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Abstract
Themagnetic phases induced by the interplay between disorder acting only on particles with a
given spin projection (‘spin-dependent disorder’) and a local repulsive interaction is explored. To
this end themagnetic ground state phase diagram of theHubbardmodel at half-filling is computed
within dynamicalmean-field theory combinedwith the geometric average over disorder, which is
able to describe Anderson localization. Five distinct phases are identified: a ferromagnetically
polarizedmetal, two types of insulators, and two types of spin-selective localized phases. The latter
four phases possess different long-range order of the spins. The predicted phase diagrammay be
tested experimentally using cold fermions in optical lattices subject to spin-dependent random
potentials.

1. Introduction

Cold atoms in optical lattices provide an excellent experimental tool to explore the interplay between interaction
and disorder effects in quantummany-body systems [1]. Indeed, following the seminal paper by Jaksch et al [2]
ultracold atoms have been used to demonstrate a variety of fundamental theoretical concepts, such as the
correlation-inducedMott transition [3–5], and the existence of amobility edge in non-interacting but
disordered three-dimensional systems [6]. The recent preparation of homogeneous Fermi gases of ultracold
atoms in a uniform potential [7]will eventuallymake it possible to reproduce those solid state experiments since
there is no longer a disturbance by a parabolic trapping potential. Furthermore, it is now even possible to observe
antiferromagnetic correlations [8–13]. Togetherwith a theoretically proposed new coolingmethod [14], this
allows experiments with ultracold atoms to be performed at temperatures at which antiferromagnetic order in a
finite system appears, i.e., where the correlation length reaches the size of the system [15]. These developments
motivated us to extend our previous work on correlated lattice fermions with spin-dependent disorder [16, 17]
to the case with antiferromagnetic long-range order (AF-LRO).

The aimof this paper is to compute and discuss themagnetic ground state phase diagramof the Anderson-
Hubbardmodel for spin 1/2 fermions on a bipartite lattice at half-filling in the presence of spin-dependent
disorder. Here ‘spin-dependent disorder’means that disorder, i.e., randomly distributed local potentials, acts
only on fermionswith one particular spin direction [16–18]. Our previous studies showed that spin-dependent
disorder strongly destabilizes themetallic phase. This is due to the breaking of the spin symmetry and, thus, the
blocking of spin-flip processes which are responsible for quasiparticle formation.Moreover, a spin-selective
localized phasewas predicted [16]. In this phase the particles with spin direction sensitive to randomness are
localized, whereas particles in the opposite spin channel remain itinerant. The earlier studies of correlated lattice
fermionswith spin-dependent disorder [16–18] focused on paramagnetic phases, i.e., phases without
spontaneous long-range order (LRO). Thus the question remainedwhether, and towhat extent, AF-LROof the
fermionswill change these results. In particular, two questions arise:
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(1) How does the possible existence of AF-LRO modify the paramagnetic ground state phase diagram of
interacting fermions with spin-dependent disorder [16]?

(2) How does spin-dependent disorder change the antiferromagnetic ground state phase diagram obtained
earlier [19] for interacting, disordered fermionswhere the disorder acts equally on both spin directions?

The present investigation provides answers to these questions. In particular, we show that now two spin-selective
localized phaseswith LROexists. One such phase extends to arbitrarily strong disorder, and the system remains
metallic in one of the spin-subsystem, in contrast to the case studied earlier [19].We also identify two different
Mott insulating phases characterized by ferrimagnetic spin order and ferromagnetic spin-density wave order,
respectively.

