration will not only cause simple plate wave
propagation but also is likely to excite leaky Lamb
waves.”? Other effects such as the initial (gravity) load-
ing of the vessel by the contained liquid may result in
further changes of the signal propagation due to com-
pressive forces acting in the supports or by closure of
air gaps in between the pressure vessel and the support
structure.

In Figure 4, acoustic emission signals are shown that
are detected directly opposite to the acoustic emission
source position in 523 mm distance. Comparison is
made between the acoustic wave in the empty vessel
and the acoustic wave in the vessel filled with water for
each of the two test sources. As seen by the changes in
the signals in Figure 4, the presence of the water fill has
an impact on the signal propagation. For the Hsu—
Nielsen source signals, it is possible that the apparently
earlier arrival of the lower frequency part (indicated by
an arrow) is actually the water path, as discussed by
Hamstad.® Tt is also possible that the occurrence of
leaky Lamb wave propagation in the filled vessel causes
further changes and hence changes in the signal charac-
teristics. There is also a change in the acoustic emission
signal of the pulser as seen in Figure 4. The shares of
the higher frequency mode are attenuated more than
the lower frequency shares. However, a direct indica-
tion of the water path arrival is not observed here.

In both cases, the observed effects will have an
impact on the extracted signal arrival times and, there-
fore, influence the localization accuracy of a method
that does not take into account such changes. In partic-
ular, the occurrence of a water path signal arrival and
the frequency-dependent attenuation®® may cause step-
like changes in the extracted signal arrival times and
will therefore affect the localization accuracy. Hence,
the chosen configurations are used to examine the
impact of those effects on the localization accuracy in
the tested localization methods.
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Figure 5. Localization results on one half of the pressure vessel using different test source types for a filled and for an empty vessel
using the classical localization method. The color coding represents the source localization error in centimeters.

Classical source localization method

To start with the comparison of the localization meth-
ods, the results of the classical source localization
method as described previously are presented. All four
cases investigated are shown in Figure 5 as false color
map of the source localization results. To this end, the
spatial deviation between the (known) position of the
test source and the calculated source position is repre-
sented by the color range in the image. This deviation
will further be referred to as source localization error.
Interpolation between the measurement points is car-
ried out using a thin plate spline’! with a constant
smoothing parameter of 0.01. Hence, positions with
strong deviations to the real source position are of red
color and signals, which could not be localized, are
given a gray color. For all cases, the respective source
localization error is in the range from 0 to 25 cm,
whereas the gray areas indicate regions, where the test
source signals could not be localized. The light gray
area represents a deviation that is greater than 25 cm.

It can be observed that there is a systematically
stronger deviation close to the sensor positions. This is
because the gradient of Az values is lowest close to the
sensor positions, and therefore, the same error in At
values leads to a larger error in source location. It is
also evident that the dome has a lower localization
accuracy for all four configurations. This is mainly due
to the curvature of the dome, the possibility of multiple
reflections, and interactions with the pressure inlet
(located at the tip of the dome). Furthermore, the sen-
sors are on the dome and are particularly close in posi-
tion, which means that sensors 3 and 4 face the same
problem of low Ar-value gradients in the near field. All
of these effects add to the lack of quality of the
localization.

The localized Hsu—Nielsen source positions have an
average deviation of 7.0 = 10.2 cm for 419 out of 444
points. The standard deviation is greater than the mean
value, which indicates the significant scatter of the cal-
culated results. The localization quality decreases
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Figure 6. Localization results on one half of the pressure vessel using different test source types for a filled and for an empty vessel
using the neural-network-based localization method. The color coding represents the source localization error in centimeters.

substantially for the test signals excited by the piezo-
electric pulser. On the dome, almost no points were
localized and only 199 of the 444 points were localized
at all. The calculated source positions show a mean
deviation of 14.0 = 16.1 cm to the real position. For
comparison, the results of the water-filled vessel are
also shown in Figure 5. The number of localized test
source positions decreases further for both test source
types. For the Hsu—Nielsen source, the amount goes
down from 419 to 407, with a mean localization error
of 6.9 £ 6.2 cm. For the piezoelectric pulser, only 167
points could be localized, with a mean localization
error of 14.9 = 12.9 cm.

