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Electronic correlations in vanadium revealed by electron-positron annihilation measurements
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The electronic structure of vanadium measured by angular correlation of electron-positron annihilation
radiation (ACAR) is compared with the predictions of the combined density functional and dynamical mean-field
theory (DMFT). Reconstructing the momentum density from five two-dimensional projections we were able to
determine the full Fermi surface and found excellent agreement with the DMFT calculations. In particular, we
show that the local, dynamic self-energy corrections contribute to the anisotropy of the momentum density and
need to be included to explain the experimental results.
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I. INTRODUCTION

The annihilation process of electron-positron pairs in matter
is well understood [1,2]: As a consequence of momentum
and energy conservation electron-positron pairs decay in
solids predominantly into two γ quanta (photons). The two
photon momentum density [TPMD or ρ2γ (p)] of the annihila-
tion radiation carries valuable information about the electron
momentum density sampled by the positron. Early annihilation
studies in metals already observed a strong electron-positron
attraction superposed on the many-body correlations between
the electrons [3].

On the theoretical side, the density functional theory
(DFT) [4–6] can describe many-body effects in the ground
state of solids only if the exact electron exchange-correlation
potential is included. Since this is not known, most compu-
tational schemes based on DFT use either the local density
approximation (LDA) or the generalized gradient approxima-
tion (GGA). For paramagnetic correlated (3d and 4f ) electron
systems it is well known that LDA/GGA calculations fail to
provide the correct ground state properties. A quantitative
theory for the explanation of the electronic structure and the
physical properties of such systems has been consistently
developed during the last two decades in the form of a
combination of density functional theory and dynamical mean-
field theory (DMFT) [7–10], which is generally referred to as
LDA+DMFT [10,11]. In the LDA+DMFT scheme the LDA
provides the ab initio, material-dependent input (orbitals and
hopping parameters), while the DMFT solves the many-body
problem for the local interactions. Thereby the LDA+DMFT
approach is able to compute, and even predict, properties
of correlated materials. Recently, the methodology to com-
pute the spin-polarized two-dimensional angular correlation
of annihilation radiation (2D-ACAR) in combination with
LDA+DMFT was developed [12]. This made it possible, for
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example, to experimentally pinpoint the strength of the local
electronic interaction in Ni [12].

Vanadium is a 3d transition metal element with the elec-
tronic configuration of [Ar] 3d34s2. The electronic structure
of vanadium has been intensively studied by electron-positron
annihilation [13–24] and, less so, by the de Haas–van Alphen
(dHvA) effect [25,26] and photoemission [27,28]. Indeed the
characteristic Fermi surface (FS) leads to a very pronounced
signal in 2D-ACAR spectra projected along specific directions.
Quantum oscillation experiments were able to resolve the
N -hole pockets, but gave very little information about the so-
called “jungle-gym surface” and no information at all about the
octahedral hole surface [25,26]. Photoemission studies yielded
only three points of the dispersion relation [27,28]. With the
exception of the work of Manuel [24], who reconstructed
different FS sheets in vanadium from only two 2D projections,
previous positron studies refrained from reconstructing the
Fermi surface (although at least in one case a reconstruction
of ρ2γ (p) along selected directions and planes was calcu-
lated [18]), contenting themselves with comparing measured
projections to band-theoretical calculations. Momentum dis-
tributions of vanadium obtained by Compton scattering show
significant differences to LDA calculations [13], in particular
at small momenta. Various reasons for these discrepancies,
such as electron-electron correlations and thermal effects,
have been discussed [29]. Band structure calculations within
DFT using LDA/GGA and LDA+U are available [13,29],
but calculations within LDA+DMFT, the current state of
the art, have not been reported. So far several questions,
such as the validity of the LDA and LDA+U schemes for
the calculation of ρ2γ (p) as well as the significance of the
electronic correlations, are still open.

