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We review recent progress in our theoretical understanding of strongly cor-
related fermion systems in the presence of disorder. Results were obtained
by the application of a powerful nonperturbative approach, the dynamical
mean-field theory (DMFT), to interacting disordered lattice fermions. In
particular, we demonstrate that DMF'T combined with geometric averag-
ing over disorder can capture Anderson localization and Mott insulating
phases on the level of one-particle correlation functions. Results are pre-
sented for the ground state phase diagram of the Anderson—Hubbard model
at half-filling, both in the paramagnetic phase and in the presence of an-
tiferromagnetic order. We find a new antiferromagnetic metal which is
stabilized by disorder. Possible realizations of these quantum phases with
ultracold fermions in optical lattices are discussed.

Introduction

In non-interacting quantum systems with disorder, e.g., in the presence of
randomly distributed impurities, wavefunctions can either be spatially ex-
tended or localized. Until 1958 it was believed that a localized state cor-
responds to a bound state of an electron at the impurity. By contrast, in
his landmark paper of 1958, Anderson! predicted that disorder can lead to
quite a different type of localized state now referred to as “Anderson localized
state”. To understand its physical origin it should be noted that if a particle
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is inserted into a disordered system it will start to spread. As a consequence
the wave is backscattered by the impurities, leading to characteristic “weak
localization” effects.2* The multiple scattering of the electronic wave can
enhance these perturbative effects to such a degree that the electrons be-
come spatially localized; for reviews see Refs. 46. In this case there is a
finite probability for an electron to return to the point where it was inserted.
If states are extended, this probability is zero. So, in contrast to localized
states bound at an impurity, Anderson localized states are confined to a
region of space due to coherent backscattering from randomly distributed
impurities.

In the thermodynamic limit the excitation spectrum determined from
the resolvent of the one-particle system or the one-particle Green functions
is very different for extended and localized states. The one-particle Green
function describing an extended state has a branch cut on the real axis,
and the spectrum of the Hamiltonian is continuous. By contrast, the Green
function for a localized state has discrete poles located infinitely close to the
real axis, which implies a discrete point spectrum of the Hamiltonian. In
particular, the point-like spectrum of an Anderson localized state is dense.

In the presence of interactions between the electrons the same classifica-
tion of (approximate) eigenstates may, in principle, be used. Namely, if the
one-particle Green function of the interacting system has a branch cut at
some energies, the states at those energies are extended. If the Green func-
tion has discrete, separate poles the corresponding states are bound states,
and if the poles are discrete and lie dense the states are Anderson localized.
Since one-particle wave functions are not defined in a many-body system,
they cannot be employed to describe the localization properties of the sys-
tem. Instead the reduced one-particle density matriz, or the one-particle
Green function G(r — r') in position representation, may be employed. For
localized states these quantities approach zero for |r—r’/| — co. For extended
states, their amplitude only fluctuates very weakly, i.e., of the order 1/V,
where V is the volume of the system.

In the following, we are interested in the question how states of many-
body systems change when the interaction and/or the disorder are varied.
In general, the very notion of a metal or an insulator is related to the proper-
ties of two-particle Green functions, e.g., the current- and density-correlation
functions. There exist different approaches to study the disappearance of a
diffusion pole at the metal-insulator transition, and correspondingly, the
vanishing of the DC conductivity in the thermodynamic limit.4%"8 On
physical grounds it is very plausible to expect that the presence of Anderson
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localized states with dense, point-like spectrum at the Fermi level, discussed
above in terms of one-particle Green function, implies zero conductivity.
Mathematical proofs of this conjecture exist only for specific models and in
limiting cases.? Indeed, it is usually assumed that the presence of Anderson
localized states at the Fermi level implies the system to be an Anderson in-
sulator, at least in the non-interacting case. This is also our line of approach
which will be reviewed in this article.

The paper is structured as follows. In Sec. 2, we review general aspects of
the interplay between interactions and disorder in lattice fermion systems.
In particular, we discuss the important question concerning the appropriate
average over the disorder, and describe the new developments in the field
of cold atoms in optical lattices which will make it possible in the future to
investigate disordered, interacting lattices fermions with unprecedented con-
trol over the parameters. The models of correlated fermions with disorder are
introduced in Sec. 3, followed by an introduction into the dynamical mean-
field theory (DMFT) (Sec. 4) and a more detailed discussion of arithmetic
vs. geometric averaging over the disorder (Sec. 5). In Sec. 6, the DMFT self-
consistency conditions for disordered systems are introduced. After having
defined the characteristic quantities which help us to identify the different
phases of the Anderson—Hubbard Hamiltonian (Sec. 7), the results for the
ground state phase diagram at half-filling are reviewed (Sec. 8). In Sec. 9
the results are summarized.

2. Interplay between Interactions and Disorder in Lattice
Fermion Systems

2.1. Interactions vs. disorder

The properties of solids are strongly influenced by the interaction between
the electrons and the presence of disorder.%"# Namely, Coulomb correlations
and randomness are both driving forces behind metal-insulator transitions
(MITs) which involve the localization and delocalization of particles. While
the electronic repulsion may lead to a Mott—-Hubbard MIT,”!0 the coher-
ent backscattering of non-interacting particles from randomly distributed
impurities can cause Anderson localization.!»2

Since electronic interactions and disorder can both (and separately) in-
duce a MIT, one might expect their simultaneous presence to be even more
effective in localizing electrons. However, this is not necessarily so. For
example, weak disorder is able to weaken the effect of correlations since it
redistributes states into the Mott gap and may thus turn an insulator into
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a (bad) metal. Furthermore, short-range interactions lead to a transfer of
spectral weight into the Hubbard subbands whereby the total band-width
and thus the critical disorder strength for the Anderson MIT increases, im-
plying a reduction of the effective disorder strength. Hence the interplay
between disorder and interactions leads to subtle many-body effects, 811717
which pose fundamental challenges for theory and experiment not only in
condensed matter physics,% 781819 but most recently also in the field of cold
atoms in optical lattices.?%-2" Indeed, ultracold gases have quickly developed
into a fascinating new laboratory for quantum many-body physics.20:21:28-33
A major advantage of cold atoms in optical lattices is the high degree of
controllability of the interaction and the disorder strength, thereby allowing
a detailed verification of theoretical predictions. The concepts, models, and
techniques for their solution to be discussed in this paper equally apply to
electronic systems and cold fermionic atoms in optical lattices. In the fol-
lowing we will therefore refer generally to the investigation of “correlated
lattice fermion systems”.