Neural-network-based source localization method

For the same input data, the source localization results
are now presented for the neural network structure dis-
cussed in section “Experimental setup.” The

representation of the results shown in Figure 6 uses the
same configurations as discussed for the classical
source localization procedure. In particular, the false
color range is chosen to be identical to Figure 5. On the
left side of Figure 6, the source localization error of the
piezoelectric pulser and Hsu—Nielsen source for an
empty vessel is shown. On the right side of Figure 6,
the respective images of the water-filled vessel are
shown. For all cases, the respective source localization
error is in the range from 0 to 25 cm, whereas the gray
areas indicate regions, where the test source signals
could not be localized.

In all configurations, the change in source localiza-
tion error close to the sensor positions is difficult to
spot. This is because the changes of the Ar-value gradi-
ents can be compensated by the neural network in the
training phase. It can also be observed that for the
same reason, the source localization error is almost
identical in all parts of the vessel. Especially at the
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dome, this leads to a substantially good source localiza- E
tion quality. Tg
In terms of statistics, the Hsu—Nielsen source in the ;L g IITT
empty pressure vessel has a mean source localization 52 I3
error of 2.0 = 1.44 cm for 441 out of 444 test points z2 | 3IF+
localized. This accuracy can be achieved using one
quarter of the data points as training and validation 5
points. The mean error (RMSE) during the training ) § T
and validation is 2.21 cm. This shows that the approxi- gD 4=
mated error during training and validation can be used Sl 5%
for predicting the source localization error of unknown 8|28 &8~2
points, assuming an adequately trained model. Also, o L«EEE" 3; :I\J:
the quality of a model can be improved using additional § § %o Elgmzs
data points for the model building. The improvement 22325 | —ddd
reaches an upper limit with 333 training and validation %
data points which equals three quarters of the measured £ E
points. The resulting source localization quality equals 8|8
1.61 £ 0.87 cm for 443 out of the 444 test points loca- T :? 2 T T
lized. The increasing accuracy can also be seen in the i £ 3 IFFT
RMSE of the model. Therefore, in the following, only % 23 I é E §
the accuracies of the best-fit models will be discussed in 5
detail. The results of all training datasets can be found g 2
in Table 2. S 5E
For the broad bandwidth excited by the piezoelectric 02 x <
pulser, the localization quality in the empty pressure o §o§°"§
vessel is slightly lower having a mean localization error § o 38 IS oo
of 2.34 = 1.7 cm, based on 441 out of 444 points loca- § T‘I: é §° — =i
lized. In the water-filled vessel shown on the right side E|5¢c 1l L' Al
of Figure 6, the source localization error increases 2|z E|QIIIG
slightly. The number of localized test source positions 2
decreases for the Hsu—Nielsen source from 443 to 430, R
with an increasing localization error of 2.33 = 1.85 cm. £ s
For the piezoelectric pulser, 413 source positions were E 2 e T T
localized having a mean localization error of b5 é 2 § § § §
2.56 + 6.13 cm. c|&8 |288%
Q
[
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Comparison between classical- and neural-network- 9 5 g N =
based source localization g f 5 i ;"I i i
It is evident that especially in the classical source locali- £ Eu g ”RZ2:
zation, the deviations to the test source position are of _§ U= - g
systematic nature. The localization quality close to the S| . 3
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but these characteristics are less pronounced in the g % a}_, b}_, >
neural-network-based approach. The localization error © g g gs o
in the center of the rectangular plane defined by the £1|> G S E S
sensor positions is generally lower than elsewhere on G c
the vessel surface. Since the origin of this effect is the _é 0 L. 2
gradient of At values, this can also be observed in the s £ 3 g
neural localization, although considerably less distinct. £ 2 3 =
Another detail that differs greatly between the two v E § g
methods is the localization accuracy as well as the gen- N é’ % qg)
eral possibility to localize sources at the dome region of % L 8 E_
the vessel. e f & &
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For the broader bandwidth offered by the signals of
the piezoelectric pulser, the localization error was gen-
erally found to be different for the Hsu—Nielsen source.
This systematic variation in the localization accuracy
may be caused by different attenuation levels for the
higher frequencies. Even using the AIC method, this
may lead to selection of the arrival time of different
wave modes, especially if the fastest mode drops into
the noise level after a long propagation path to the sen-
sors. This may generate a systematically different A¢
value than after signal detection after a short propaga-
tion distance. This effect cannot be compensated by the
traditional localization method, which therefore results
in a systematic error. In the neural-network-based
approach, though, these effects can explicitly be
accounted for in the training phase.