In this paper we report the full three-dimensional (3D) elec-
tron momentum density reconstruction from measurements
of the angular correlation of electron-positron annihilation
radiation (ACAR) in vanadium, which allows us to identify
specific signatures of the Fermi surface. In particular, we
compare the measured and computed results for (i) the
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2D-ACAR anisotropy data, (ii) the Lock-Crisp-West (LCW)
backfolded spectrum in the first Brillouin zone, and (iii)
the complete Fermi surface. Our experimental results and
calculations based on LDA, LDA+U , and LDA+DMFT show
that there are clear discrepancies between both LDA and
LDA+U with the experiment, and that those discrepancies can
be partly resolved by including electronic correlations through
the dynamical self-energy of DMFT.

II. EXPERIMENTAL TECHNIQUES

The 2D-ACAR technique is a powerful tool to investigate
the bulk electronic structure [12,30–34]. It is based on the
annihilation of positrons with electrons in the sample, leading
to the emission of two γ quanta in nearly antiparallel direc-
tions. The small angular deviation from collinearity is caused
by the transverse component of the electron momentum. The
coincident measurement of the annihilation quanta for many
annihilation events yields a projection of ρ2γ (p). This is
usually considered to correspond to the Fourier transform
of two-particle electron-positron wave functions. A standard
further approximation in the investigation of momentum
densities is to factorize the pair wave functions into products
of the positron wave function �+(x) and the electron wave
functions �−(x):

ρ2γ (p) ∝
∑
j,k

nj (k)

∣∣∣∣
∫

dx e−ih̄xk�+(x)�−
j,k(x)

√
γ (x)

∣∣∣∣
2

. (1)

The sum runs over all states k in all bands j with the occupation
nj (k). The so-called “enhancement factor” γ (x) [35] takes into
account electron-positron correlations. A formally equivalent
approach in terms of Green’s functions is discussed in
Sec. III. The measured 2D-ACAR spectrum N (px,py) is a 2D
projection of the 3D momentum-density distribution ρ2γ (p)
along a chosen (pz) axis convoluted by a 2D angular point
spread function R(px,py) to account for the spectrometer
resolution:

N (px,py) =
[ ∫

ρ2γ (p)dpz

]
R(px,py). (2)

The main contributions to R are the position resolution of the
detectors and the positron spot size on the sample. The total
resolution (FWHM) of the measurement is 1.45 and 1.12 mrad
in px and in py direction, respectively.

2D-ACAR spectra were measured using the TUM spec-
trometer [36] with a 22Na positron source. A single crystalline
vanadium rod with 10 mm length, 6 mm diameter, and a
purity of 5N was purchased from GoodFellow. It was oriented
and cut into a disk of approximately 1 mm thickness and
its surface polished. With x-ray diffraction we determined the
lattice parameter to be 3.028 Å. Five projections were recorded
at room temperature by turning the sample around the [110]
axis, collecting 35 × 106 coincident counts on average. The
projections comprised the main symmetry directions [001],
[11̄0], and [11̄1] and the projections at 20◦ and 70◦ with
respect to the [001] direction. The [001] projection of the
Brillouin zone is exemplified in the Appendix. Parallel to
the ACAR measurement the noncoincident 511 keV events
were recorded as well to determine the momentum sampling

function which accounts for the angle-dependent detection
efficiency. Distortions in the position assignment of the two-
dimensional detectors were corrected by way of a calibration
pattern [37].

As the ρ2γ has the symmetry of the cubic crystal, the
ACAR spectra also possess certain symmetries depending on
the projection direction. In particular the [100] projection has
the symmetry group of a square D4 (Schoenflies notation).
However, due to the anisotropic resolution function, the
symmetry is reduced to the twofold symmetry D2. In order
to suppress the statistical noise, we took advantage of the
symmetry to obtain a symmetrized spectrum Ñ (px,py):

Ñ (px,py) =
∑
g∈D2

g[N (px,py)]. (3)

Core states, which the positron probes with reduced weight,
lead to a predominantly isotropic contribution to the measured
spectra. The anisotropic part is primarily due to conduction
electrons, described by the Fermi-Dirac occupation function,
constituting the aspects of interest to the study reported
here. Occupied states will appear as a positive intensity
while unoccupied states result in a negative intensity in the
anisotropy. In the case of vanadium, details about the Fermi
surface can be deduced from the spectral anisotropy alone.
This anisotropy A(px,py) is revealed more clearly when the
isotropic features are subtracted from the 2D-ACAR spectrum
N (px,py):

A(px,py) = Ñ (px,py) − C(px,py). (4)

The radial mean C(px,py) ≡ C(
√

p2
x + p2

y) = C(pr ) is con-

structed from the original spectrum Ñ (px,py), averaging over
all data points in equidistant intervals [pr,pr + �pr ] from the
center.

