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  Damage evolution in wood  –  pattern recognition 
based on acoustic emission (AE) frequency 
spectra   
  Abstract :  Tensile tests on miniature spruce specimens 

have been performed by means of acoustic emission 

(AE) analysis. Stress was applied perpendicular (radial 

direction) and parallel to the grain. Nine features were 

selected from the AE frequency spectra. The signals were 

classified by means of an unsupervised pattern recogni-

tion approach, and natural classes of AE signals were 

identified based on the selected features. The algorithm 

calculates the numerically best partition based on sub-

set combinations of the features provided for the analy-

sis and leads to the most significant partition including 

the respective feature combination and the most probable 

number of clusters. For both specimen types investigated, 

the pattern recognition technique indicates two AE signal 

clusters. Cluster A comprises AE signals with a relatively 

high share of low-frequency components, and the oppo-

site is true for cluster B. It is hypothesized that the signa-

ture of rapid and slow crack growths might be the origin 

for this cluster formation.  
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   Introduction 
 Research results are not yet available concerning the 

tracking back the evolution of a wood fracture zone to 

its origin. Such research should determine the temporal-

spatial occurrence of damage mechanisms and their 

interactions at different length scales, i.e., in the cell wall 

at the microscale and in the tissue at the mesoscale and 

macroscale. However, damage mechanisms have been 

frequently studied ( Ashby et  al. 1985 ;  Fr ü hmann et  al. 

2003 ), and failure scenarios have also been investigated 

in model analyses ( Hofstetter et al. 2008 ;  Saavedra Flores 

and Friswell 2013 ). The synchronous monitoring of multi-

scaled damage evolution, as a result of load exposure, is 

difficult because of the limited observable length scales. 

The acoustic emission (AE) method facilitates the detec-

tion of damage events at the microscopic and macroscopic 

scale. Additionally, the high time resolution in the range 

of  μ s allows detailed monitoring of the damage evolu-

tion. Nevertheless, the most challenging task is to assign 

features of the detected AE signals to their sources. A 

multitude of approaches focuses on this issue. The con-

ventional AE analysis investigates the parameters of the 

AE signals in the time domain ( Figure 1  a) by means of AE 

signal amplitudes ( Debaise et al. 1966 ;  Ansell 1982 ;  Ando 

et al. 1992a ;  Cunderlik et al. 1996 ;  Lee et al. 1996 ;  Aicher 

et  al. 2001 ;  Kim et  al. 2005 ;  Rosner 2012 ). Other studies 

focused on the AE frequency features (frequency domain, 

see  Figure 1 b) ( Ogino et al. 1986 ;  Tyree and Sperry 1989 ; 

 Reiterer et al. 2000 ;  Jakiela et al. 2008 ). 

 The present contribution introduces an approach 

based on frequency spectra of the detected AE events fol-

lowed by pattern recognition. To the best of the authors ’  

knowledge, this approach to AE analysis of wood materi-

als is unprecedented. The AE frequency spectra contain 

the main characteristics of the signal ’ s origin ( Stephens 

and Pollock 1971 ), and thus, similar source mechanisms 

are assumed to generate similar AE frequency features 

near the source location. The propagation of AE through 

the material is accompanied by reflection processes, 

which induce intrinsic similarities to the AE signal. To 

classify the AE signals properly, these similarities have 

to be identified and weighted for their significance. 

Therefore, the method of unsupervised pattern recog-

nition (UPR) is a useful tool. It is a purely mathemati-

cal approach to obtain dataset partitions by means of 

multivariate data analysis. The approach for signal 
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2      F. Baensch et al.: Damage evolution observed by AE

classification applied in the present study was originally 

developed for failure identification in hybrid materials 

( Sause et al. 2012a ). Its applicability is well established 

in the field of failure mechanism studies of fiber-rein-

forced composites ( Sause et  al. 2012b ). Because these 

composites and wood have distinct microstructures with 

anisotropic elastic properties ( Fratzl et  al. 2004 ), the 

implementation of the UPR method for AE signal classi-

fication of failing wood seems to be straightforward and 

promising.  