2.1.1. Awverage over disorder

In general, the theoretical investigation of disordered systems requires the
use of probability distribution functions (PDFs) for the random quantities of
interest. Indeed, in physical or statistical problems one is usually interested
in “typical” values of random quantities which are mathematically given by
the most probable value of the PDF.3* However, in many cases the complete
PDF is not known, i.e., only limited information about the system provided
by certain averages (moments or cumulants) is available. In this situation
it is very important to choose the most informative average of a random
variable. For example, if the PDF of a random variable has a single peak and
fast decaying tails the typical value of the random quantity is well estimated
by its first moment, known as the arithmetic average (or arithmetic mean).
But there are many examples, e.g., from astronomy, the physics of glasses
or networks, economy, sociology, biology or geology, where the knowledge
of the arithmetic average is insufficient since the PDF is so broad that its
characterization requires infinitely many moments.3*3® Such systems are
called non-self-averaging. One example is Anderson localization: when a
disordered system is close to the Anderson MIT,! most electronic quantities
fluctuate strongly and the corresponding PDF's possess long tails which can
be described by a log-normal distribution.3"42 This is well illustrated by the
local density of states (LDOS) of the disordered system. Most recently it was
shown for various lattices in dimensions d = 2 and 3 that the system-size
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dependence of the LDOS distribution is an unambigous sign of Anderson
localization, and that the distribution of the LDOS of disordered electrons
agrees with a log-normal distribution over up to ten orders of magnitude.*2
Therefore it is not surprising that the arithmetic mean of this random one-
particle quantity does not resemble its typical value at all. In particular,
it is non-critical at the Anderson transition**%5 and hence cannot help to
detect the localization transition. By contrast the geometric mean3%:36:46:47
of the LDOS, which represents the most probable (“typical”) value of a log-
normal distribution, is the appropriate average in this case. It vanishes at
a critical strength of the disorder and hence provides an explicit criterion
for Anderson localization in disordered systems,!3%42 even in the presence
of interactions.8:49

2.1.2. Dynamical mean-field approach to disordered systems

In general, MITs occur at intermediate values of the interaction and/or
disorder. Theories of MITs driven by interaction and disorder therefore
need to be non-perturbative. Usually they cannot be solved analytically,
and require numerical methods or self-consistent approximations. A reli-
able approximate method for the investigation of lattice fermions with a
local interaction is provided by DMFT,%052 where the local single-particle
Green function is determined self-consistently. If in this approach the effect
of local disorder is taken into account through the arithmetic mean of the
LDOS?? one obtains, in the absence of interactions, the well-known coher-
ent potential approximation (CPA).54 However, the CPA does not describe
the physics of Anderson localization since, as discussed above, the arith-
metically averaged LDOS is non-critical at the Anderson transition.*> To
overcome this deficiency, Dobrosavljevié¢ and Kotliar*® formulated a variant
of the DMFT where the probability distributions (and not only the aver-
ages) of the local Green functions are determined self-consistently (“Sta-
tistical DMFT”). Employing a Slave-Boson mean-field theory as impurity
solver, they investigated the disorder-driven MIT for infinitely strong repul-
sion off half-filling. This statistical approach was also employed in other
studies of the Hubbard model® as well as in the case of electrons coupled to
phonons®® and the Falicov—Kimball model.?” Subsequently, Dobrosavljevié,
Pastor and Nikoli¢*® incorporated the geometrically averaged LDOS into
the self—consistency cycle and thereby derived a mean-field theory of An-
derson localization which reproduces many of the expected features of the
disorder-driven MIT for non-interacting fermions. This scheme employs only
one-particle quantities and is therefore easily incorporated into the DMFT
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5

for disordered electrons in the presence of phonons,? or Coulomb correla-

tions. 5861

2.2. Cold atoms in optical lattices: a new realization of
disordered, correlated lattice quantum gases

During the last few years, cold atoms in optical lattices have emerged as a
unique tool-box for highly controlled investigations of quantum many-body
systems. In recent years, the level of control in applying disordered po-
tentials to ultracold quantum gases has greatly improved.?32¢ Anderson
localization in its pure form has been demonstrated by the expansion of
weakly interacting Bose—Einstein condensates in a disordered speckle light
field, giving rise to characteristic localized condensate wave functions with
exponentially decaying tails.?526 The additional influence of strong repul-
sive interactions has been investigated recently in the first full experimen-
tal realization of the 3d disordered Bose-Hubbard model, by using a fine-
grained optical speckle field superimposed by an optical lattice.?’” In this
experiment a strong reversible suppression of the condensate fraction due
to disorder was observed, indicating the formation of a disorder-induced
insulating state. Independent experimental evidence was obtained from in-
teracting 8"Rb bosons in a quasi-random (bichromatic) optical lattice, where
a strong reduction of the Mott gap was found and interpreted as possible
evidence for a compressible Bose glass phase.?? On the theoretical side,
low-dimensional quasi-disordered Bose systems have been successfully de-
scribed by DMRG simulations,? which extended previous weak-coupling
calculations and found a direct transition from superfluid to Mott insula-
tor. Regarding disordered bosons in higher dimensions, the status of the-
ory is still more controversial, although significant insight was gained by
a new stochastic mean-field theory,% which allows for an efficient descrip-
tion of the Bose glass phase and has already provided phase diagrams for
realistic speckle-type disorder® such as used experimentally.?” Under de-
bate remains the issue of a direct transition between Mott insulator and
superfluid, which was claimed to be ruled out in recent QMC simulations in
three spatial dimensions, supported by general heuristic arguments.%> Re-
garding disordered fermions, while no experiments in cold gases have been
performed yet, theory has significantly advanced in recent years, mostly
due to progress in the application of DMFT to disordered and inhomoge-
neous systems.8:4%:58.60.66 The phase diagram of spin-1/2 lattice fermions
in a random potential has now been determined theoretically, both in the



Anderson Localization vs. Mott—Hubbard Metal-Insulator Transition 1733

paramagnetic phase where Mott- and Anderson-insulator compete,’® and in
the low-temperature regime where antiferromagnetic ordering sets in and a
new disorder-induced antiferromagnetic metallic phase was found.®® In this
way, predictions for single-particle spectral properties were also obtained,
which are now becoming accessible experimentally via radio frequency spec-
troscopy measurements of strongly interacting fermionic quantum gases,%”
in analogy to photoemission spectroscopy of electronic solids. An alterna-
tive route towards single-particle spectroscopy based on stimulated Raman
transitions has been discussed theoretically.8 Very recently, also the dy-
namical structure factor of strongly interacting bosons in an optical lattice
has been measured via two-photon Bragg scattering.5%"® These new de-
velopments open the door towards controlled experimental realization and
spectroscopy of strongly interacting and disordered fermions in optical lat-
tices.

