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Abstract

The magnetic phases induced by the interplay between disorder acting only on particles with a
given spin projection (‘spin-dependent disorder’) and a local repulsive interaction is explored. To
this end the magnetic ground state phase diagram of the Hubbard model at half-filling is computed
within dynamical mean-field theory combined with the geometric average over disorder, which is
able to describe Anderson localization. Five distinct phases are identified: a ferromagnetically
polarized metal, two types of insulators, and two types of spin-selective localized phases. The latter
four phases possess different long-range order of the spins. The predicted phase diagram may be
tested experimentally using cold fermions in optical lattices subject to spin-dependent random
potentials.

1. Introduction

Cold atoms in optical lattices provide an excellent experimental tool to explore the interplay between interaction
and disorder effects in quantum many-body systems [ 1]. Indeed, following the seminal paper by Jaksch et al [2]
ultracold atoms have been used to demonstrate a variety of fundamental theoretical concepts, such as the
correlation-induced Mott transition [3—5], and the existence of a mobility edge in non-interacting but
disordered three-dimensional systems [6]. The recent preparation of homogeneous Fermi gases of ultracold
atoms in a uniform potential [7] will eventually make it possible to reproduce those solid state experiments since
there is no longer a disturbance by a parabolic trapping potential. Furthermore, it is now even possible to observe
antiferromagnetic correlations [8—13]. Together with a theoretically proposed new cooling method [14], this
allows experiments with ultracold atoms to be performed at temperatures at which antiferromagnetic order in a
finite system appears, i.e., where the correlation length reaches the size of the system [15]. These developments
motivated us to extend our previous work on correlated lattice fermions with spin-dependent disorder [16, 17]
to the case with antiferromagnetic long-range order (AF-LRO).

The aim of this paper is to compute and discuss the magnetic ground state phase diagram of the Anderson-
Hubbard model for spin 1/2 fermions on a bipartite lattice at half-filling in the presence of spin-dependent
disorder. Here ‘spin-dependent disorder’ means that disorder, i.e., randomly distributed local potentials, acts
only on fermions with one particular spin direction [16—18]. Our previous studies showed that spin-dependent
disorder strongly destabilizes the metallic phase. This is due to the breaking of the spin symmetry and, thus, the
blocking of spin-flip processes which are responsible for quasiparticle formation. Moreover, a spin-selective
localized phase was predicted [16]. In this phase the particles with spin direction sensitive to randomness are
localized, whereas particles in the opposite spin channel remain itinerant. The earlier studies of correlated lattice
fermions with spin-dependent disorder [16—18] focused on paramagnetic phases, i.e., phases without
spontaneous long-range order (LRO). Thus the question remained whether, and to what extent, AF-LRO of the
fermions will change these results. In particular, two questions arise:

© 2018 The Author(s). Published by IOP Publishing Ltd
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(1) How does the possible existence of AF-LRO modify the paramagnetic ground state phase diagram of
interacting fermions with spin-dependent disorder [16]?

(2) How does spin-dependent disorder change the antiferromagnetic ground state phase diagram obtained
earlier [19] for interacting, disordered fermions where the disorder acts equally on both spin directions?

The present investigation provides answers to these questions. In particular, we show that now two spin-selective
localized phases with LRO exists. One such phase extends to arbitrarily strong disorder, and the system remains
metallic in one of the spin-subsystem, in contrast to the case studied earlier [ 19]. We also identify two different
Mott insulating phases characterized by ferrimagnetic spin order and ferromagnetic spin-density wave order,
respectively.

In the following we will solve the Anderson-Hubbard model using the dynamical mean-field theory (DMFT)
with geometric average over disorder. This non-perturbative approach is sensitive to Anderson localization [20]
even on a one-particle level [21-23] and treats disorder and interactions within a unified theoretical framework
[24-26]. Replacing the arithmetic average employed in the coherent potential approximation [27] by the
geometric average over the disorder corresponds to the calculation of the typicallocal density of states (LDOS).
Indeed, other DMFT studies of the Anderson-Hubbard model [28, 29] have shown that the probability
distribution function (PDF) of the LDOS approaches a log-normal distribution. For this PDF the geometric
mean of random variables gives the most probable, i.e. typical, value. Extended numerical investigations [30]
and experimental studies [31] provided evidence that the log-normal distribution of the LDOS is actually an
immanent feature of fermions close to Anderson localization. The DMFT with geometric average has already
been successfully employed to describe the metal-insulator transition (MIT) at T = 0in a variety of interacting
models such as the Hubbard model [19, 24], the Falicov-Kimball model [32, 33], or a charge-transfer model [34],
in the presence of disorder. It has also been used to examine the MIT in the paramagnetic, disordered Hubbard
model at finite temperatures [35].