III. THEORETICAL TECHNIQUES

The theoretical analysis of the 2D-ACAR spectra requires
the knowledge of the two-particle electron-positron Green’s
function, describing the probability amplitude for an electron
and a positron propagating between two different space-time
points. The theory of the annihilation probability of a positron
in a homogeneous electron gas has a long history in many-body
physics [38–42]. The electron-positron attraction leads to an
increase of the electron density near the positron. It manifests
itself in the annihilation characteristics and leads to a strongly
increased total annihilation rate. This effect is qualitatively
well understood and is called “enhancement”. However, apart
from the short-range screening the electronic states and the
mean density remain almost unchanged. Therefore, the 2D-
ACAR shows only relatively small differences compared to
the results of the independent particle model. In the case of
alkali metals the enhancement effect is included by multiplying
the 2D-ACAR spectra computed in the independent particle
model with an isotropic enhancement factor [38,43], the
so-called Kahana factor. This approach was generalized to an
energy dependent form [44] and was later extended to include
orbital dependence [45]. Since this was formulated within
DFT [41,46–55], the results maintain their static mean-field
character.
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Electronic structure calculations were performed with
the spin-polarized relativistic Korringa-Kohn-Rostoker (SPR-
KKR) code [56]. In the LDA computations the exchange-
correlation potentials parametrized by Vosko, Wilk, and Nu-
sair [57] were employed. The experimental lattice parameter of
3.028 Å and a BZ mesh of 22 × 22 × 22 was used throughout
the calculations. The DFT can be generalized to the problem
at hand by including the positron density in the form of
a two-component DFT [46,58]. In the present calculations
the electron-positron correlations are taken into account by a
multiplicative (enhancement) factor [

√
γ (x) in Eq. (1)], which

results from the inclusion of the electron-positron interaction
in the form of an effective one-particle potential as formulated
by Boroński and Nieminen [46].

In order to discuss possible correlation effects within the
framework of LDA+DMFT [10,11] the standard methodology
is to add to the LDA Hamiltonian HLDA the following
multiorbital on-site interaction term:

HU = 1

2

∑
i{m,σ }

Umm′m′′m′′′c
†
imσ c

†
im′σ ′cim′′′σ ′cim′′σ . (5)

The corresponding many-body problem described by the total
Hamiltonian

H = HLDA + HU − HDC (6)

is solved using the LDA+DMFT method, whereHDC serves to
eliminate double counting of the interactions already included
in HLDA. Here cimσ (c†imσ ) destroys (creates) an electron with
spin σ on orbital m at the site i. The Coulomb matrix elements
Umm′m′′m′′′ are expressed in the standard way [59] in terms of
three Kanamori parameters U , U ′, and J . In the LDA+U

[60] scheme a mean-field decoupling of the interaction is
employed, whereby electronic correlations beyond the LDA
parametrization are eliminated.

To include the electronic correlations we employ a charge
and self-energy self-consistent LDA+DMFT scheme which is
based on the KKR approach [61]. Contrary to the Hamiltonian
formulation, the KKR implementation of the LDA+DMFT
uses the multiple scattering concept: the solution for the
single-site problem (single-site, multiorbital t matrix) includes
the local self-energy of the many-body problem, and al-
lows for the evaluation of the scattering path operators and
the real-space DMFT corrected Green’s function needed for
the DFT calculation. In the above-mentioned implementation,
the impurity problem is solved, i.e., the many-body self-energy
is constructed, with a spin-polarized T -matrix fluctuation
exchange method [62,63]. This impurity solver is fully rota-
tionally invariant even in the multiorbital version and is reliable
when the interaction strength is smaller than the bandwidth, a
condition which is fulfilled in the case of vanadium.