2.3. Schematic phase diagram

The Mott—Hubbard MIT is caused by short-range, repulsive interactions in
the pure system and is characterized by the opening of a gap in the density
of states at the Fermi level. By contrast, the Anderson MIT is due to the
coherent backscattering of the quantum particles from randomly distributed
impurities in a system without interactions; at the transition the character of
the spectrum at the Fermi level changes from a continuous to a dense point
spectrum. Already these two limits provide great challenges for theoretical
investigations. It is an even greater challenge to explore the simultaneous
presence of interactions and disorder in lattice fermions systems. In view
of the construction of the dynamical mean-field approach employed here,
the results which will be presented in the following are expected to provide
a comprehensive description for systems in spatial dimensions d = 3 and
larger, i.e., above the limiting dimension d = 2. Two particularly interesting
questions are whether the metallic phase, which exists at weak enough dis-
order and/or interaction strength, will be reduced or enlarged, and whether
the Mott and Anderson insulating phases are separated by a metallic phase.
Corresponding schematic phase transition lines are shown in Fig. 1.1. Tt is
plausible to assume that both MITs can be characterized by a single quan-
tity, namely, the local density of states. Although the LDOS is not an order
parameter associated with a symmetry breaking phase transition, it discrim-
inates between a metal and an insulator which is driven by correlations and
disorder.
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Fig. 1.1. Schematic diagram of the possible phases and shapes of phase transition
lines in disordered, interacting lattice fermion systems. In principle, the interplay
between interactions and disorder could reduce the metallic regime (dash-dotted
line), or enlarge it (full and dashed lines). As will be discussed below, investiga-
tions within DMFT find that the metallic phase increases when interactions and
disorder are simultaneously present (full line), and that the two insulating phases
are connected continuously, i.e., without critical behavior. Insets show the local
density of states in the absence of disorder or interaction, respectively.

3. Models of Correlated Fermions with Disorder

Here we study models of correlated fermions on ionic crystals or optical
lattices in the presence of diagonal (i.e., local) disorder within a tight-binding
description. In general, these models have the form

H = Z tqjjgczacjg + Z € Nig + U Z NNy (3.1)
io i

ijo

where cjo and ¢;, are the fermionic creation and annihilation operators of
the particle with spin ¢ = +1/2 at the lattice site i, n;, = c;rﬂcw is the
particle number operator with eigenvalues 0 or 1, and t;;, is the probability

amplitude for hopping between lattice sites ¢ and j. In the Hubbard model
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tijo = lij, i.e. the hopping amplitudes are the same for both spin projections.
In the Falicov—Kimball model t;;; = t;;5+, i.e. only particles with one spin
projection are mobile and the others are localized. The second term in (3.1)
describes the additional external potential ¢;, which breaks the ideal lattice
symmetry. For homogeneous systems we set ¢; = 0, which defines the zero
of the energy scale. The third term, a two-body term, describes the increase
of the energy by U > 0 if two fermions with opposite spins occupy the same
site. In Eq. (3.1) only a local part of the Coulomb interaction is included
and other longer-range terms are neglected for simplicity. Note that this
approximation is excellent in the case of cold gases in optical lattices, where
the interaction between neutral atoms is essentially local.?® The disorder
affects the system through a local term ), €;ni,, where ¢; is a random vari-
able drawn from a probability distribution function (PDF) P(ey,...,€n,),
where Ny, is a number of lattice sites. Typically we consider uncorrelated,
quenched disorder, where

Ng
Pler,...,en;) = [ Plei)- (3.2)
i=1

Each of the P(¢;) is the same, normalized PDF for the atomic energies
€;. The quenched disorder means that P(g;) is time independent. In other
words, the atomic energies ¢; are randomly distributed over the lattice and
cannot fluctuate in time. This type of disorder is different from annealed
disorder where the random atomic energies have thermal fluctuations.

In the following we use the continuous box-type PDF

Ple)- 50 (3 -1}, (33)

with ©(z) as the Heaviside step function. The parameter A is therefore a
measure of the disorder strength. The use of a different continuous, normal-
ized function for the PDF would bring about only quantitative changes.
The Hubbard model and the Falicov—Kimball model defined by (3.1) are
not only of interest for solid-state physics, but also in the case of ultracold
atoms, where specific experimental realizations have been proposed.? By
preparing a mixture of bosonic 8’ Rb and fermionic °K in a 3d optical lattice,
Ospelkaus et al. and Giinter et al.32 were able to create — to a first approxi-
mation — a version of the Falicov—Kimball model where the heavier bosonic
species could be slowed down even further by using a species-dependent
optical lattice and thus become “immobile” while the fermionic species re-
mains mobile. Alternatively, if the heavy bosonic species could be frozen
in a random configuration, this system would allow for a realization of the
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Fermi—Hubbard model with quenched binary onsite disorder. A different ap-
proach towards quenched randomness in optical lattices was taken by White
et al.?” who implemented a fine-grained optical speckle potential superim-
posed onto a 3d optical lattice with interacting bosons and thus realized
the bosonic version of the Anderson-Hubbard model (3.1) with continuous
disorder. A third alternative approach to disordered cold gases is based on
bichromatic optical lattices which are quasiperiodic, as implemented for the
3d Bose-Hubbard model by Fallani et al.?> who observed a disorder-induced
reduction of the Mott excitation gap, similar as discussed in the following
for the fermionic case.