2.Model and method

The Anderson-Hubbard model at half filling on a bipartite lattice with spin-dependent local disorder is
described by the Hamiltonian

H = Z t,-]-a;[,ajg + Z €icNi + UZ(I’I,‘T — l)(l’l,'l — l), (1)
(i,j) o ic i 2 2

where a;, (a JT) is the fermionic annihilation (creation) operator of an electron at site i and spin projection
oc==x1/2=(, 1), ni, = aif,aig is the particle number operator, and U is the on-site repulsion. The hopping
amplitude #; is non-zero only between nearest-neighbor sites i and j. Due to this property the lattice is composed
of two interpenetrating sublatticess = {A, B}.

The local spin-dependent potentials ¢;, are uncorrelated random variables drawn from a PDF P, (x). Similar
to our previous studies [ 16, 17], the spin-dependent disorder is modeled by a box-shaped PDF given by

1+ 20 é _
Fo(x) = A 9( > |x|), 2

where O (y) is the Heaviside step function and A is the strength of the disorder. This means that the particles
with spin up propagate on a lattice with randomly distributed on-site potentials, whereas the spin down particles
move on an energetically uniform lattice. The PDF is the same on both sublattices, hence there is no dependence
on the index sin equation (2). Note that for the symmetric box-shaped PDF particle-hole symmetry holds.

In order to include AF-LRO within DMFT one has to treat the two sublattices separately. Hence for each
sublattice s the Hamiltonian (1) is mapped onto an ensemble of single-impurity Anderson models

Hia = D €ty + Umny + 3 (Vo cir + Vi i 80) + Y ool Cho A3)
o ko ko

with random, spin-dependent on-site energies €, drawn from the same PDF as in equation (2). The last two
terms, describing the dispersion and the coupling of the fermions of the bath to the impurity, are sublattice
dependent. The bath states are represented by a hybridization function

VU'SZ
Nps(W) = Vi

)
Kk W — Ek(r,s

(€]

which in the DMFT is determined self-consistently in the following way: for each ¢, and sublattice s we calculate
the impurity Green function G, ((w, €,) by solving the Hamiltonian (3), and then determine the LDOS via
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pg,s(w> 60) = _llm Ga,s(w) 60)- (5)
™

Next we find the geometrically averaged LDOS
Prs(w) = el ns(re, (6)

where (Q) = f deP,(€)Q(¢€) denotes the arithmetic average of Q(¢) . We note that the geometrically averaged
LDOS, determined at finite disorder, is not normalized to unity because it takes into account only extended
states with continuous spectrum. Therefore it is identically zero when all states are localized. The localized states,
having a dense point-like spectrum, are not taken into account here. The real part of the averaged local Green
function is determined by the Hilbert transform

Py (W)

w—w

Grslw) = [ @

Thelocal self-energy 3, ; (w) is then obtained from the local Dyson equation for the single-impurity problem

Boosl) = = (@) = s ®)
The momentum-dependent Green functions G, . (w, k) on the bipartite lattice obey the following matrix
Dyson equation [36]
(GU,AA(CU, k) GJ,BA((U, k)J _ (w — ZJ,A(U}) — e )1’ o
G{;,AB(W, k) G(I,BB(U-’: k) — €K w — EU,B(W)

where € is the dispersion relation of the non-interacting lattice system. Within DMFT we only need local,
diagonal Green functions, which are obtained after inverting the matrix (9) and given by

Gos(w) = Z Go,ss(w) = Z : > (10)
k

2
€
k w— ZU’S(W) — ﬁk-(w)

where § denotes the sublattice opposite to s. The set of DMFT equations is closed by writing the last equation in
the form

No(§)

&-2
w— Xgs(w) — PSS

Gouslw) = [dg , an

where Ny(€) is the noninteracting density of states (DOS). These equations are solved iteratively until self-
consistency is reached.