  Materials and experimental design 
 The specimens were cut from clear spruce wood [ Picea 
abies  (L.) Karst.] grown in the canton of Grisons (Switzer-

land) at altitudes above 1000  m (age approximately 250 

years). The mechanical properties of that wood stock, 

which is characterized by a low average raw density of 

approximately 340 kg m -3 , have already been described by 

 Sonderegger et al. (2008) . 

 Figure 1      Parameters of AE signals in time domain (a) and frequency 

domain (b). 

 A pretrigger of 18  μ s was chosen, the frequency spectra were 

calculated from the first 25.6  μ s of the detected signal (extraction 

window) (a). The unsupervised pattern recognition was performed 

by using nine frequency features: PF, CGF [Eq. (1)], WPF [Eq. (2)], and 

PP1 – 6 [Eq. (3)] (b).    

 Figure 2      Design of the radial specimens (a) and longitudinal speci-

mens (b) glued into the specimen holders; the experimental setup 

(c) is also shown.    

 The tests presented here were carried out on minia-

ture specimens to allow the implementation of the testing 

setup into a synchrotron computed microtomography 

(SR- μ CT) for further investigations. Two sets of specimens 

were manufactured regarding the applied fiber-load angle 

( Figure 2  a, b). The specimens prepared for load applica-

tion in the radial (R) direction will be denoted as R speci-

mens, and those prepared for load application parallel to 

the grain will consequently be denoted as longitudinal (L) 

specimens. 

 The first step in sample preparation was cutting blanks 

of dimension 30  ×  5.7  ×  2.3 mm 3  (length  ×  width  ×  thickness), 

whereby the most important step was the preparation of a 

plane cut of one specimen surface by a microtome blade. 

The created surface has the sufficient quality for coupling 

the piezoelectric AE sensors. Failure in the R specimens is 

expected mainly within the earlywood (EW) ( M ü ller et al. 

2003 ). Thus, L specimens were selected for comparability 

also from EW, resulting in the low density of 280 kg  m -3  

( Table 1  ). To ensure crack initiation between both AE 

sensors, the specimen ’ s geometry is tapered. The R speci-

mens have only a two-sided taper of approximately 4 mm 2  

test cross-section, whereby approximately five to six 

growth rings are within the tapered volume. In contrast, 

the L specimens are taper shaped at all four sides, yield-

ing a test cross-section down to 1 mm 2 . The specimens 

were transferred into the specimen supports made of alu-

minum with a single component polyurethane adhesive, 

which enabled an interlocking mount of the specimens in 

the testing device by a connection thread ( Figure 2 ). 

 Tensile tests were performed with a loading device for 

miniature specimens ( Zauner et al. 2012 ) with a load cell 
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of 1 kN, which was designed to be implemented at the syn-

chrotron beam line. The load application was performed 

under displacement control. Tests were continued up to 

the ultimate failure of the specimen. The R specimens were 

loaded with a cross-head speed of 0.005 mm s -1 , whereas 

the L specimens were tested at 0.01 mm s -1  to prevent pos-

sible creeping in the fixing adhesive within the specimen 

supports. In total, seven specimens of each type were 

tested. Despite their low densities ( Table 1 ) and taking into 

account the size effect yielding heightened strengths due 

to the tiny test cross-sections, the tensile strengths of the 

specimens are in good agreement with values determined 

by  Wagenf ü hr (2000) . The high standard deviation of the 

strength measured for the L specimens might be due to 

different density profiles within the growth rings located 

in the cross-sections ( Lanvermann et al. 2013 ). 