The Hamiltonian (3.1) is not solvable in general. Without disorder, i.e.,
for A = 0, exact solutions on an arbitrary lattice and in arbitrary dimension
exist only for U = 0 (non-interacting fermions), or t;j, = 0 (fermions in the
atomic limit). In the U = 0 case the solution is obtained via discrete Fourier
transform, i.e.,

H= Z ekgc;rwcka, (3.4)
ko
where €, = Zj(i) tijge_ik(Ri_Ri) are free fermion dispersion relations. In

the thermodynamic limit Ny — oo the spectrum is continuous and eigen-
states are extended. In the t;;, = O limit the lattice sites are uncorrelated
and the exact partition function has the form Z = [], Z;, where

Zi=1+2e +ePU, (3.5)

where p denotes the chemical potential within the grand canonical ensemble,
and B = 1/kgT is the inverse temperature. In the thermodynamic limit the
spectrum is point-like and the eigenstates are localized.

For finite disorder (A # 0) an exact solution of the Hamiltonian (3.1)
exists only for t;;, = 0. For a given realization of disorder, i.e., when all
values of {e1, €2, ..., en,} are fixed, the partition function of the model
(3.1) is given by

Z=[12=T] (1+2e 7 4 ¢#7). (3.6)

As in the atomic limit discussed above (t;j, = 0) the spectrum is point-like
in the thermodynamic limit and the eigenstates are localized.

The non-interacting limit (U = 0) of (3.1) with t;jo # 0 and disorder
A # 0 is not exactly solvable. In a seminal paper by Abou-Chacra, Thou-
less and Anderson™ the model (3.1) with U = 0 and #;;, = t between
nearest neighbor sites was solved on the Bethe lattice, which is a tree-like
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graph without loops.?%72 The solution is expressed by the one-particle Green
function

1 1
w—H|Z> Cw—e—niw)’ (3.7)

Gii(w) = (il
where the hybridization function

t2
W =2 @ 9
describes a resonant coupling of site ¢ with its neighbors. If in the thermo-
dynamic limit the imaginary part of #;(z) is finite in some band of energies
z, then the states with energies z are extended. Otherwise, if the imagi-
nary part of 7;(z) is finite at discrete energies z such states are localized.
For bound states these energies z form a point spectrum, and for Anderson
localized states the energies z form a dense point-like spectrum in the ther-
modynamic limit. The analysis of the self-consistent equations derived for
ni(z) by Abou-Chacra, Thouless, Anderson™ showed that, indeed, continu-
ous and dense point spectra are separated by a mobility edge which depends
on the value of the disorder A.
In the following we solve the full Hamiltonian (3.1) by applying a dynam-
ical mean-field approximation to deal with the interaction and then discuss
how to cope with disorder.

4. Dynamical mean-field theory (DMFT)

The dynamical mean-field theory (DMFT) started from the following obser-
vation®0: if the hopping amplitudes are scaled with fractional powers of the
space dimension d (or the coordination number 2), i.e., t = t*/v2d = t*/\/Z
for nearest neighbour hopping on a hypercubic lattice, then in the limit
d — 00 (Z — o0) the self-energy %;;(w) in the Dyson equation
Gija(iwn)_l = G?ja(iwn)_l - Eija(m}n)v (4-1)
(here in a real-space representation) becomes diagonal™
Eijo(iwn) = Eig(’iwn) 6@']', (4.2)

where w, = (2n + 1)7/B are fermionic Matsubara frequencies. In a ho-
mogeneous system the self-energy is site independent, ie., Xijo(iw,) =
Yo (iwn) 0i5, and is only a function of the energy. The DMFT approxima-
tion when applied to finite dimensional systems neglects off-diagonal parts
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of the self-energy. In other words, the DMFT takes into account all tem-
poral fluctuations but neglects spatial fluctuations between different lattice
sites.51:52

Here we apply the DMFT to correlated fermion systems with disorder.
Within DMFT we map a lattice site onto a single impurity, which is cou-
pled to the dynamical mean-field bath. This coupling is represented by the
hybridization function 7;,(w), which is determined self-consistently. The
mapping is performed for all Ny, lattice sites.

The partition function for a particular realization of disorder
{e1, €2, ..., en,} is now expressed as a product of the partition functions
which are determined for each impurity (representing lattice sites), i.e.,

Z = H Zi = Hexp (Z Infiwn, + 1 — €; — Nig(wn) — Eia(wn)]) . (4.3)
1 (] awWn

The mean-field hybridization function 7;,(wy,) is formally a site- and time-

dependent one-particle potential. In the interaction representation, the uni-

tary time evolution due to this potential is described by the local, time-

dependent evolution operator 7

Ultir) = Ty~ I 88 dr'looma e o) @4

¥

where c;,(7) evolves according to the atomic part H.°¢ of the Hamiltonian
(3.1) in imaginary Matsubara time 7 € (0, 8), and T’ is the time ordering
operator. We write the partition function (4.3) as a trace over the operator

Ng
Z = Zlnio] = [[ Tr [ PE MW g (45)
i=1
where Ni1°c is the local particle number operator.

Equation (4.5) allows us to determine the local one-particle Green func-
tion Gjis(wy) for a given dynamical mean-field 7,,(wy,). Indeed, the local
Green function is obtained by taking a functional logarithmic derivative of
the partition function (4.5) with respect to n;,(wy), i.€.,

Olnz [nia}
Gy = 4.6
iio (wn) i (wn) ( )
Then we find the local Dyson equations
} 1
z}ia(""n) =y + 1 — € — nia(wn) - m y (4'7)
for each Ny lattice sites. For a single realization of disorder

{e1, €2, ..., en,}, Eas. (4.1), (4.2), (4.5)—(4.7) constitute a closed set of



Anderson Localization vs. Mott—Hubbard Metal-Insulator Transition 1739

equations. A solution of this set represents an approximate solution of the
Hamiltonian (3.1).