In our calculations the noninteracting DOS has the form Ny(§) = 24/D? — £2 / wD?, where W = 2Dis the
bandwidth, and W = 1 sets the energy unit. For this DOS the Hilbert transform can be obtained analytically,
such that the local Green functions are related to the hybridization functions by 7, ((w) = DG, 5(w) / 4 [36].

The results were obtained by iteratively solving the DMFT equations at zero temperature using the
numerical renormalization group (NRG) [37, 38]. For this part the open source NRG Ljubljana code [39] was
used. Calculations where done with coarse-graining parameter A = 2, N, = 4 points in ‘z-averaging’ and
keeping Nipe = 8000 lowest energy multiplets in each NRG step. Due to the simplification of the DMFT self-
consistency condition with the chosen DOS there was no need to calculate the self-energy explicitely from NRG.
Thus the problem of causality violation in ¥, ; (w), which is present in general NRG applications [38], is
absent here.

3. Phase diagram

The ground state of the Anderson-Hubbard model equation (1) with spin-dependent disorder on a bipartite
lattice is determined by three factors: the strengths of the disorder and of the local repulsion, respectively, and
the possible existence of AF-LRO. They lead to the emergence of four different types of spin ordering, which are
depicted schematically in panels (a)—(d) in figure 1. The first pattern, (a), is the usual Néel AF-LRO, where the
averaged spins are of equal length, but are oriented anti-parallel on neighbouring sites. The second pattern, (b),
is a ferrimagnet, where the averaged spins on all sites are directed anti-parallel but their lengths on neighbouring
sites differ. The third pattern, (c), is a ferromagnetic spin-density wave (SDW), where on neighbouring sites the
averaged spins are oriented parallel but have different lengths. The last type of spin ordering, (d), is the usual
ferromagnet, which is characterized by the same length and direction of the averaged spins on every lattice site.
To fully characterize the observed phases four different quantities are computed:

(1) the geometrically averaged LDOS p,, s (w) for spin o and sublattice s,
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Figure 1. Panels (a)—(d) show different spin patterns found in the Anderson-Hubbard model with spin dependent disorder:
(a) antiferromagnet, (b) ferrimagnet, (c) ferromagnetic spin-density wave, and (d) ferromagnet.

(2) thelocal magnetization m, i.e. the averaged value of the spin, defined on a site belonging to sublattice s

my = —= 1 (12)

where 1, ; = f P, «(w)dw is the density of particles with spin o on sublattice s (here the energy scale is
—oo 1o,
chosen such that w = 0 corresponds to the Fermi energy),

(3) the ferrimagnetic order parameter, i.e., the difference between the local magnetizations on neighbouring
sites

— M@(_m), (13)

2 mpg

and

(4) the ferromagnetic spin-density wave order parameter, i.e., the difference between the parallel local
magnetizations on neighbouring sites

Mspw = | — mB|@(ﬂ)- (14)
mp

The order parameters and the magnitude of the local magnetization, ||, change between zero and 1/2.
With these quantities one may identify the following five different phases:

(i) ferromagnetic metal (FM)if p, ((0) = 0 and my = mp = 0 (and consequently #gerr; = 0and mspw = 0),
(ii) ferrimagnetic insulator of type I (Ferri-Ins)if p, ((0) = 0, Merri = 0,and mspw = 0,
(iii) ferromagnetic SDW insulator of type II (SDW-Ins) if p, s (0) = 0, hger; = 0,and mgpyw = 0,
(iv) ferrimagnetic spin-selective localized phase of type I (SSLP-1) if p15(0) = 0, p;(0) = 0, Mpersi = 0, and
mspw = 0

(v) ferromagnetic SDW spin-selective localized phase of type II (SSLP-1) if p, (0) = 0 and p;(0) = 0 when
Meerri = 0, and mgpw = 0.

Within DMFT, a dynamical but local approximation, there are no other phases on a bipartite lattice.