In the followingwewill solve the Anderson-Hubbardmodel using the dynamicalmean-field theory (DMFT)
with geometric average over disorder. This non-perturbative approach is sensitive to Anderson localization [20]
even on a one-particle level [21–23] and treats disorder and interactionswithin a unified theoretical framework
[24–26]. Replacing the arithmetic average employed in the coherent potential approximation [27] by the
geometric average over the disorder corresponds to the calculation of the typical local density of states (LDOS).
Indeed, otherDMFT studies of the Anderson-Hubbardmodel [28, 29] have shown that the probability
distribution function (PDF) of the LDOS approaches a log-normal distribution. For this PDF the geometric
mean of randomvariables gives themost probable, i.e. typical, value. Extended numerical investigations [30]
and experimental studies [31] provided evidence that the log-normal distribution of the LDOS is actually an
immanent feature of fermions close toAnderson localization. TheDMFTwith geometric average has already
been successfully employed to describe themetal-insulator transition (MIT) atT=0 in a variety of interacting
models such as theHubbardmodel [19, 24], the Falicov-Kimballmodel [32, 33], or a charge-transfermodel [34],
in the presence of disorder. It has also been used to examine theMIT in the paramagnetic, disorderedHubbard
model atfinite temperatures [35].

2.Model andmethod

TheAnderson-Hubbardmodel at half filling on a bipartite lattice with spin-dependent local disorder is
described by theHamiltonian
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where aiσ ( s
†ai ) is the fermionic annihilation (creation) operator of an electron at site i and spin projection

s =  =   =s s s( ) †n a a1 2 , , i i i is the particle number operator, andU is the on-site repulsion. The hopping
amplitude tij is non-zero only between nearest-neighbor sites i and j. Due to this property the lattice is composed
of two interpenetrating sublattices s={A,B}.

The local spin-dependent potentials òiσ are uncorrelated randomvariables drawn from aPDF s( )x . Similar
to our previous studies [16, 17], the spin-dependent disorder ismodeled by a box-shaped PDF given by
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whereΘ (y) is theHeaviside step function andΔ is the strength of the disorder. Thismeans that the particles
with spin up propagate on a lattice with randomly distributed on-site potentials, whereas the spin downparticles
move on an energetically uniform lattice. The PDF is the same on both sublattices, hence there is no dependence
on the index s in equation (2). Note that for the symmetric box-shaped PDFparticle-hole symmetry holds.

In order to includeAF-LROwithinDMFTone has to treat the two sublattices separately. Hence for each
sublattice s theHamiltonian (1) ismapped onto an ensemble of single-impurity Andersonmodels
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with random, spin-dependent on-site energies òσ drawn from the same PDF as in equation (2). The last two
terms, describing the dispersion and the coupling of the fermions of the bath to the impurity, are sublattice
dependent. The bath states are represented by a hybridization function
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which in theDMFT is determined self-consistently in the followingway: for each òσ and sublattice swe calculate
the impurity Green functionGσ,s(ω, òσ) by solving theHamiltonian (3), and then determine the LDOS via
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Nextwe find the geometrically averaged LDOS
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where   òá ñ = s( ) ( )Q d Q denotes the arithmetic average ofQ(ò) .We note that the geometrically averaged
LDOS, determined atfinite disorder, is not normalized to unity because it takes into account only extended
states with continuous spectrum. Therefore it is identically zerowhen all states are localized. The localized states,
having a dense point-like spectrum, are not taken into account here. The real part of the averaged local Green
function is determined by theHilbert transform
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The local self-energyΣσ,s (ω) is then obtained from the localDyson equation for the single-impurity problem
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Themomentum-dependent Green functions ws ¢( )G k,ss, on the bipartite lattice obey the followingmatrix
Dyson equation [36]
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where òk is the dispersion relation of the non-interacting lattice system.WithinDMFTwe only need local,
diagonal Green functions, which are obtained after inverting thematrix (9) and given by
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where s̄ denotes the sublattice opposite to s. The set ofDMFT equations is closed bywriting the last equation in
the form
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whereN0(ξ) is the noninteracting density of states (DOS). These equations are solved iteratively until self-
consistency is reached.

In our calculations the noninteractingDOShas the form x x p= -( )N D D20
2 2 2, whereW=2D is the

bandwidth, andW=1 sets the energy unit. For thisDOS theHilbert transform can be obtained analytically,
such that the local Green functions are related to the hybridization functions by h w w=s s( ) ( )¯D G 4s s,

2
, [36].