5. Arithmetic vs. Geometric Averaging

A solution of Egs. (4.1), (4.2), (4.5)—(4.7) is very difficult to obtain in prac-
tice. For each of the Ny impurities we need to determine the evolution
operator (4.4) exactly. Using rigorous methods this can be done only for
small Ni. However, Egs. (4.1), (4.2), (4.5)—(4.7) should be solved in the
thermodynamic limit, Ny, — oc. This latter requirement might be overcome
by performing a finite size scaling analysis. But such an analysis requires a
large number of lattice sites Np to reliably distinguish Anderson localized
states from those belonging to the continuum. Here one faces a typical trade-
off situation in computational physics. The computational problem is greatly
reduced when the local interaction in (3.1) is factorized as in a Hartree-Fock
approximation, whereby genuine correlations are eliminated.'37677 Such ap-
proximate treatments can nevertheless provide valuable hints about the exis-
tence of particular phases. In our investigation®®%° we employed the DMFT
to include all local correlations as will be discussed in the next section.

If one could solve the DMFT equations exactly, one would obtain a set
of local densities of states (LDOS)

1
mA@=—EM£m@W+w+mﬂ, (5.1)

which are random quantities depending on the particular disorder realization
{e1, €2, ..., en,}. Usually one needs information about a system that
does not depend on a particular disorder realization. Therefore one needs a
statistical interpretation of the solutions of Eqgs. (4.1), (4.2), (4.5)—(4.7).

When the system is large (cf., N, — oo in thermodynamic limit) one usu-
ally takes the arithmetic average of the LDOS A;;(w) over many realizations
of the disorder, i.e.,

N
(%@F/H@m@Mmmme% (5.2)
=1

where the dependence on {e1, €2, ..., €n,} is written explicitly. However,
such a method holds only if the system is self-averaging. This means that
sample-to-sample fluctuations

(Aic (W)?) — (Ais(w))?
(Aia (w) ) 2

Dy (Aig(w)) = (5.3)
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vanish for N7 — oo, which is equivalent to the central limit theorem for in-
dependent random variables A;,(w). By performing the arithmetic average,
one restores the translational invariance in the description of the disordered
system, i.e., Ag(w)arith = (Air(w)) is the same for all lattice sites.

An example of a non-self-averaging system is a disordered system at the
Anderson localization transition, or a system whose localization length is
smaller than the diameter of the sample.! It implies that during the time
evolution, a particle cannot explore the full phase space, i.e., cannot probe all
possible random distributions. In such a case the arithmetic average (5.2)
is inadequate. Here one is faced with the question concerning the proper
statistical description of such a system.

The answer was given by Anderson!: one should investigate the full PDF
for a given physical observable P[A4;,(w)] and find its most probable value,
the “typical” value A,(w)typ, for which the PDF P[A;;(w)] has a global
maximum. The typical value of the LDOS, A,(w)typ, is the same for all
lattice sites. By employing A, (w)typ one restores translational invariance
in the description of a disordered system. This value will represent typical
properties of the system. Using photoemission spectroscopy one could, in
principle, probe the LDOS at a particular lattice site and measure its most
probable value. We note that if sample-to-sample fluctuations are small, the
typical value A, (w)typ would coincide with the arithmetic average Ay (w)arith-
On the other hand, in a non-self-averaging system the PDF can be strongly
asymmetric, with a long tail, in which case the typical value Ay (w)¢yp would
be very different from Ay (w)aritn. The arithmetic mean is strongly biased by
rare fluctuations and hence does not represent the typical property of such
a system.

Statistical approaches based on the computation of the probability distri-
bution functions would require the inclusion of very many (perhaps infinitely
many) impurity sites. This is very hard to achieve in practice, in particular,
in correlated electron systems discussed here, although there have been re-
cent successful attempts in this direction.%6 Therefore, one should look for a
generalized average which yields the best approximation to the typical value.
Among different means the geometric mean turns out to be very convenient
to describe Anderson localization. The geometric mean is defined by

Ay (w)geom = exp [(In 45 (w))] , (5.4)

where (F(e;)) = [ 1], deiP(e;)F(e;) is the arithmetic mean of the function
F(¢;). The geometric mean is an approximation to the most probable, typical
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value of the LDOS

As(W)typ & Ao (w)geom- (5.5)
It is easy to see that if P[A;,(w)] is given by a log-normal PDF then
As(W)typ = Ao(w)geom holds exactly. It was shown that in the non-

interacting case Ay (w)geom Vvanishes at a critical strength of the disorder,
hence providing an explicit criterion for Anderson localization.!:3%48:4% We
also note that by using the geometrically averaged LDOS we restore the
translational invariance in our description of a disordered system. In ad-
dition, as we shall see in the next section, the restoration of translational
invariance by averaging allows us to solve the DMF'T equations in the ther-
modynamic limit. The problem of finite-size effects is then automatically
absent.

6. DMFT Self-Consistency Conditions for
Disordered Systems

According to the spectral theorem the geometrically averaged local Green
function is given by

Golwnlgeom = [ dweheem. (6.1)

The DMFT self-consistency condition (4.6) is modified now to a translation-
ally invariant form

1
b) =1 — — . 6.2
a(wn) W+ @ — Mo (wn) Ga(wn)geom ( )
Here we assumed that (¢;) = 0, which holds in particular for the box-

shape PDF. We also used the translationally invariant hybridization function
N (wn)- We can now perform a Fourier transform of the lattice Dyson equa-
tion (4.1) and obtain

No(2)
Ga m — d - ’
(wn)geo / Z'Lwn —z+p— Ea(wn)

where Ny(z) is the density of states for a non-interacting and non-disordered
lattice system.

Altogether the solution of the DMFT equations for interacting fermions
with disorder requires the following steps:

(6.3)

(1) Select (i) Ny values of ¢; from a given PDF P(¢;), (ii) an initial hy-
bridization function 7, (wy), and (iii) an initial self-energy ¥, (wn);
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(2) for each ¢; solve the impurity problem defined by Eqgs. (4.4)—(4.6);

(3) determine the LDOS A;,(w) from the imaginary part of Giis(w), and
Ag(w)geom from Eq. (5.4);

(4) employ (6.1) to find G4 (wn)geom;

(5) from Egs. (6.2) and (6.3) find a new 1, (wy) and X, (wy), then go to step
(2) until convergence is reached.

It is clear that due to the averaging procedure we restore both translational
invariance and the thermodynamic limit although Ny, is finite. Therefore
the method is superior to other stochastic methods which are affected by
finite size effects.