 The AE monitoring was performed with a digital 

AE equipment (AMSY-6, Vallen Systeme GmbH, Icking, 

Germany). Two miniature piezoelectric sensors [type 

M31 (Fuji Ceramics Corp., Shizuoka, Japan)] with a cou-

pling area of 3  mm in diameter were mounted single 

sided on the surface of the specimen ( Figure 2 c). The 

even mounting of the AE sensors ’  piezoelectric bearing 

face was facilitated by precisely machined sensor sup-

ports. Silicone-free vacuum grease was used as couplant 

(Pöllath J.P. Labortechnik, Bamberg, Germany) between 

sensor and specimen surface. The M31 AE sensors are 

sensitive to a frequency range of 300 kHz – 800 kHz, 

in which the sensor response is almost constant (  ±  3 

dB; see  Figure  3  ). Below 300 kHz, the sensor response 

 Table 1      Characterization of the investigated radial (R) and longitudinal (L) spruce wood specimens (mean  ±  SD).  

Type  N a   
Density 
(kg/m 3 )  

MC b  
(%)  

Cross-section 
(mm 2 )  

Growth ring 
width (mm)  

Traverse velocity 
(mm/s)  

Test duration 
(s)  

Strength 
(N/mm 2 )  

R 7 337  ±  6 8.5 4.1  ±  0.2 1.49  ±  0.10 0.005 54  ±  6 8  ±  1
L  7  280  ±  11  8.3  1.2  ±  0.2   –   0.010  18  ±  6  54  ±  11  

    a Number of specimens. 

  b Moisture content.   

 Figure 3      Averaged frequency response curve of the miniature AE 

sensors.    

steeply decreases by approximately -30 dB. Because the 

sensors are positioned quite close to the specimen ’ s 

failure zone, far field attenuation effects are assumed 

to be negligible (approximately 0.25 dB cm -1 ;  Bucur and 

B ö hnke 1994 ), but higher attenuation in the near field 

zone around the source cannot be excluded. However, 

regarding the different cell compositions of both speci-

men types (L specimens of EW tracheids, R specimens 

containing growth rings), the AE detection of the R 

specimens might be affected by a higher damping due 

to the differences in density within the growth rings 

(growth ring width of approximately 1.5 mm;  Table 1 ). 

The frequency range of the preamplifiers (AEP3, gain of 

34 dB into 50  Ω ; AMSY-6, Vallen Systeme GmbH, Icking, 

Germany) was limited between 30 kHz and 960 kHz. 

The detection of the AE waveforms was performed with 

a sampling rate of 10  MHz, yielding a signal duration 

of 409.6  μ s including an 18- μ s pretrigger. The threshold 

was set to 32.1 dB 
AE

  ( ≈ 0.04 mV). The chosen rearm time 

of 1 ms is based on empirical values. 

 The AE measurement performed with two sensors 

enables the localization of AE events. However, tracking 

the source position is not considered in this investigation, 

but exclusively AE events localized between both sensors 

(max. 10 mm distance) are selected for AE analysis. The 

acoustic propagation velocity through spruce wood is 

ca. 6000 m s -1  in the L direction and ca. 2200 m s -1  in the 

R direction ( Sonderegger et al. 2008 ), and based on this, 

the AE events can be separated by means of AE detection 

by both sensors ( Kurz et  al. 2008 ) within the maximum 

possible difference in arrival times (   ≤   10  μ s). The wave-

forms from the first signal of each AE event provide the 

basis for all analyses presented here. Hence, in the fol-

lowing, these first signals of the AE event are denoted as 

AE signals. The number of detected AE signals during one 

single tensile test is quite low (on average 16 AE events 

for each test). To ensure a suitable statistical database for 

pattern recognition processing, the extracted AE feature 

datasets of all seven tests are analyzed simultaneously for 

each specimen type. 