The results were obtained by iteratively solving theDMFT equations at zero temperature using the
numerical renormalization group (NRG) [37, 38]. For this part the open sourceNRGLjubljana code [39]was
used. Calculationswhere donewith coarse-graining parameterΛ=2,Nz=4 points in ‘z-averaging’ and
keepingNkept=8000 lowest energymultiplets in eachNRG step. Due to the simplification of theDMFT self-
consistency conditionwith the chosenDOS therewas no need to calculate the self-energy explicitely fromNRG.
Thus the problemof causality violation inΣσ,s (ω), which is present in general NRGapplications [38], is
absent here.

3. Phase diagram

The ground state of the Anderson-Hubbardmodel equation (1)with spin-dependent disorder on a bipartite
lattice is determined by three factors: the strengths of the disorder and of the local repulsion, respectively, and
the possible existence of AF-LRO. They lead to the emergence of four different types of spin ordering, which are
depicted schematically in panels (a)–(d) in figure 1. Thefirst pattern, (a), is the usualNéel AF-LRO,where the
averaged spins are of equal length, but are oriented anti-parallel on neighbouring sites. The second pattern, (b),
is a ferrimagnet, where the averaged spins on all sites are directed anti-parallel but their lengths on neighbouring
sites differ. The third pattern, (c), is a ferromagnetic spin-density wave (SDW), where on neighbouring sites the
averaged spins are oriented parallel but have different lengths. The last type of spin ordering, (d), is the usual
ferromagnet, which is characterized by the same length and direction of the averaged spins on every lattice site.

To fully characterize the observed phases four different quantities are computed:

(1) the geometrically averaged LDOS ρσ,s (ω) for spinσ and sublattice s,
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(2) the localmagnetizationms, i.e. the averaged value of the spin, defined on a site belonging to sublattices

=
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, is the density of particles with spinσ on sublattice s (here the energy scale is
chosen such thatω=0 corresponds to the Fermi energy),

(3) the ferrimagnetic order parameter, i.e., the difference between the local magnetizations on neighbouring
sites
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(4) the ferromagnetic spin-density wave order parameter, i.e., the difference between the parallel local
magnetizations on neighbouring sites
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The order parameters and themagnitude of the localmagnetization, ∣ ∣ms , change between zero and 1/2.

With these quantities onemay identify the followingfive different phases:

(i) ferromagnetic metal (FM) if r ¹s ( )0 0s, and = ¹m m 0A B (and consequentlymFerri=0 andmSDW=0),

(ii) ferrimagnetic insulator of type I (Ferri-Ins) if r = ¹s ( ) m0 0, 0s, Ferri , andmSDW=0,

(iii) ferromagnetic SDW insulator of type II (SDW-Ins) if ρσ,s (0)=0,mFerri=0, and ¹m 0SDW ,

(iv) ferrimagnetic spin-selective localized phase of type I (SSLP-I) if r ¹ ( )0 0s , r = ( )0 0s , ¹m 0Ferri , and
mSDW=0

(v) ferromagnetic SDW spin-selective localized phase of type II (SSLP-II) if r = ( )0 0s and r ¹ ( )0 0s when
mFerri=0, and ¹m 0SDW .

WithinDMFT, a dynamical but local approximation, there are no other phases on a bipartite lattice.
Themagnetic ground state phase diagramof the Anderson-Hubbardmodel with spin-dependent disorder

obtained in this way is shown infigure 2 and is themain result of our investigation. It will nowbe discussed in
detail.

Figure 1.Panels (a)–(d) showdifferent spin patterns found in the Anderson-Hubbardmodel with spin dependent disorder:
(a) antiferromagnet, (b) ferrimagnet, (c) ferromagnetic spin-density wave, and (d) ferromagnet.
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3.1. Ferrimagnetic insulator of type I (Ferri-Ins)
This ferrimagnetic insulating phase is characterized byAF-LROwhere themagnetization alternates in sign and
magnitude on neighbouring sites, and the geometrically averaged LDOS vanishes at the Fermi energy in both
spin channels and on every lattice site. In the absence of disorder (Δ=0) this phase becomes anAF insulator
(AFI), which is the only stableDMFT solution for the half-filledHubbardmodel on a bipartite lattice atT=0
and anyU>0, due to particle-hole and spin symmetries. The ferrimagnetic insulator exists only at weak
disorderΔ, i.e., in the regimeswithΔU/3 forU0.6 andΔ0.25 forU0.6. Upon increasing the
disorder the ferrimagnetic order parametermFerri goes to zero in both interaction regimes as is seen in the upper
panel offigure 3. The vanishing ofmFerri signals a possible transition to a different spin pattern. At the same time,
by turning upU the ferrimagnetic order parameter increases and the system tends toward the saturatedNéel
antiferromagnet withmFerri=1/2, as shown by the curves forΔ=0.05 and 0.2 in the lower panel offigure 3.