In the presence of antiferromagnetic long-range order the self-consistency
conditions are modified. In this case we introduce two sublattices s =A or
B, and calculate two local Green functions Gj;ss(wy). From this quantity we
obtain the geometrically averaged LDOS Ags(w)geom = €xp [{In Aips(w))],
where A;;5(w) is given as shown in Eq. (5.1). The local Green function is
then obtained from the Hilbert transform (6.1). The local self-energy ¥,5(w)
is determined from Eq. (6.2). The self-consistent DMFT equations are closed
by the Hilbert transform of the Green function on a bipartite lattice:

Gas (wn)geom = / dz NO (Z) =
[iwn — Xos(wn) — wn—Ez:W}

51,63

(6.4)

Here 5 denotes the sublattice opposite to s.

We note that if the geometric mean were replaced by the arithmetic mean
one would obtain a theory where disorder effects are described only on the
level of the CPA, which cannot detect Anderson localization. It should also
be pointed out that in the presence of disorder the LDOS represented by
Ag(w)geom is not normalized to unity. This means that A;(w)geom only de-
scribes the extended states of the continuum part of the spectrum. Localized
states, which have a dense point spectrum, are not included in the DMFT
with geometric average. Therefore, this approach cannot describe the prop-
erties of the Anderson-insulator phase.

The accuracy of the DMFT approach with geometric average over dis-
order was checked against numerically exact results obtained for non-
interacting fermions on a cubic lattice.4®"® The critical disorder strengths
at which Anderson localization occurs were found to agree within a factor of
two’® or better.4? However, there exists a discrepancy regarding the shape
of the mobility edge, which shows a pronounced reentrant behavior for non-
interacting particles with box-type PDF of the disorder. This feature is not
reproduced by our approach.”® On the other hand, the re-entrant behavior
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is a non-universal feature. Namely, it is much less pronounced in the case
of a Gaussian PDF for disorder, and does not occur at all for a Lorentzian
PDF.™

It should be pointed out that the DMFT-based self-consistent approach
to interacting lattice fermions with disorder discussed here, is not related to
the self-consistent theory of Anderson localization by Vollhardt and Wélfle®
and its generalizations.®%#1 Namely, the latter theory determines the fre-
quency dependent diffusion coeflicient D(w) from arithmetically averaged
two-particle correlation functions by considering diffuson and cooperon di-
agrams. The approach reviewed here does not make use of these coherent
back-scattering contributions, but computes a one-particle correlation func-
tion, the LDOS, and thereby extracts information on Anderson localization.
The fact that the DMF'T is based on a local approximation through the limit
of large spatial dimensions does not necessarily imply that back-scattering
contributions are entirely absent in this approach. Indeed, contributions
due to back-scattering are implicitly contained in the hybridization func-
tion, which describes the diffusion of one-particle excitations away from and
back to a given lattice site.l'"! Quite generally the relation between theoret-
ical approaches based on one-particle and two-particle correlation functions,
respectively, and their results for the critical disorder strength for Ander-
son localization, is still not sufficiently understood and will continue to be
an important topic for future research. Perhaps the limit of high lattice
dimensions will serve as a useful starting point.5482:83

7. Identification of Different Phases

To characterize the ground state of the Hamiltonian (3.1) the following quan-
tities are computed:

(1) the LDOS Ays(w)geom for a given sublattice s and spin direction o;
(2) the total DOS for a given sublattice s at the Fermi level (w = 0) with

N; (O)geom = Zg Ass (w = O)geom;
(3) the staggered magnetization mp" = [nf3" — nfp""|, where ngs™™ =

f_O o0 AW A5 (W) geom is the local particle density on sublattice 3.8

For comparison we determine these quantities also with the arithmetic av-
erage.

The possible phases of the Anderson—Hubbard model can then be classi-
fied as follows: The systems is a

geom

e paramagnetic metal if N§°*"(0) # 0 and m&p " = 0;
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e AF metal if N§*°™(0) # 0 and m&p" #0;

e AF insulator if N¥°™(0) = 0 and m&5 "~ # O but N¥*"(w) # 0 for some
w # 0 (in fact, the last condition is already implied by m35p" # 0);

e paramagnetic Anderson—Mott insulator if NF**™ (w) = 0 for all w.

Note, that we use the term “metal” also for neutral fermionic atoms if they
fulfil the above conditions.

8. Ground State Phase Diagram of Interacting, Disordered
Lattice Fermion Systems at Half-Filling

We now apply the formalism discussed above to the Anderson—Hubbard
model at half-filling and compare the ground state properties in the param-
agnetic and magnetic cases.?8:60

In the following we choose a model DOS, Ny(e) = 2v/D? — €2/wD?, with
bandwidth W = 2D, and set W = 1. For this DOS and for a bipartite lattice,
the local Green function and the hybridization function are connected by the
simple algebraic relation 7,5 (w)geom = D2G’a§(w)geom /4.5

The DMFT equations are solved at zero temperature by the numerical
renormalization group technique,® which allows us to calculate the geomet-
ric or arithmetic average of the local DOS in each iteration loop.

8.1. Paramagnetic phase diagram

The ground state phase diagram of the Anderson—Hubbard model at half-
filling obtained within the DMF'T approach discussed above is shown in Fig.
1.2.58 Two different phase transitions are found to take place: a Mott—
Hubbard MIT for weak disorder A, and an Anderson MIT for weak inter-
action U. The correlated, disordered metal is surrounded by two different
insulating phases whose properties, as well as the transitions between them,
will now be discussed. In this section, the spin index o is omitted since all
quantities are spin independent.

(%) Disordered, metallic phase — The correlated, disordered metal is char-
acterized by a non-zero value of the spectral density at the Fermi level,
A(w = 0)geom # 0. In the absence of disorder, DMFT predicts this quantity
to be given by the bare DOS Ny(0), which is a consequence of the Lut-
tinger theorem. This means that Landau quasiparticles are well-defined at
the Fermi level. The situation changes completely when disorder is intro-
duced since a subtle competition between disorder and electron interaction
arises.
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Fig. 1.2. Non-magnetic ground state phase diagram of the Anderson—-Hubbard
model at half-filling as calculated by DMFT with the typical local density of states;
after Ref. 58.