  Method of UPR:  The UPR technique was applied 

for evaluation of AE signal features extracted from the 
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frequency domain. To this purpose, the AE signal frequency 

spectra were calculated via Fourier transformation (Hamm-

ing window function, 256 samples) applied to the first 256 

samples of the AE signal in the time domain (0 – 25.6  μ s) 

excluding the 18- μ s pretrigger ( Figure 1 a). The limitation 

in the time domain was set with regard to the rise time of 

the AE events ranging from   <  1  μ s up to 10  μ s to ensure the 

proper selection of signal features only from the first part 

of the signal burst. Because the lifetime of an AE source 

event is in the range of some ns to a few  μ s ( Pardee and 

Graham 1978 ), the most significant effects of the source 

mechanism are expected at the beginning of the signal ’ s 

arrival at the sensor. The propagation of AE through the 

material structure is accompanied by reflection processes 

causing intrinsic similarities in the AE signals. Especially 

in tiny specimen sizes, as investigated here, these self-sim-

ilarities must be considered in AE frequency analysis. 

 The input features for the cluster algorithm are 

selected exclusively from the AE signal ’ s frequency 

spectra. Besides the peak frequency (PF) ( Figure 1 b) and 

center of gravity frequency (CGF) [Eq. (1)], the weighted 

PF (WPF) [Eq. (2)] is also introduced as an AE feature. 

The WPF combines the PF and the CGF for an improved 

representation of the AE signal frequency spectra. Addi-

tionally, the total frequency range is divided into six dif-

ferent partial power levels (PP) [Eq.  (3),  Figure  1 b]. To 

yield comparable frequency spectra, these features were 

normalized by their maximum magnitude for eliminat-

ing the influence of different source excitation energies. 

Altogether, these nine frequency features are chosen as 

input parameters for the pattern recognition approach. 
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 The UPR algorithm used in the current study tries to 

find the best possible partition by investigating subset 

combinations of the features given. Partitions are com-

pared based on cluster validity measures, and the 

optimum partition that includes the respective feature 

combination and the number of clusters is returned. The 

details of this algorithm have been described by  G ü nter 

and Bunke (2003)  and  Sause et al. (2012a) . 

 Table 2      Results of clustering of the radial (R) and longitudinal (L) 

specimens.  

Type  Clusters  Points a   FC  R   τ   S   σ   

R 2 100 28 0.6246 3.0205 0.6325 299

L  2  100  10  0. 5605  3. 4826  0.6734  350  

   Feature combination no. 10: PF, WPF, CGF, PP2 (200 – 400 kHz). 

 Feature combination no. 28: PF, WPF, CGF, PP4 (600 – 800 kHz). 

 FC, feature combination; R, Davies-Bouldin index;  τ , Tou index; S, 

Rousseeuw ’ s Silhouette value;  σ , Calinski and Harabasz index. 

  a Maximal possible points: 100.   

 In the present study, all possible subset feature com-

binations are evaluated, ranging from the predefined 

minimum number of four features to the maximum nine 

previously defined features. Thus, in total, 382 possible 

feature sets are investigated. Another limitation of the 

algorithm is related to the expected number of signal clus-

ters. Generally, the expected number of clusters should be 

within the range of the number of actual physical damage 

phenomena or mechanisms and possibly additional noise 

sources. The discrimination of different emission phenom-

ena is difficult, although intrinsic damage phenomena are 

provoked by the applied fiber-load angles because of the 

complex hierarchical structure of wood and the spectral 

sensitivity of the AE sensors. Hence, the cluster algorithm 

is applied to seek for 2, 3,  … , 10 possible clusters, which 

yields 3438 partitions to investigate in total. 

 The Euclidean distance is the basis for the distance 

measurement of the dataset inputs. Based on this metric, 

as cluster validity indices, the Davies-Bouldin index R 

( Davies and Bouldin 1979 ), the Tou index  τ  ( Tou 1979 ), the 

Rousseeuw ’ s silhouette value S ( Rousseeuw 1987 ), and 

Gamma statistic  σ  ( Calinski and Harabasz 1974 ) are cal-

culated to obtain a measure for the cluster separation. A 

voting scheme combining the rankings of these individual 

indices yields the partition with the optimal performance 

based on points, whereby the best possible performance 

is rated by a maximum of 100 points ( Sause et al. 2012a ).  