Both LDA+U and LDA+DMFT computations require the
parametrization of the interaction matrix Umm′m′′m′′′ in terms
of the average local Coulomb U and exchange parameter J .
These values of U are sometimes used as fitting parameter.
However, recent developments made it possible, in principle,
to compute the dynamical electron-electron interaction matrix
elements with a good accuracy [64], but with substantial
variations associated with the choice of the local orbitals [65].
Since the parameter J is not affected by screening it can

be calculated directly within the LDA and is approximately
the same for all 3d elements, i.e., J ≈ 0.9 eV. We use
the value U = 2.3 eV for the Coulomb parameter which
corresponds to the static limit of the screened energy dependent
Coulomb interaction computed for vanadium [64], and the
Hund exchange-interaction J = 0.9 eV. The LDA+DMFT
computations are performed at a temperature of T = 400 K,
and n = 4096 Matsubara frequencies ωn = (2n + 1)πT are
included. The Padé [66] analytical continuation is used
to map the self-energies from the Matsubara frequencies
onto real energies within the self-consistent KKR-based
LDA+DMFT [61,67]. The double-counting correction [see
Eq. (6)] employed here starts with the LDA electronic structure
and replaces the computed self-energy 	σ (E) by 	σ (E) −
	σ (0) in all equations of the LDA+DMFT scheme [68], where
the energy E is measured relative to the Fermi energy. A
detailed description of this commonly used double-counting
correction scheme for metals can be found in Ref. [69].

In our LDA+DMFT framework the electron-positron
momentum density ρ2γ (p) is computed directly from the
two-particle Green’s function in the momentum representation
[70–72]. The factorization of the pair wave function discussed
above in Eq. (1) is equivalent to the factorization of the
two-particle Green’s function in real space. The enhancement
factor

√
γ (x) [see Eq. (1)] is contained implicitly through the

basis of the two-component DFT in which the Green’s function
is represented. Although this corresponds to the neglect
of genuine electron-positron correlations, the two-particle
Green’s function contains correlations between electrons
through the DMFT scheme. In the numerical implementa-
tion the position-space integrals for the “auxiliary” Green’s
function Gσσ ′(pe,pp) obtained within LDA or LDA+DMFT,
respectively, are performed as integrals over unit cells:

GX
σσ ′(pe,pp,Ee,Ep) = 1

N


∫
d3r

∫
d3r′φe†

peσ
(r)

× ImGX
e σ (r,r′,Ee) φe

peσ
(r′) φ

p†
ppσ ′(r)

× ImGp+ σ ′(r,r′,Ep) φ
p
ppσ ′(r ′).

Here X = LDA, LDA+U , or LDA+DMFT, and (pe,σ ), and
(pp,σ

′) are the momenta and spins of electron and positron,
respectively. GX

σσ ′ is computed for each energy point on the
complex energy contour, and provides the electron-positron
momentum density:

ρ2γ,X
σ (p) = − 1

π

∫
dEeG

X
σσ ′(pe,pp,Ee,Ep). (7)

In Eq. (7) integration over positron energies Ep is not required,
since only the ground state is considered, and σ ′ = −σ in
the annihilation process. The momentum carried off by the
photons is equal to that of the two particles up to a reciprocal
lattice vector, reflecting the fact that the annihilation takes
place in a crystal. Hence an electron with wave vector k
contributes to ρ

2γ,X
σ (p) not only at p = h̄ k (normal process)

but also at p = h̄(k + K), with K a vector of the reciprocal
lattice (Umklapp process). From the two-photon momentum
density computed for a specific X, ρ2γ (p), the corresponding
2D-ACAR spectrum is computed according to Eq. (2).
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FIG. 1. Comparison between experimental and theoretical results: (a) 2D-ACAR Ñ (px,py) spectra and (b) anisotropy A(px,py) spectra
[according to Eq. (4)] with integration axis along [001]. The color scale indicates the signal intensity relative to Ñ (0,0). The points �2 and �3

correspond projections of the (1,0,1) and (1,1,0) reciprocal lattice vector, respectively. An illustration of the main symmetry points and their
projection is given in the Appendix. (c) The cross sections of 2D-ACAR anisotropies ([001] projection) along the [110] and [100] directions
illustrate the difference between experimental and DMFT anisotropies. Black crosses: experiment; green curve: LDA+DMFT calculations.
The dashed lines indicate the Brillouin zone boundaries pBZ

[110]/[100] along the [110] and [100] directions, respectively.