The magnetic ground state phase diagram of the Anderson-Hubbard model with spin-dependent disorder
obtained in this way is shown in figure 2 and is the main result of our investigation. It will now be discussed in
detail.
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Figure 2. The magnetic ground state phase diagram of the Anderson-Hubbard model on a bipartite lattice at half filling with spin-
dependent disorder determined by DMFT with the geometrically averaged local density of states (LDOS). Five phases are
distinguished: FM (Ferromagnetic metal), Ferri-Ins (insulator of type I), SDW-InsI (insulator of type II), SSLP-I (spin-selective
localized phase of type I), and SSLP-II (spin-selective localized phase of type IT). At the point A = 0, U = 0 the system is a paramagnet
(Fermi gas) while on the horizontal line (A = 0, U > 0)itis a Néel antiferromagnet. Phase transitions from metal to insulator in the
spin down channel are marked by a red line with triangles, whereas the corresponding transitions in the other spin channel (the one
directly influenced by the disorder) are marked by a navy blue line with squares. For details see text.
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Figure 3. Ferrimagnetic order parameter #g,; as a function of disorder strength A for different interaction strengths U (upper panel),
and as a function of interaction strength U for various disorder strengths A (lower panel).

3.1. Ferrimagnetic insulator of type I (Ferri-Ins)
This ferrimagnetic insulating phase is characterized by AF-LRO where the magnetization alternates in sign and
magnitude on neighbouring sites, and the geometrically averaged LDOS vanishes at the Fermi energy in both
spin channels and on every lattice site. In the absence of disorder (A = 0) this phase becomes an AF insulator
(AFI), which is the only stable DMFT solution for the half-filled Hubbard model on a bipartite latticeat T = 0
andany U > 0, due to particle-hole and spin symmetries. The ferrimagnetic insulator exists only at weak
disorder A, i.e.,in theregimes with A < U/3for U < 0.6and A < 0.25for U 2 0.6. Upon increasing the
disorder the ferrimagnetic order parameter #1g,,; goes to zero in both interaction regimes as is seen in the upper
panel of figure 3. The vanishing of mg.,; signals a possible transition to a different spin pattern. At the same time,
by turning up U the ferrimagnetic order parameter increases and the system tends toward the saturated Néel
antiferromagnet with mge,; = 1/2, as shown by the curves for A = 0.05 and 0.2 in the lower panel of figure 3.
The geometrically averaged LDOS" for the ferrimagnetic insulator for U < 0.6 exhibits a narrow spectral
gap and a pronounced asymmetric peak (cf the upper panel in figure 4) similar to the A = 0 case [40]. Due to the
staggered (Néel) spin order the lattice unit cell is doubled in the ferrimagnetic insulator. The existence of LRO in
this phase is caused by the interaction, while the ferrimagnetic modulation of the local magnetization is an effect
of the spin-dependent disorder. This type of disorder reduces the bandwidth of fermions with spin up in
extended states. Since the interaction is weak here, the LDOS for spin down particles is not strongly modified by
spin-dependent disorder and almost remains the same as in the A = 0 case. This altogether leads to staggered,
but different in magnitude, local magnetizations |m,| = |mjp|and ferrimagnetic order.

* Because of the symmetry g, (w) = p,z(—w) only LDOS on sublattice A are presented.
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Figure 4. Geometrically averaged LDOS on sublattice A for different values of the disorder strength A at interaction strength U=0.2.
Results are shown for Ferri-Ins (upper panel), SSLP-I (middle panel), and FM (lower panel). Insets show zoomed regions around the
Fermi level.

0.05
U=0.30 ——
;0.04 - U=0.50 =t
U=0.60
80'03 B U=0.65
E odl /\
0.01} = |
0 | . / I L=
0 02 04 06 08 1 12 1.4
Disorder, A
A=0.05 ——
0.04 - A=0.20 ——
g £=0.4
a | A=1.00
g£0.02
0 k— e ————— ! 4

| —
0 01 02 03 04 05 06
Interaction,U

Figure 5. Ferromagnetic SDW order parameter as a function of disorder strength A for different interaction strengths U (upper
panel), and as a function of interaction strength U for various disorder strengths A (lower panel).