Table 2 holds the comparison of the source localiza-
tion errors of the classical source localization method
and the neural network method for all four configura-
tions. It can be observed that the classical source
localization method has a worse accuracy than the
neural-network-based method in all investigated cases.
In summary, the accuracy of ANN was found to be
superior by a factor of 3 to 6. The scatter of the loca-
lized source positions is also positively affected by the
use of the neural-network-based approach, which
causes a reduction in a factor of 2 to 11. Also, the total
number of localized test sources is substantially
improved.

Considering the theoretical error calculated in sec-
tion “Theory,” the neural-network-based source locali-
zation with a mean error of 1.61 = 0.87 cm is within
the range of scatter of the expected experimental limits
of approximately 1.31 cm. Consequently, the determi-
nation of the arrival time of the measured data must
thus be improved to achieve any further significant
reduction in the source localization error based on At
values.

Conclusion

It has been demonstrated that an acoustic emission
source localization method using neural networks is
superior to the currently established classical method in
all cases investigated. The comparison is based on iden-
tical input data provided by experimentally obtained Az
values, thereby allowing a quantitative comparison of
the two approaches.

The average source localization accuracy is better by
up to a factor of 6, and the variation around that
average is lower by as much as a factor of 11. The
neural-network-based approach was also possible to
improve the number of localized acoustic emission
events by a factor of 2. Additional factors of influence

such as the excitation of a different bandwidth, as
well as indirect propagation paths including reflec-
tions and a geometrically complex and curved propa-
gation medium, did not lead to significant reduction
in the source localization accuracy of the neural-net-
work-based method.

It could further be shown that for the Az values as
input data, the accuracy of the neural-network-based
source localization accuracy approaches the limits of
the theoretically expected source localization accuracy.
Therefore, any further increase in the source localiza-
tion accuracy can only be achieved by substantial
improvement in the input data used for the training
stage of the neural network. This could either be done
by alternative strategies for determination of the signal
arrival or using alternative values extracted from the
detected acoustic emission signals.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: This study was funded by the German Federal
Ministry of Education and Research (03MAI12A) within the
project MAI zfp within the leading edge cluster MAI Carbon.

References

1. Matthews FL and Rawlings RD. Composite materials:
engineering and science. Cambridge: Woodhead Publish-
ing, Ltd, 1999.

2. Bohse J, Mair GW and Novak P. Acoustic emission test-
ing of high-pressure composite cylinders. In: Pullin R,
Holford KM, Evans SL, et al. (eds) Advanced materials
research. Berlin, 2006, pp. 267-272. Switzerland: Trans
Tech Publication.

3. Sause M. [Identification of failure mechanisms in hybrid
materials utilizing pattern recognition techniques applied to
acoustic emission signals. Augsburg: University of Augs-
burg, 2010.

4. Bunsell AR and Thionnet A. Life prediction for carbon
fibre filament wound composite structures. Philos Mag
2010; 90: 4129-4146.

5. Sause MGR, Miiller T, Horoschenkoff A, et al. Quantifi-
cation of failure mechanisms in mode-I loading of fiber
reinforced plastics utilizing acoustic emission analysis.
Compos Sci Technol 2012; 72: 167-174.

6. Grosse CU and Ohtsu M. Acoustic emission testing. 1st
ed.Berlin, Heidelberg: Springer-Verlag, 2008.

7. Aljets D. Acoustic emission source location in composite
aircraft structures using modal analysis. South Wales: Uni-
versity of Glamorgan, 2011.



10.

I1.

12.

13.

14.

15.

16.

17.

Hamstad MA. A waveform-based study of AE
wave propagation by use of eight wide-band sensors on a
composite pressure vessel. In: Proceedings of the 30th
European  conference on acoustic emission testing,
Granada, 12-15 September 2012, pp. 12-15. Granada:
EWGAE.