The geometrically averaged LDOS4 for the ferrimagnetic insulator forU0.6 exhibits a narrow spectral
gap and a pronounced asymmetric peak (cf the upper panel infigure 4) similar to theΔ=0 case [40]. Due to the
staggered (Néel) spin order the lattice unit cell is doubled in the ferrimagnetic insulator. The existence of LRO in
this phase is caused by the interaction, while the ferrimagneticmodulation of the localmagnetization is an effect
of the spin-dependent disorder. This type of disorder reduces the bandwidth of fermionswith spin up in
extended states. Since the interaction is weak here, the LDOS for spin down particles is not stronglymodified by
spin-dependent disorder and almost remains the same as in theΔ=0 case. This altogether leads to staggered,
but different inmagnitude, localmagnetizations ¹∣ ∣ ∣ ∣m mA B and ferrimagnetic order.

Figure 2.Themagnetic ground state phase diagramof the Anderson-Hubbardmodel on a bipartite lattice at halffilling with spin-
dependent disorder determined byDMFTwith the geometrically averaged local density of states (LDOS). Five phases are
distinguished: FM (Ferromagneticmetal), Ferri-Ins (insulator of type I), SDW-InsI (insulator of type II), SSLP-I (spin-selective
localized phase of type I), and SSLP-II (spin-selective localized phase of type II). At the pointΔ=0,U=0 the system is a paramagnet
(Fermi gas)while on the horizontal line (Δ=0,U>0) it is aNéel antiferromagnet. Phase transitions frommetal to insulator in the
spin down channel aremarked by a red linewith triangles, whereas the corresponding transitions in the other spin channel (the one
directly influenced by the disorder) aremarked by a navy blue linewith squares. For details see text.

Figure 3. Ferrimagnetic order parametermFerri as a function of disorder strengthΔ for different interaction strengthsU (upper panel),
and as a function of interaction strengthU for various disorder strengthsΔ (lower panel).

4
Because of the symmetry r w r w= -s s( ) ( )¯A B only LDOS on sublatticeA are presented.
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3.2. Ferrimagnetic spin-selective localized phase of type I (SSLP-I)
In theweakly interacting regimewithU0.6 the ferrimagnetic insulator undergoes a transition to the
ferrimagnetic spin-selective localized phase upon increase of the disorderΔ. This phase is shown as a narrow
orange area in the phase diagram infigure 2. The SSLP-I phase is characterized by small values ofmFerri as is seen
infigure 3 and a non-vanishing geometrically averaged LDOS at the Fermi energy in only one spin channel, as is
illustrated in themiddle panel offigure 4. Thismeans that particles with spin up, which are directly influenced by
the disorder, are now in themetallic phase because the disorder redistributes their spectral weight, thereby
closing the gap for these fermions. By contrast, the spin down particles remain in the insulating state. In other
words, particles with spin down,which are not directly affected by the spin-dependent disorder, sustain the gap
in the geometrically averaged LDOSdue to the existence of AF-LRO. Although the gap is closed in ρ↑(ω) the
asymmetry of the geometrically averaged LDOS in the two spin channels remains, giving rise to different local
magnetizations ¹∣ ∣ ∣ ∣m mA B and afinite value ofmFerri.