3.2. Ferrimagnetic spin-selective localized phase of type I (SSLP-I)

In the weakly interacting regime with U < 0.6 the ferrimagnetic insulator undergoes a transition to the
ferrimagnetic spin-selective localized phase upon increase of the disorder A. This phase is shown as a narrow
orange area in the phase diagram in figure 2. The SSLP-I phase is characterized by small values of mg.,,; as is seen
in figure 3 and a non-vanishing geometrically averaged LDOS at the Fermi energy in only one spin channel, as is
illustrated in the middle panel of figure 4. This means that particles with spin up, which are directly influenced by
the disorder, are now in the metallic phase because the disorder redistributes their spectral weight, thereby
closing the gap for these fermions. By contrast, the spin down particles remain in the insulating state. In other
words, particles with spin down, which are not directly affected by the spin-dependent disorder, sustain the gap
in the geometrically averaged LDOS due to the existence of AF-LRO. Although the gap is closed in py(w) the
asymmetry of the geometrically averaged LDOS in the two spin channels remains, giving rise to different local
magnetizations |my| = |mp|and a finite value of gy

3.3. Ferromagnetic metal (FM)

Upon increasing the disorder strength further the FM becomes stable with finite and equal local magnetizations
m;,on both sublattices. This phase does not possess a spontaneous LRO since the uniform spin polarization is
driven solely by the spin-dependent disorder. This phase is characterized by mg.,,; = 0 and mspw = 0(c.f,,
figures 3, and 5) whereas the geometrically averaged LDOS at the Fermi energy for both spin species becomes
non-zero, as is seen in figure 6.

In this ferromagnetic metallic phase spin-dependent disorder plays a dominant role. Indeed, it closes the
gaps in the geometrically averaged LDOS in the two spin channels and leads to an equal distribution of spectral
weights below and above the Fermi level, as is shown in the lower panel of figure 4. Since disorder reduces the
spectral weight of spin up particles, c.f., the lower panel of figure 4, the system becomes spin polarized with
|my| = |mp| = 0[41]. The interaction (repulsion) thereby plays a minor role here: namely, it mediates the
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Figure 6. Geometrically averaged LDOS on sublattice A at the Fermi level as a function of interaction U for different values of the
disorder A. Spin-up particles: upper panel, spin-down particles: lower panel.
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Figure 7. Geometrically averaged LDOS on sublattice A for different values of the interaction Uat disorder strength A = 1. Top
panel: FM; second panel from the top: border between FM and SSLP-II; third panel from the top: SSL-1I; bottom panel: border
between SSLP-1I and AFI.

influence of the disorder also to the spin down particles. As a result, both spin up and spin down particles are
distributed uniformly on both sublattices, which leads to the absence of LRO (#1geri = 0and mgpyw = 0).

3.4. Ferromagnetic SDW spin-selective localized phase of type II (SSLP-II)

When the disorder strength is increased even further a transition from the FM phase to the ferromagnetic SDW
spin-selective localized phase takes place at U < 0.5. In the SSLP-II the spin-up particles, which are influenced
directly by spin-dependent disorder, have a vanishing geometrically averaged LDOS at Fermi level on both
sublattices: p; ((0) = 0, i.e., theyare inan insulating state. By contrast, the spin-down particles have p (0) = 0
on both sublattices, and hence are metallic. At the same time the ferromagnetic SDW is stabilized, with mspw
being relatively small, as seen in figure 5. This SSLP-II is a magnetic counterpart to the spin-selective localized
phase found in the paramagnetic ground state phase diagram in [16].

The origin of this phase can be explained as follows: strong spin-dependent disorder renormalizes the
geometrically averaged LDOS of the spin-up particles and opens a gap at the Fermi level due to the disorder-
driven localization transition, thus forming two narrow, continuous subbands. The changes of the geometrically
averaged LDOS, and the spin-selective opening of the gap when Uis increased at fixed A = 1, is shown in the
panels of figure 7. The properties of SSLP-1I can be effectively understood within a Falicov-Kimball model
[42, 43] where spinless fermions on a lattice interact with immobile particles. Indeed, the spin up particles are
localized due to spin-dependent disorder and act as scatterers for the spin down particles due to the Hubbard
interaction U. In contrast to the paramagnetic case studied in [16] here the parallel oriented local magnetic
moments have different values on different sublattices, yielding a small but finite ferromagnetic SDW order
parameter mgspyw. Spin-selective localization together with ferromagnetic SDW LRO implies the absence of spin

7
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Figure 8. Comparison of the geometrically averaged LDOS on sublattice A for A = 1 and U= 0.5 with (red curve) and without (blue
curve) AF-LRO.

up quasiparticles at the Fermi level. They are, however, present for spin-down particles as seen for U= 0.35 and
0.45in figure 7. We also see in figure 7 that Hubbard subbands at higher energies are formed in the geometrically
averaged LDOS for both spins.