Hamstad MA and Sause MGR. Acoustic emission sig-
nals versus propagation direction for hybrid composite
layup with large stiffness differences versus direction. In:
Proceedings of the 31st conference of the European Work-
ing Group on Acoustic Emission, Dresden, 3—5 September
2014, pp. 1-8. Dresden: EWGAE.

Chou H-Y. Damage analysis of composite pressure vessels
using acoustic emission monitoring. Melbourne, VIC, Aus-
tralia: RMIT University, 2012.

Ono K. Research and applications of AE on advanced
composites. In: Proceedings of the 30th European confer-
ence on acoustic emission testing, Granada, 12-15 Septem-
ber 2012, p. 44. Granada: EWGAE.

Blahacek M, Chlada M and Prevorovsky Z. Acoustic
emission source location based on signal features. In:
Pullin R, Holford KM, Evans SL, et al. (eds) Advanced
materials research. Prague, 2006, pp. 77-82. Switzerland:
Trans Tech Publication.

Scholey JJ, Wilcox PD, Wisnom MR, et al. A generic
technique for acoustic emission source location. J Acoust
Emiss 2009; 27: 291-298.

Chlada M, Zdenek P and Blahacek M. Neural network
AE source location apart from structure size and mate-
rial. In: Proceedings of the European Working Group on
Acoustic Emission, Vienna, 8—10 September 2010, pp.
359-366. Vienna: EWGAE.

Kundu T, Nakatani H and Takeda N. Acoustic source
localization in anisotropic plates. Ultrasonics 2012; 52:
740-746.

Kundu T. Acoustic source localization. Ultrasonics 2014;
54: 25-38.

Piatkowski G and Waszczyszyn Z. Identification prob-
lems of recurrent cascade neural network application in
predicting an additional mass location. Comput Assist
Mech Eng Sci 2011; 18: 217-228.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

647

Kalafat S. Lokalisierung von Schallemissionsquellen mit
kiinstlichen neuronalen Netzwerken in Faserverbundwerk-
stoffen. Augsburg: University of Augsburg, 2013.

Kalafat S and Sause MGR. Localization of acoustic
emission sources in fiber composites using artificial
neural networks. In: Proceedings of the 31st conference of
the European Working Group on Acoustic Emission, Dres-
den, 3-5 September 2014. Dresden: EWGAE.

Nelder JA and Mead R. A simplex method for function
minimization. Comput J 1965; 7: 308-313.

Kurz JH, Grosse CU and Reinhardt HW. Strategies for
reliable automatic onset time picking of acoustic emis-
sions and of ultrasound signals in concrete. Ultrasonics
2005; 43: 538-546.

Hosten B. Heterogeneous structure of modes and Kra-
mers—Kronig relationship in anisotropic viscoelastic
materials. J Acoust Soc Am 1998; 104: 1382.

Lamb H. On waves in an elastic plate. P Roy Soc Lond A
Mat 1917; 93: 114-128.

Sause MGR and Horn S. Quantification of the uncer-
tainty of pattern recognition approaches applied to acous-
tic emission signals. J Nondestruct Eval 2013; 32: 242-255.
Bishop CM. Neural networks for pattern recognition. 1st
ed. Birmingham: Oxford University Press, Inc., 1995.
Haykin SS. Neural networks: a comprehensive foundation.
2nd ed.Barrie, ON, Canada: Prentice Hall, 1999.

Sause MGR. Investigation of pencil-lead breaks as acous-
tic emission sources. J Acoust Emiss 2011; 29: 184-196.
Sause MGR, Hamstad MA and Horn S. Finite element
modeling of lamb wave propagation in anisotropic hybrid
materials. Compos Part B: Eng 2013; 53: 249-257.

Toda K and Motegi K. Propagation characteristics of
leaky Lamb waves in a liquid-loaded double-layered sub-
strate consisting of a thin piezoelectric ceramic plate and
a thin glass plate. J Acoust Soc Am 1999; 105: 3290-3294.
Calomfirescu M. Lamb waves for structural health moni-
toring in viscoelastic composite materials. Bremen: Logos
Verlag Berlin GmbH, 2008.

Bookstein FL. Principal warps: thin-plate splines and the
decomposition of deformations. IEEE T Pattern Anal
1989; 11: 567-585.