  Results and discussion 
 The UPR technique was performed separately for the R 

and L specimen types. In both cases, a feature combina-

tion (rated with 100 points) was found to be the numeri-

cally best separation of the AE signals into two clusters 

( Table 2  ). For the R specimens, the obtained feature com-

bination consists of the PF, the CGF, and the WPF as well 

as PP4. For the L specimens, the feature combination also 
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 Figure 4      The clustering of the AE signals yields the two clusters A 

and B. 

 PP4 (range of 600 – 800 kHz) vs. WPF are presented for AE signals 

detected during tensile testing of the spruce specimens in the radial 

(a) and longitudinal (b) directions.    

comprises the PF, CGF, and the WPF, but it is based on 

PP2 instead. For comparison of the pattern recognition 

result, the PP4 and the WPF were chosen to present the 

cluster results of both specimen types ( Figure 4  ) as the sig-

nificance of the clusters is reflected most clearly by their 

WPFs. 

 Table 3      Cluster characteristics.  

Cluster  N  PF (kHz)  CGF (kHz)  WPF (kHz)  PP1 (%)  PP2 (%)  PP3 (%)  PP4 (%)  PP5 (%)  PP6 (%)  

A 
R
 60 278 (85/376) 399 (286/491) 332 (181/399) 23  ±  10 35  ±  8 16  ±  5 23  ±  7 3  ±  2 0  ±  0

B 
R
 55 671 (583/723) 495 (412/616) 572 (518/648) 15  ±  7 22  ±  6 16  ±  5 43  ±  11 4  ±  2 0  ±  0

A 
L
 42 276 (269/290) 439 (300/500) 346 (286/374) 17  ±  8 40  ±  8 11  ±  4 27  ±  9 5  ±  2 1  ±  0

B 
L
   80  687 (593/737)  524 (383/650)  595 (514/674)  12  ±  6  23  ±  7  12  ±  5  46  ±  10  7  ±  3  1  ±  0  

   Data are presented as median (min/max) or mean  ±  SD. (Compare  Figure 1b ). 

 N, number of signals.   

 For both specimen types, the signals of cluster A 
R
  (R 

tests) and A 
L
  (L tests) contain WPFs below 500 kHz, while 

those of cluster B 
R
  and B 

L
  contain WPFs above 500 kHz. 

Furthermore, signals of the B clusters show a larger share 

of high-frequency content (compared to the A clusters) due 

to an average PP4 of approximately 40% ( Table 3  ). Hence, 

the clusters can roughly be differentiated into signals with 

a relatively high share of low-frequency (A clusters) and 

high-frequency (B clusters) contents, respectively. 

 For the R tests, 60 signals are assigned to cluster A 
R
  

and 55 signals to cluster B 
R
  ( Table 3 ), which is more or less 

a ratio of 1:1. Within the damage history ( Figure 5  ), the 

brittle failure behavior of the R specimens is reflected, as 

the AE starts just shortly before the ultimate failure (above 

70% of maximum load). Furthermore, a clear trend in AE 

onset is not observable, as the cluster A 
R
  matches with the 

AE onset in 3 of 7 cases. During load progression, the AE 

amplitudes of both clusters increase, mainly ranging from 

40 dB 
AE

  up to 80 dB 
AE

 . Near and during the ultimate failure 

of the R specimens, the maximum AE amplitudes reach 

values above 80 dB 
AE

  in both clusters A 
R
  ( Figure 5 a) and B 

R
  

( Figure 5 b). Hence, for tensile loading in the R direction, 

both clusters and their origin mechanisms are assumed to 

have a rather equal standing in damage evolution. 

 The normalized average AE signals of clusters A 
R
  and 

B 
R
  in the time domain are clearly different ( Figure 6  a, b). 