IV. 2D-ACAR ANISOTROPIES

The anisotropies, defined as the difference between the
2D-ACAR densities and their radial average [see Eq. (4)],
arise from the positron-valence electron annihilation, since the
extracted radially symmetrized spectra eliminate the core con-
tributions. Figure 1 presents the 2D-ACAR and the anisotropy
spectra together with the results of the LDA, LDA+U , and
LDA+DMFT calculations. Our analysis focuses on the two-
dimensional projections of the electronic momentum densities
with the integration direction chosen along [001]. The general
features of the experiment, such as peaks along the studied
directions, are well reproduced by the calculations. These
peaks originate from the occupation of the single-electron
states. The measured anisotropies are slightly weaker than
the calculated ones. This is explicitly seen by taking cross
sections of 2D-ACAR anisotropies as shown in Fig. 1(c). The
calculations overestimate the anisotropy peaks. However, the
difference between experiment and theory is rather small, and
within the LDA+DMFT it amounts to less than 5% along the
[110] and less than 3% along [100].

The LCW procedure [73] can be used to study the Fermi
surface in the momentum densities by folding the data into
a single central Brillouin zone. This technique enhances
discontinuities by superposing Umklapp terms. In the first
approximation, an LCW folded momentum density ρ2γ (k) has
a constant background from totally filled bands and additional
intensity only if a band is below the Fermi level.

In Fig. 2 we compare the 2D-ACAR folded experimental
spectra with the corresponding LDA+DMFT calculation
up to the zone boundary of the first Brillouin zone at
pBZ

[110] = 5.67mrad. The agreement between the LDA+DMFT
results (convoluted with the experimental resolution) and the
experimental data is remarkable and is far better than in the
case of LDA or LDA+U .

We investigated the following two possibilities to explain
the discrepancies between the LDA/LDA+U results and the

measured anisotropies. Taking into account the temperature
simply by replacing n(k) of Eq. (1) with the Fermi function
leads to no significant change. Another possible reason for the
discrepancies is the form of the exchange-correlation potential
used in the DFT calculations. Therefore we computed the
corrections to the 2D-ACAR due to the presence of a Hubbard
U term in the DFT calculations, by using the LDA+U and
LDA+DMFT methods. For a quantitative analysis we present
the difference spectra NX(px,py) − NLDA(px,py) in Fig. 3,
for the X = LDA+DMFT and LDA+U .

As can be seen in Fig. 3, there is a significant difference
between the results obtained for a static correction (LDA+U )
compared to dynamic correlations 	(iωn) in DMFT. For
the following qualitative discussion we consider only the
orbital-diagonal part; nondiagonal parts are omitted to simplify
the equations. The real and imaginary part of the electronic
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FIG. 2. Results for the LCW folding of the 2D-ACAR spectra.
Below diagonal: experimental results. Above diagonal: LDA+DMFT
results. The theoretical spectrum was convoluted with the experimen-
tal resolution according to Eq. (2).
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self-energy contribute to the single-particle spectral function
as

A(k,E) ≈ Zk

π

τk

(E − ξk)2 + (τk)2
+ Aincoh(k,E). (8)

Here 1/τk = Im	DMFT(E) is the scattering rate, and ξk =
εLDA(k) − Re	DMFT(E) is the renormalized energy of the
quasiparticle. The second term in Eq. (8) represents the contin-
uous, incoherent part of the spectra, which has to be present in
view of the renormalization factor Zk � 1, and for the spectral
function sum rule to be satisfied. Accordingly, the frequency
integral of the spectral function is the occupation probability
of the single-particle state: n(k) = ∫ EF

−∞ A(k,E)dE. Fermionic
systems in which this picture holds are called Fermi liquids.
In a Fermi liquid 1/τk approaches zero as k approaches kF.
In fact, the imaginary part of the self-energy for real energies
(not shown) follows a quadratic energy dependence in the
vicinity of the Fermi level: Im	DMFT(E) ∝ (E − EF)2. As
a consequence of the negative slope of the real part of the
self-energy, the quasiparticle energy ξk is shifted towards the
Fermi level from its LDA eigenenergy εLDA(k). For this reason
the self-energy correction to the 2D-ACAR spectra leads to a
concentration of the momentum density around the � point
(Fig. 3, left panel). Our results are in accord with Fermi liquid
theory and imply that fermions close to the Fermi surface
scatter very little.