Increasing the disorder strength at fixed U reduces A(0)geom and thereby
decreases the metallicity as shown in the upper panel left of Fig. 1.3. The
opposite behavior is found when the interaction is increased at fixed A (see
right panel of Fig. 1.3 for A = 1), i.e., in this case the metallicity improves.
In the strongly interacting metallic regime the value of A(0)geom is restored,
reaching again its maximal value Ny(0). This implies that in the metallic
phase sufficiently strong interactions protect the quasiparticles from decaying
by impurity scattering. For weak disorder this interaction effect is almost
independent of how the LDOS is averaged.

(#) Mott—Hubbard MIT — For weak to intermediate disorder strength
there is a sharp transition at a critical value of U between a correlated metal
and a gapped Mott insulator. Two transition lines are found depending on
whether the MIT is approached from the metallic side [AMH (U), full dots
in Fig. 1.2] or from the insulating side [AM# (U), open dots in Fig. 1.2]. The
hysteresis is clearly seen in right panel of Fig. 1.3 for A = 1. The curves
AMH () and AMH(U) in Fig. 1.2 are seen to have positive slope. This is a
consequence of the disorder-induced increase of spectral weight at the Fermi
level which in turn requires a stronger interaction to open the correlation
gap. In the Mott insulating phase close to the hysteretic region an increase
of disorder will therefore drive the system back into the metallic phase. The
corresponding abrupt rise of A(0)geom is clearly seen in the left lower panel
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Fig. 1.3.  Left panel: local density of states (LDOS) as a function of disorder A for
various values of the interaction U. Solid (dashed) curves correspond to the geomet-
rically (arithmetically) averaged LDOS. Right panel: geometrically averaged LDOS
as a function of interaction U for different disorder strengths A. Solid (dashed)
curves with closed (open) symbols are obtained with an initial metallic (insulating)
hybridization function. Triangles: A = 1; dots: A = 2.5. Left inset: LDOS with
Mott gap at U = 3 for different disorder strengths A. Right inset: integrated LDOS
Ngeom as a function of A at U = 3; after Ref. 58.

of Fig. 1.3. In this case the disorder protects the metal from becoming a
Mott insulator.

Around A ~ 1.8 the curves AM(U) and AM!(U) terminate at a single
critical point, cf. Fig. 1.2. For stronger disorder (A > 1.8) there appears
to be a smooth crossover rather than a sharp transition from the metal to
the insulator. This is illustrated by the U dependence of A(0)geom shown in
right panel of Fig. 1.3 for A = 2.5. In this parameter regime the Luttinger
theorem is not obeyed for any U. In the crossover regime, marked by the
hatched area in Fig. 1.2, A(0)geom vanishes gradually, so that the metallic
and insulating phases can no longer be distinguished rigorously.®%

Qualitatively, we find that the Mott—Hubbard MIT and the crossover re-
gion do not depend much on the choice of the average of the LDOS.87 We
also note the similarity between the Mott—Hubbard MIT scenario discussed
here for disordered systems and that for a system without disorder at finite
temperatures,®80 especially the presence of a coexistence region with hys-
teresis. However, while in the non-disordered case the interaction needed to
trigger the Mott—-Hubbard MIT decreases with increasing temperature, the
opposite holds in the disordered case.

(4i4) Anderson MIT — The metallic phase and the crossover regime are
found to lie next to an Anderson insulator phase where the LDOS of the
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extended states vanishes completely (see Fig. 1.2). The critical disorder
strength AZ(U) corresponding to the Anderson MIT is a non-monotonous
function of the interaction: it increases in the metallic regime and decreases
in the crossover regime. Where AZ(U) has a positive slope an increase of
the interaction turns the Anderson insulator into a correlated metal. This
is illustrated in Fig. 1.3 for A = 2.5; at U/W = 0.7 a transition from a
localized to a metallic phase occurs, i.e., the spectral weight at the Fermi level
becomes finite. In this case the electronic correlations inhibit the localization
of quasiparticles by scattering at the impurities.

Figure 1.3 shows that the Anderson MIT is a continuous transition. In
the critical regime A(0)geom ~ [AZ(U) — AJ? for U = const. In the crossover
regime a critical exponent § = 1 is found (see the case U = 1.75 in lower
panel of Fig. 1.3); elsewhere 8 # 1. However, we cannot rule out a very
narrow critical regime with 8 = 1 since it is difficult to determine 8 with high
accuracy. It should be stressed that an Anderson transition with vanishing
A(0)geom at finite A = AZ(U) can only be detected within DMFT when the
geometrically averaged LDOS is used (solid lines in Fig. 1.3). Indeed, using
arithmetic averaging one finds a nonvanishing LDOS at any finite A (dashed
lines in Fig. 1.3).

() Mott and Anderson insulators — The Mott insulator (with a corre-
lation gap) is rigorously defined only in the absence of disorder (A = 0), and
the gapless Anderson insulator only for non-interacting systems (U = 0)
and A > AZ(0). For finite interactions and disorder this distinction can
no longer be made. On the other hand, as long as the LDOS shows the
characteristic Hubbard subbands (left inset in Fig. 1.3) one may refer to a
disordered Moit insulator. With increasing disorder A, the spectral weight
of the Hubbard subbands vanishes (right inset in Fig. 1.3) and the system
becomes a correlated Anderson insulator. The boundary between these two
types of insulators is marked by a dashed line in Fig. 1.2. The results ob-
tained here within DMFT show that the paramagnetic Mott and Anderson
insulators are continuously connected. Hence, by changing U and A it is
possible to move from one insulating state to another one without crossing
a metallic phase.