In comparison to the average waveform of cluster A 
R
 , that 

of cluster B 
R
  is more similar to a characteristic burst signal 

with fast oscillations vs. time. Furthermore, in the fre-

quency domain, both clusters reveal broadband spectra 

with three distinct peaks at approximately 100 kHz, 

280 kHz, and 670 kHz ( Figure 6 c, d). Consistently, the plot 

of PP4 vs. WPF ( Figure 4 a) indicates a possible separa-

tion of cluster A 
R
  (with low-frequency components) into 

AE signals with a WPF close to 200 kHz and AE signals 

close to 330 kHz. The available miniature sensor is limited 

to frequencies between 300 kHz and 800 kHz ( Figure 3 ), 

and therefore, a low significance in difference of the low-

frequency components (compared to that of the high-

frequency domain) might be caused by this limitation. 

Additional research is needed to clarify the role of several 
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6      F. Baensch et al.: Damage evolution observed by AE

 Figure 5      Stress and AE signal amplitudes vs. test duration of 

two specimens tensile loaded in the radial direction; distinction 

between both clusters A 
R
  and B 

R
  is included.    

parameters (e.g., material properties and specimen geom-

etry) influencing these frequency peaks. However, the 

cluster A 
R
  is characterized mainly by low-frequency com-

ponents below 600 kHz, which is also reflected in PP1 –

 PP3 containing ca. 75% of the signals ’  frequency content 

( Table 3 ). The signals of cluster B 
R
  contain more high-fre-

quency components. The normalized average magnitude 

at the PF of 670 kHz is not significantly larger than the 

comparable peak in cluster A 
R
  ( Figure 6 c, d). The more sig-

nificant difference, compared to the cluster A 
R
 , is found in 

the lower normalized average magnitude at 280 kHz. This 

implies a lower relative share of low-frequency content, 

which thus results in a relative increase in PP4. To sum up 

the R tests, both clusters A 
R
  and B 

R
  are essentially differ-

entiated by their relative share of low-frequency content. 

 The ratio of signals attributed to clusters A 
L
  and B 

L
  

differs when tensile load is applied in the L direction 

(42:80), which is different to the R load results (60:55). 

Moreover, in contrast to the linear behavior of the R speci-

mens ( Figure 5 ), the stress curves while loading parallel to 

the grain show premature, transient load drops ( Figure 7  ), 

which are also accompanied by AE signals for both A 
L
  and 

B 
L
 . The deviations in the stress curves reveal predamages, 

probably of truncated tracheids on the tapered edges. Anal-

ogously to the R tests, the AE onset was generated either by 

cluster A 
L
  ( Figure 7 a) or by cluster B 

L
  ( Figure 7 b). With pro-

gressive load application, there is a consistent and corre-

sponding increase in the AE amplitude values (40 – 80 dB 
AE

 ) 

in both signal clusters. Moreover, cluster B 
L
  solely generates 

the maximum AE amplitudes during the ultimate failures, 

and thus, cluster B possibly indicates the L specimens ’  total 

destruction. Contrary to the R specimens, the generated 

maximum AE amplitudes generated here generally remain 

below the 80 dB 
AE

  ( Ando et al. 1992b ). 

 Comparing the normalized average waveform of both 

clusters in the time domain, the signals of cluster A 
L
  start 

with a short term of fast oscillations (0 – 10  μ s) and level 

off in slower oscillations ( Figure 8  a). The average signal of 

cluster B 
L
  ( Figure 8 b) shows a burst signal similar to that 

of cluster B 
R
 . Both clusters reveal broadband spectra, but 

only two distinctive peaks at approximately 280 kHz and 

690 kHz ( Figure 8 c, d). Cluster A 
L
  is characterized mainly 

by low-frequency components, which are most notably 

reflected in the contribution of PP2 with approximately 

40% of the signals ’  frequency content ( Table 3 ). In con-

trast, the relative share of high-frequency components in 

cluster B 
L
  is reflected in PP4 – PP6, which yields about 54% 

of the frequency content beyond 600 kHz. Compared to 

cluster A 
L
 , the magnitude of the peak at 690 kHz in cluster 

B 
L
  shows a significant increase ( Figure 8 c, d). This leads to 

the pronounced differences in PP2 and PP4 between both 

clusters. Consequently, in contrast to clusters A 
R
  and B 

R
 , 

clusters A 
L
  and B 

L
  are differentiated by their relative share 

of high-frequency content. 