3.3. Ferromagneticmetal (FM)
Upon increasing the disorder strength further the FMbecomes stable with finite and equal localmagnetizations
ms on both sublattices. This phase does not possess a spontaneous LRO since the uniform spin polarization is
driven solely by the spin-dependent disorder. This phase is characterized bymFerri=0 andmSDW=0 (c.f.,
figures 3, and 5)whereas the geometrically averaged LDOS at the Fermi energy for both spin species becomes
non-zero, as is seen infigure 6.

In this ferromagneticmetallic phase spin-dependent disorder plays a dominant role. Indeed, it closes the
gaps in the geometrically averaged LDOS in the two spin channels and leads to an equal distribution of spectral
weights below and above the Fermi level, as is shown in the lower panel offigure 4. Since disorder reduces the
spectral weight of spin up particles, c.f., the lower panel offigure 4, the systembecomes spin polarizedwith

= ¹∣ ∣ ∣ ∣m m 0A B [41]. The interaction (repulsion) thereby plays aminor role here: namely, itmediates the

Figure 4.Geometrically averaged LDOS on sublatticeA for different values of the disorder strengthΔ at interaction strengthU= 0.2.
Results are shown for Ferri-Ins (upper panel), SSLP-I (middle panel), and FM (lower panel). Insets show zoomed regions around the
Fermi level.

Figure 5. Ferromagnetic SDWorder parameter as a function of disorder strengthΔ for different interaction strengthsU (upper
panel), and as a function of interaction strengthU for various disorder strengthsΔ (lower panel).
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influence of the disorder also to the spin downparticles. As a result, both spin up and spin down particles are
distributed uniformly on both sublattices, which leads to the absence of LRO (mFerri=0 andmSDW=0 ).

3.4. Ferromagnetic SDWspin-selective localized phase of type II (SSLP-II)
When the disorder strength is increased even further a transition from the FMphase to the ferromagnetic SDW
spin-selective localized phase takes place atU0.5. In the SSLP-II the spin-up particles, which are influenced
directly by spin-dependent disorder, have a vanishing geometrically averaged LDOS at Fermi level on both
sublattices: r = ( )0 0s, , i.e., they are in an insulating state. By contrast, the spin-down particles have r ¹ ( )0 0s,

on both sublattices, and hence aremetallic. At the same time the ferromagnetic SDW is stabilized, withmSDW

being relatively small, as seen infigure 5. This SSLP-II is amagnetic counterpart to the spin-selective localized
phase found in the paramagnetic ground state phase diagram in [16].

The origin of this phase can be explained as follows: strong spin-dependent disorder renormalizes the
geometrically averaged LDOSof the spin-up particles and opens a gap at the Fermi level due to the disorder-
driven localization transition, thus forming two narrow, continuous subbands. The changes of the geometrically
averaged LDOS, and the spin-selective opening of the gapwhenU is increased atfixedΔ=1, is shown in the
panels offigure 7. The properties of SSLP-II can be effectively understoodwithin a Falicov-Kimballmodel
[42, 43]where spinless fermions on a lattice interact with immobile particles. Indeed, the spin up particles are
localized due to spin-dependent disorder and act as scatterers for the spin downparticles due to theHubbard
interactionU. In contrast to the paramagnetic case studied in [16]here the parallel oriented localmagnetic
moments have different values on different sublattices, yielding a small butfinite ferromagnetic SDWorder
parametermSDW. Spin-selective localization together with ferromagnetic SDWLRO implies the absence of spin

Figure 6.Geometrically averaged LDOS on sublatticeA at the Fermi level as a function of interactionU for different values of the
disorderΔ. Spin-up particles: upper panel, spin-downparticles: lower panel.

Figure 7.Geometrically averaged LDOS on sublatticeA for different values of the interactionU at disorder strengthΔ=1. Top
panel: FM; second panel from the top: border between FMand SSLP-II; third panel from the top: SSL-II; bottompanel: border
between SSLP-II andAFI.
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up quasiparticles at the Fermi level. They are, however, present for spin-down particles as seen forU= 0.35 and
0.45 infigure 7.We also see infigure 7 thatHubbard subbands at higher energies are formed in the geometrically
averaged LDOS for both spins.