The effects produced by the orbital-dependent potential of
the LDA+U method may be viewed as a static self-energy
correction: 	LDA+U

m,σ = Umlnl,−σ ; in the following we consider
only the orbital-diagonal case. In the present nonmagnetic case
the self-energy is spin independent and amounts to a constant
shift of the LDA eigenenergy εLDA(k) − 	LDA+U

m for a specific
orbital m of the (d-)manifold, implying an orbital-dependent
potential 	LDA+U

m = 1
2Umlnl . Consequently, the momentum

density is depleted in the central part of the Brillouin zone
and shifted into the second and further Brillouin zones (Fig. 3,
right panel).

Figure 4 shows the results for the difference of the
calculated and the experimental spectra DX:

DX = NX(px,py) − Nexpt(px,py). (9)
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FIG. 4. (a) Difference between spectra in theory and experiment
DX(theory − experiment), see Eq. (9). For the [001] projection,
the points N and P , as well as � and H coincide. (b) Cross
sections through the upper picture along [100] and [110]; green
solid line: LDA+DMFT, orange dashed: LDA, blue fine dashed:
LDA+U .

On the left-hand side of Fig. 4(a), the difference spectra
DLDA+DMFT is shown. Except for the H point the weight of
the theoretical spectra (intensity) differs from the experimental
data only slightly (maximum difference intensity ±0.04). On
the right-hand side of Fig. 4(a), the differences computed with
LDA and LDA+U results are presented. Along the 〈100〉
direction, connecting the centers of the first and the second
Brillouin zone [�1(≡ �) and �2], both LDA and LDA+U

show more significant departures from the experimental data.
Notably, in the spectral anisotropy [Fig. 1(b)] and the LCW
backfolding (Fig. 2) a similar, diagonal feature is visible. It
can be attributed to the open Fermi surface sheet referred to
as “jungle gym” [74], shown also in the reconstructed 3D
Fermi surface, Fig. 5. Concerning the size of the jungle gym
obtained from different functionals we refer to Fig. 6 and the
discussion in Sec. V. Our results show that going along the �H

branch the LDA+U jungle gym is narrower than in the LDA
calculation.

A second distinct detail is the low intensity pocket at the
projected (N,P ) point. It originates from the ellipsoidal hole
pocket at the N point, seen also in Fig. 5. The same feature
is also present in the LCW backfolded spectra, see Fig. 2.
We observe in Fig. 4 that the differences DLDA+DMFT and the
DLDA approach zero at this particular high symmetry point
of the Brillouin zone. Hence, the LDA+DMFT and the LDA
calculations both agree quite well with the experiment. Again
the LDA+U result DLDA+U overestimates the N pocket. The
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bulged octahedron

jungle-gym
N-hole pocket

FIG. 5. Reconstructed Fermi surface of vanadium. All sheets are
holelike, i.e., the occupied states are between the ellipsoidal N -hole
pockets (green) and the jungle gym (orange), and outside of the
octahedron (violet). Note that the jungle gym and the N -hole pocket
are drawn with the same isovalue but were depicted with different
colors to obtain a better visibility.

same conclusion can be drawn form the 3D-reconstructed
Fermi surface sheets discussed in Sec. V.

In the lower part of Fig. 4 cross sections of the difference
spectra DX along 〈100〉 and 〈110〉 are presented. The vertical
dashed lines indicate boundaries of the first Brillouin zone.
From these plots it becomes obvious that most differences arise
within the first Brillouin zone. The best agreement between
the LDA+DMFT calculations and the measurements is found

Theory

Exp.