 Clusters A and B are almost of similar nature for the R 

and the L tested specimens ( Figure 4 ), as indicated by the 

averaged WPF of approximately 340 kHz (cluster A 
R
  and 

A 
L
 ) and 580 kHz (cluster B 

R
  and B 

L
 ), respectively. Thus, it is 

assumed that the source mechanisms are similar in both 

specimen types. The peaks at approximately 670 – 690 kHz, 

observed in all clusters ( Figure 6 c, d,  Figure 8 c, d), might 

be caused by L waves propagating parallel to tracheid 

axes and thus correspond to the frequency response of the 

structural vibration (600 kHz up to 700 kHz) ( Bucur 2006 ). 

 Tyree and Sperry (1989)  suggested that cellulose induces 

the high-frequency components. At microscopic scale, the 

transcellular fracture yields rapid crack growths ( Debaise 

et al. 1966 ). With respect to the characteristic WPFs of the 

AE clusters, it is worth considering that the signature of 
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 Figure 6      Averaged normalized AE signals of cluster A 
R
  (a, c) and cluster B 

R
  (b, d) detected during tensile testing of the spruce specimens in 

the radial direction. 

 AE signals are presented in time domain (a, b) and frequency domain (c, d).    

 Figure 7      Stress and AE signal amplitudes vs. test duration of two 

specimens tensile loaded in the longitudinal direction; distinction 

between both clusters A 
L
  and B 

L
  is included.    

such rapid crack growths might well be reflected within 

both B clusters, especially with regard to the ultimate 

failure of all seven L specimens generating the maximum 

amplitudes seen solely in cluster B 
L
  ( Figure 7 ). 

 For interpreting the low-frequency A clusters ( Figure 4 ), 

the 1:1 ratio of the AE signals observed in clusters A 
R
  and B 

R
  

for R tests gives a first hint. Following  Ashby et al. (1985)  a 

ratio of the material density ( Table 1 ) to the cell wall density 

(1500 kg m -3 ) above 0.2 indicates the phenomena of cell wall 

cracks as well as cell separation, which also applies to the 

tested material. Thus, since the B clusters are assigned to 

rapid cell wall cracks, the formation of the A clusters could 

tentatively be attributed to slow cell separation phenomena. 

 Since the AE amplitude values for both signal clusters 

increase more or less alike, the attributed damage mech-

anisms are not restricted to certain amplitude values as 

expected by  Ando et al. (1992a)  or  Romh á ny et al. (2003) . 

Instead, this might reflect the complexity in failure behav-

ior due to the cellular composition resulting from the 

strong interaction between both cellulose fibrils and the 

lignin matrix.  

  Conclusions 
 This preliminary study introduces a new approach of UPR 

to identify clusters of AE signals detected on wood under 

tensile stress. For each loading case, tensile loading spruce 

specimens in the R and L directions, the two clusters A 
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and B of AE signals were detected: AE signals of cluster 

A are characterized by WPFs of approximately 340 kHz, 

whereby those of cluster B yield WPFs of approximately 

580 kHz. A first working hypothesis assumes the A clus-

ters to indicate slow crack growths such as cell separation 

mechanisms, whereas the B clusters are attributed to tran-

scellular cracks. To provide a substantial evidence of the 

cluster ’ s origin, subsequent experiments combining this 

setup with synchronous SR- μ CT monitoring are continued 

in another study.   
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