3.5. Ferromagnetic SDW insulator (SDW-Ins)
Attheinteraction U & 0.5 the SSLP-II turns into a ferromagnetic SDW insulator (SDW-Ins) as is seen in
figure 2, and the geometrically averaged LDOS shows a gap for both spin particles, cf the lower panel of figure 7.
Similar to the paramagnetic case discussed in [16], the critical interaction U,, at which the transition from SSLP-
IIto SDW-Ins takes place, is independent of the disorder strength A as shown in figure 2. We conclude that the
transition from SSLP-II to SDW-Ins is of the Falicov-Kimball type because the geometrically averaged LDOS for
spin-down particles splits in a similar way as in the case of binary-alloy disorder, where particles with spin-up
provide localized scattering centers [43]. The slight reduction of the critical interaction from U, & 0.55 for the
paramagnetic ground state discussed in [16], to U, ~ 0.5 in the case studied here, is caused by the presence of the
ferromagnetic SDW LRO which naturally tends to form a gap and subbands, as in the Slater theory of AF [40].
Indeed, this is seen in figure 8, where we compare the geometrically averaged LDOSat A = 1and U=0.5
obtained from the uniform and bipartite lattice DMFT solutions, respectively. The ferromagnetic SDW LRO
leads to an asymmetric transfer of the spectral weight away from the Fermi level and an opening of the gap at
smaller U as compared with the uniform case. We also note that for the disorder values considered here mspyy is
almostindependent of A, which we can see in figure 5. Therefore the U(A) line is vertical in the phase diagram
figure 2.

Once the interaction strength exceeds U = 0.6 for A 2 0.2, the system makes a transition from the
ferrimagnetic insulator (Ferri-Ins) with #pe; = 0 to the ferromagnetic SDW insulator (SDW-Ins) with
mgspw = 0. This transition is a result of the spin-dependent bandwidth renormalization caused by the specific
type of the disorder. For A < 0.2 the spectral weight is weakly affected by the disorder, as is seen in the left panel
of figure 9. The main effecct is that A; ;(w) = A} ;(—w), which leads to the ferrimagnetism in the Ferri-Ins
phase. Above A = 0.2 effects of disorder-induced localization become more pronounced. As is seen in the right
panel of figure 9,at U=0.7 and A = 0.3 the spectral functions are reduced by an order of magnitude with
respectto A = 0.1 case, presented in the left panel. This reduction is stronger for the spin-up spectral functions
since they are directly subjected to the disorder. Asaresultfor A > 0.2 we find that ; ; < n; ; onboth
sublattices. This gives rise to the ferromagnetism in the system, which is modulated (mspw = 0) by the
competing AF-LRO. In the case of disorder acting equally on both spin directions, this part of the phase diagram
would be an antiferromagnetic insulator and the interaction would play a dominant role, generating AF-
LRO[19].

4. Conclusions and outlook

In this paper we extended the investigation of correlated lattice fermions with spin-dependent disorder by
including the effects of antiferromagnetic long-range order on the ground state properties. Apart from a
ferromagnetic metal, we found two insulating and two spin-selective localized phases. The two insulating phases
differ in the pattern of their spin ordering, one having parallel and the other staggered orientation on the
sublattices. In the two spin-selective localized phases particles with either up or down spin orientation are
localized. The phase diagram and properties of the ground state were discussed in detail. It is surprising that such
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Figure 9. Comparison of geometrically averaged LDOS on sublattice A and sublattice B for Ferri-Ins (left-hand side) and SDW-Ins
(right-hand side) at the same U=0.7.

asimple model can lead to a phase diagram with such a multitude of different phases. Obviously, an extension of
the present study to finite temperatures is called for.

Spin-dependent disorder can be realized experimentally by focusing light beams with different polarization,
after having been scattered from a diffusive plate, on an optical lattice [16, 17, 44, 45]. This, together with
recently developed methods for cooling [14] and detecting antiferromagnetic correlations [8—13, 15], will make
it possible to explore correlated lattice fermions in the presence of spin-dependent disorder experimentally and
to test our predictions.
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