Γ

Γ

Η

Η

Ν

Ν

ΝΝ Ρ

FIG. 6. Upper half: LDA+DMFT spectral function of vanadium
together with the LDA (solid violet) and LDA+U (yellow dot-dashed
curve) Fermi surfaces. Lower half: Experimental data, representing
the absolute squared gradient of the reconstructed and LCW folded
ρ2γ according to Eq. (11). The dHvA results by Phillips [25] are
shown with purple dashed lines.

around the � point. The agreement becomes less good towards
the zone boundary along the 〈100〉 direction, where the results
coincide with those from LDA and LDA+U .

V. FERMI SURFACE RESULTS

In spite of intensive studies, both theoretically and ex-
perimentally, only very limited information about the Fermi
surface of vanadium is available. Although reconstructions
of the Fermi surface were previously reported [20,24], they
provide only a qualitative comparison between experimental
and calculated results. Two exceptions are the dHvA mea-
surements of Phillips [25] and the theoretical study of Tokii
and Wakoh [29]. Phillips [25] was able to resolve the shape
of the ellipsoid N -hole pockets and gave the dimensions of
the semiaxes along NP , N�, and NH as 0.224, 0.212, and
0.176 in units of the reciprocal lattice constant [25]. Tokii and
Wakoh [29] performed LDA and LDA + U calculations with
which they could reproduce the results of Phillips [29]. Using
the five measured projections, we obtain the full 3D ρ2γ by an
iterative algebraic reconstruction technique [34] which takes
into account the full symmetry of the Brillouin zone and the
anisotropic resolution of the spectrometer. The reconstruction
of ρ2γ (p) is computed by minimizing the squared difference
between the measured projections Ni(px,py) and those of a
test density

ρ2γ = arg min
ρ2γ

∑
i

[(
Ni − ∑

j Pijρ
2γ

j

)2

σ 2
i

+ ρ
2γ

i ln ρ
2γ

i

]
.

(10)

The projection operator Pij comprises a projection from
the irreducible wedge, a convolution with the experimental
resolution, the detection efficiency in momentum space, and a
scaling; σi denotes the expected uncertainty. The entropylike
regularization is needed since the problem is underdetermined.
Using the LCW procedure for 3D, ρ2γ (p) was then folded
back into k space to obtain ρ2γ (k). As the LCW theorem does
not hold exactly due to positron wave function and correlation
effects, ρ2γ (k) is not flat but shows smooth variations. O’Brien
et al. [75] accounted for this variation by a bandpass filter. In
this study, we chose a different approach: We modeled the
variations by the first three Fourier coefficients of the lattice.
In this way we were able to enhance the Fermi breaks. Finally,
isovalues were chosen at the minima of the histogram of ρ2γ (k)
in order to draw the Fermi surface. The reconstructed FS sheets
of vanadium are shown in Fig. 5.

The reconstruction reproduces all features of the vanadium
Fermi surface discussed in earlier papers [16,20,22]. In the
center of the Brillouin zone a holelike volume is confined
by the bulged octahedron FS sheet (violet in Fig. 5). Further
small holelike FS sheets, the so-called “N -hole pockets”, are
centered at every N point of the Brillouin zone (green in Fig. 5).
The largest FS sheet has tubelike arms which connect with
neighboring Brillouin zones at the X points (orange in Fig. 5).
When drawn in the repeated zone scheme this sheet forms a
regular grid and was therefore termed jungle gym [74]. Both
the jungle gym and the N -hole pocket give very pronounced
features in the [001] projection (for a detailed discussion see
Sec. IV).
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Additionally, we plot in Fig. 6 the absolute square of the
gradient of the reconstructed function ρ2γ (k):

|∇ρ2γ (k)|2 =
(

∂ρ2γ

∂kx

)2

+
(

∂ρ2γ

∂ky

)2

+
(

∂ρ2γ

∂kz

)2

. (11)

As the Fermi surface causes discontinuities in ρ2γ (k),
a high gradient indicates the presence of a Fermi break.
This visualization has a technical advantage compared to the
drawing of isolines: because of the finite resolution of the
spectrometer isolines cannot cross, but rather repel each other.
By contrast, the absolute square of the gradient can capture
these band crossings quite well.