8.2. Magnetic phase diagram

At half-filling and in the absence of frustration effects interacting fermions
order antiferromagnetically. This raises several basic questions: (i) how is
a non-interacting, Anderson localized system at half filling influenced by a
local interaction between the particles? (ii) how does an antiferromagnetic
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(AF) insulator at half filling respond to disorder which in the absence of
interactions would lead to an Anderson localized state? (iii) do Slater and
Heisenberg antiferromagnets behave differently in the presence of disorder?
Here we provide answers to these questions by calculating the zero tem-
perature, magnetic phase diagram of the disordered Hubbard model at half
filling using DMFT together with a geometric average over the disorder and
allowing for a spin-dependence of the DOS.5°

The ground state phase diagram of the Anderson-Hubbard model (3.1)
obtained by the above classification is shown in Fig. 1.4. Depending on
whether the interaction U is weak or strong the response of the system to
disorder is found to be very different. In particular, at strong interactions,
U/W 2 1, there exist only two phases, an AF insulating phase at weak dis-
order, A/W < 2.5, and a paramagnetic Anderson-Mott insulator at strong
disorder, A/W 2 2.5. The transition between these two phases is continu-
ous. Namely, the local DOS and the staggered magnetization both decrease
gradually as the disorder A increases and vanish at their mutual boundary
(lower panel of Fig. 1.5). By contrast, the phase diagram for weak interac-
tions, U/W < 1, has a much richer structure (Fig. 1.4). In particular, for
weak disorder a paramagnetic metallic phase is stable. It is separated from
the AF insulating phase at large U by a narrow region of AF metallic phase.
The AF metallic phase is long-range ordered, but there is no gap since the
disorder leads to a redistribution of spectral weight.%0

To better understand the nature of the AF phases in the phase diagram
we take a look at the staggered magnetization m%y. The dependence of
m&pr " on U is shown in the upper panel of Fig. 1.5 for several values of
the disorder A. In contrast to the non-disordered case a finite interaction
strength U > U.(A) is needed to stabilize the AF long-range order when
disorder is present. The staggered magnetization saturates at large U for
both averages; the maximal values depend on the disorder strength. In the
lower panel of Fig. 1.5, the dependence of m$y on the disorder A is shown
for different interactions U. Onmly for small U do the two averages yield
approximately the same results.

Another useful quantity is the polarization Pgy = m%p/I*, where
I% = [*O5  p%(w)dw/2 is the total spectral weight of p%(w). It al-
lows one to investigate the contribution of the point-like spectrum of the
Anderson localized states to the magnetization. This provides important
information about the spectrum since with increasing disorder more and
more one-particle states of the many-body system are transferred from the
continuous to the point-like spectrum. For weak interactions (U = 0.5) the
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Fig. 1.4. Magnetic ground state phase diagram of the Anderson-Hubbard model
at half-filling as calculated by DMFT with a spin resolved local DOS (see text);
PM: paramagnetic, AT: antiferromagnetic; after Ref. 60.

decrease of the polarization with increasing disorder A obtained with ge-
ometric or arithmetic averaging is the same (see inset in Fig. 1.5). Since
within arithmetic averaging all states are extended, the decrease of m%
(which is also the same for the two averages in the limit of weak inter-
actions, see lower panel of Fig. 1.5) must be attributed to disorder ef-
fects involving only the continuous spectrum. At larger U, the polar-
ization is constant up to the transition from the AF insulator to the
paramagnetic Anderson—Mott insulator. In the latter phase the polariza-

tion is undefined, because the continuous spectrum does not contribute to

geom
IAF .

In the absence of disorder the AF insulating phase has a small (“Slater”)
gap at U/W < 1 and a large (“Heisenberg”) gap at U/W > 1. These
limits can be described by perturbation expansions in U and 1/U around
the symmetry broken state of the Hubbard and the corresponding Heisenberg
model, respectively. In agreement with earlier studies®® our results for map
(upper panel of Fig. 1.5) show that there is no sharp transition between
these limits, even when disorder is present. This may be attributed to the
fact that both limits are described by the same order parameter. However,
the phase diagram (Fig. 1.4) shows that the two limits can be distinguished
by their overall response to disorder. Namely, the reentrance of the AF
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Fig. 1.5. Upper panel: Staggered magnetization m3y " as a function of interaction

U. Lower panel: mQ, a = geom/arith, as a function of disorder A (full lines:
arithmetic average, dashed lines: geometric average). Inset: Polarization Pgp as
a function of disorder.? Reprinted with permission from Phys. Rev. Lett. 102,
146403 (2009). © American Physical Society.

metallic phase at A/W 2 1 occurs only within the Slater AF insulating
phase.

The magnetic structure of the Anderson—Mott insulator cannot be deter-
mined by the method used here since it describes only the continuous part
of the spectra and not the point spectrum. However, only the paramagnetic
solution should be expected to be stable because the kinetic exchange inter-
action responsible for the formation of the AF metal is suppressed by the
disorder. This does not exclude the possibility of Griffiths phase-like AF
domains.39:90

It is interesting to note that even the DMFT with an arithmetic aver-
age finds a disordered AF metal.?3°" However, the arithmetically averaged
local DOS incorrectly predicts both the paramagnetic metal and the AF
metal to remain stable for arbitrarily strong disorder. Only a computational
method which is sensitive to Anderson localization, such as the DMFT with
geometrically averaged local DOS employed here, is able to detect the sup-
pression of the metallic phase for A/WW 2 1.5 and the appearance of the
paramagnetic Anderson—-Mott insulator at large disorder A already on the
one-particle level.
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9. Summary

In this article we reviewed the properties of low-temperature quantum phases
of strongly correlated, disordered lattice fermion systems with application to
correlated electronic systems and ultracold fermions in optical lattices. We
discussed the Anderson—Hubbard model and a comprehensive nonperturba-
tive theoretical method for its solution, the DMFT combined with geomet-
rical averaging over disorder. This approach provides a unified description
of Anderson- and Mott-localization in terms of one-particle correlation func-
tions.

We presented low-temperature quantum phase diagrams for the
Anderson—Hubbard model at half filling, both in the paramagnetic and the
antiferromagnetic phase. In the paramagnet, we observed re-entrant metal—
insulator transitions induced by disorder and interaction, where the corre-
sponding Anderson- and Mott-insulating phases are continuously connected.
In the presence of antiferromagnetic order, a new antiferromagnetic metallic
phase was found, which is stabilized by the interplay between interaction
and disorder.

It is expected that these new quantum states will be observable by using
ultracold fermions in optical lattices where disorder and interactions are
easily tunable in a wide range. While current experimental temperatures
are still above those required for observing quantum antiferromagnetism, the
paramagnetic Mott—Anderson insulator should be easily accessible within
current setups.

Even after several decades of research into the complex properties of dis-
ordered, interacting quantum many-body systems many fundamental prob-
lems are still unsolved. Future investigations of the existing open questions,
and of the new questions which are bound to arise, are therefore expected
to provide fascinating new insights.
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