3.5. Ferromagnetic SDW insulator (SDW-Ins)
At the interactionU≈0.5 the SSLP-II turns into a ferromagnetic SDW insulator (SDW-Ins) as is seen in
figure 2, and the geometrically averaged LDOS shows a gap for both spin particles, cf the lower panel offigure 7.
Similar to the paramagnetic case discussed in [16], the critical interactionUc, at which the transition fromSSLP-
II to SDW-Ins takes place, is independent of the disorder strengthΔ as shown infigure 2.We conclude that the
transition fromSSLP-II to SDW-Ins is of the Falicov-Kimball type because the geometrically averaged LDOS for
spin-down particles splits in a similar way as in the case of binary-alloy disorder, where particles with spin-up
provide localized scattering centers [43]. The slight reduction of the critical interaction fromUc≈0.55 for the
paramagnetic ground state discussed in [16], toUc≈0.5 in the case studied here, is caused by the presence of the
ferromagnetic SDWLROwhich naturally tends to form a gap and subbands, as in the Slater theory of AF [40].
Indeed, this is seen infigure 8, wherewe compare the geometrically averaged LDOS atΔ=1 andU= 0.5
obtained from the uniform and bipartite latticeDMFT solutions, respectively. The ferromagnetic SDWLRO
leads to an asymmetric transfer of the spectral weight away from the Fermi level and an opening of the gap at
smallerU as comparedwith the uniform case.We also note that for the disorder values considered heremSDW is
almost independent ofΔ, whichwe can see infigure 5. Therefore theUc(Δ) line is vertical in the phase diagram
figure 2.

Once the interaction strength exceedsU≈0.6 forΔ 0.2, the systemmakes a transition from the
ferrimagnetic insulator (Ferri-Ins)with ¹m 0Ferri to the ferromagnetic SDW insulator (SDW-Ins)with

¹m 0SDW . This transition is a result of the spin-dependent bandwidth renormalization caused by the specific
type of the disorder. ForΔ 0.2 the spectral weight is weakly affected by the disorder, as is seen in the left panel
offigure 9. Themain effecct is that w w¹ - ( ) ( )A As s, , , which leads to the ferrimagnetism in the Ferri-Ins
phase. AboveΔ≈0.2 effects of disorder-induced localization becomemore pronounced. As is seen in the right
panel offigure 9, atU= 0.7 andΔ=0.3 the spectral functions are reduced by an order ofmagnitudewith
respect toΔ=0.1 case, presented in the left panel. This reduction is stronger for the spin-up spectral functions
since they are directly subjected to the disorder. As a result forΔ0.2wefind that < n ns s, , on both
sublattices. This gives rise to the ferromagnetism in the system, which ismodulated ( ¹m 0SDW ) by the
competing AF-LRO. In the case of disorder acting equally on both spin directions, this part of the phase diagram
would be an antiferromagnetic insulator and the interactionwould play a dominant role, generating AF-
LRO [19].

4. Conclusions and outlook

In this paper we extended the investigation of correlated lattice fermionswith spin-dependent disorder by
including the effects of antiferromagnetic long-range order on the ground state properties. Apart from a
ferromagneticmetal, we found two insulating and two spin-selective localized phases. The two insulating phases
differ in the pattern of their spin ordering, one having parallel and the other staggered orientation on the
sublattices. In the two spin-selective localized phases particles with either up or down spin orientation are
localized. The phase diagram and properties of the ground state were discussed in detail. It is surprising that such

Figure 8.Comparison of the geometrically averaged LDOSon sublatticeA forΔ=1 andU= 0.5with (red curve) andwithout (blue
curve)AF-LRO.
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a simplemodel can lead to a phase diagramwith such amultitude of different phases. Obviously, an extension of
the present study tofinite temperatures is called for.

Spin-dependent disorder can be realized experimentally by focusing light beamswith different polarization,
after having been scattered froma diffusive plate, on an optical lattice [16, 17, 44, 45]. This, togetherwith
recently developedmethods for cooling [14] and detecting antiferromagnetic correlations [8–13, 15], willmake
it possible to explore correlated lattice fermions in the presence of spin-dependent disorder experimentally and
to test our predictions.
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