In Fig. 6 planes of the irreducible Brillouin zone of vana-
dium are shown. The triangular section �HN corresponds to
the central {100} plane, and the rectangular section �HNPN

corresponds to the {110} planes. The region around the � point
corresponds to the section through the octahedron shown in
Fig. 5. The octahedron around the � point is contained within
the jungle-gym surface, whose branch extends along H�. The
Fermi surface section through the ellipsoids at the N point is
also visible. In Fig. 6 the green broadened contours represent
the LDA+DMFT results for the spectral function; their width
is proportional to the imaginary part of the self-energy. The
Fermi surface results obtained by LDA and LDA+U are
represented by dashed and dot-dashed curves. According to
the LDA and LDA+U calculations, the jungle gym and the
octahedral Fermi surface sheets touch at three points: one
contact point is located in the {100} plane and two others in the
{110} plane. Along �P in the {110} plane one of the contact
points corresponds to a degeneracy induced by symmetry,
while the other two contact points are caused by degeneracies
of states of even and odd reflection symmetry in these planes.

As can be seen, our experimental results are in very
good agreement with the elliptical parametrization of the
N -hole pocket by Phillips [25]. It should be noted that his
parametrization necessarily results in a simplification of the
true shape of the N -hole pocket. Hence, it is not surprising
that our results deviate in some details from an ellipsoid.

VI. CONCLUSION

We performed 2D-ACAR measurements of the two-photon
momentum density in order to determine the full 3D Fermi
surface of a high-quality single crystal of vanadium. The
reconstructed Fermi surface comprises three FS sheets which
contain closed hole pockets centered at the symmetry points �

and N of the bcc Brillouin zone as well as a multiply connected
hole sheet extending from � to H in the 〈100〉 direction.

In order to provide a theoretical model for the Fermi
surface of vanadium we performed LDA+DMFT, LDA, and
LDA+U calculations. In particular, the agreement between
the DMFT results and the experimental data is remarkable and
significantly better than in the case of LDA or LDA+U . We
observed that LDA and LDA+U underestimate the size of the
jungle gym while it overestimates the N pocket compared to
our LDA+DMFT calculation.

The N -hole pocket in our reconstruction agrees very well
with the reconstruction of Phillips [25]. In contrast to the
reconstruction of Manuel [24] (see Fig. 1 therein), our N -hole

pocket in Fig. 5 shows correct proportions of the NP and NH

semiaxes. Several details of our calculations are reproduced
by the reconstruction. For instance, the jungle gym widens
from � to H and has a larger diameter in the HN direction
than in the HP direction.

The quantitative agreement between the calculation and our
experimental 2D-ACAR spectra and the anisotropy is excellent
in the case of LDA+DMFT, indicating that vanadium is a
conventional, correlated Fermi liquid. It is interesting to note
that in the case of vanadium the LDA+U does not improve the
agreement with the experiment but gives a worse result than
the pure LDA scheme.

Our results indicate that electron-electron correlations
have a significant effect. Although we treat the direct
electron-positron interaction within the usual LDA-based
approach, we see that the ρ2γ contains correlation effects,
predominantly of electronic origin, as they come through the
self-consistent charge and self-energy two-component DFT
calculation. Therefore, the consequences of electron-positron
correlation in the ACAR distribution need to be investigated in
more detail. The remaining discrepancies are possibly due to
the positron self-energy effect [76] or the positron-dependent
enhancement factor.
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APPENDIX: PROJECTION OF THE BCC
BRILLOUIN ZONE

In 2D-ACAR experiments projections of the electron
momentum density are measured. To elucidate the symmetry,
the 2D projection of the Brillouin zone is presented in Fig. 7.
It can clearly be seen that distinct symmetry points in 3D get
projected onto the same spot.

Γ

H N

P

H,Γ
N,P

H,Γ[100]

[110]

FIG. 7. The [001] projection of the bcc Brillouin zone has the
outline of a square. The high symmetry points of the irreducible
wedge are marked. Their coordinates in units of the reciprocal lattice
are N ( 1

2 , 1
2 ,0), P ( 1

2 , 1
2 , 1

2 ), H (1,0,0), and �(0,0,0). The points �, H ,
and P,N are projected onto the same spots, respectively.
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