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Instability towards staggered loop currents in the three-orbital model for cuprate superconductors
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We present evidence for the existence of a spontaneous instability towards an orbital loop-current phase in a
multiorbital Hubbard model for the CuO2 planes in cuprates. Contrary to the previously proposed θII phase with
intra-unit cell currents, the identified instability is towards a staggered pattern of intertwined current loops. The
orbitally resolved current pattern thereby shares its staggered character with the proposal of d-density wave order.
The current pattern will cause a Fermi surface reconstruction and the opening of a pseudogap. We argue that the
pseudogap phase with time-reversal symmetry breaking currents is susceptible to further phase transitions and
therefore offers a route to account for axial incommensurate charge order and a polar Kerr effect in underdoped
cuprates.
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I. INTRODUCTION

There is now considerable evidence in underdoped cuprate
high-temperature superconductors for a cascade of phase
transitions, starting at high temperatures with the pseudogap
onset at T ∗, followed by incommensurate charge order (ICO)
at Tco < T ∗ and superconductivity at Tc < Tco. In addition,
broken time-reversal symmetry has been associated with T ∗
and a Kerr rotation is measured below a temperature TKerr with
TKerr ∼ 0.75T ∗ over wide doping range. At present, there is
no unifying theory that explains this intriguing sequence of
transitions.

Ultrasound spectroscopy suggests that T ∗ corresponds
to a true thermodynamic phase transition [1]; this finding
challenges the viewpoint that the pseudogap arises as a cor-
relation induced phenomenon in a symmetry unbroken para-
magnetic phase. Below T ∗ spin-polarized neutron scattering
experiments detected weak magnetic moments [2–5]. These
moments appear to preserve the translational symmetry of the
lattice, and led to the proposal of intra-unit cell loop currents
(LCs) [6]. However, the so-called θII LC phase by itself has
difficulty explaining the partial gapping of charge excitations
[7]. While variational methods favored the existence of LC
phases in finite clusters [8,9], alternative numerically exact
analyses reported no evidence for the θII phase [10,11].

The Kerr effect [12,13] that sets in below TKerr is further
evidence for time-reversal symmetry breaking, but also re-
quires that mirror symmetries be broken [14]. Throughout
much of the cuprate phase diagram, TKerr and Tco [15–23]
are close, which has motivated further proposals in which
fluctuating charge- [14,24] or pair-density wave states [25,26]
generate spontaneous current patterns with broken mirror
symmetries. These scenarios assume a heirarchy of transitions
associated with distinct symmetry breakings needed to form
the fully ordered density-wave state. Other proposals follow
the common theme that the pseudogap results from the
competition between two or more order parameters [27–30].

The ICO phase involves predominantly a charge transfer
between oxygen orbitals in the CuO2 planes [20–22,31,32].

This challenges notions of immutable CuO2 bands, and points
to the necessity to employ multiorbital models for the ICO
phase [33–35]. Here, we support this reasoning and show that
orbital resolved intra-unit cell physics is important throughout
the pseudogap regime.

In this work we report the results of an unbiased calculation
for a three-band model of CuO2 planes which verifies the
existence of an instability towards a staggered pattern of
intertwined LCs (Fig. 1). This “πLC” phase is different
from the anticipated θII phase, but shares its ordering wave
vector Q = (π,π ) with the earlier phenomenological proposal
of LCs in the d-density wave (DDW) state [36,37]. In the
πLC phase the Fermi surface reconstructs to form hole
pockets with a concomitant pseudogap-like structure in the
electronic spectrum. For realistic parameters, the ICO reported
previously for the same model Hamiltonian [34] is subleading
to the πLC instability. Yet, the presence of the staggered
order favors a subsequent instability towards ICO with axial
wave vectors connecting the tips of the hole pockets [35],
consistent with experiments. The charge modulation of the
latter necessarily breaks mirror symmetries and will hence
allow for a polar Kerr signal [14]. This scenario is offered as a
proposal for the cascade of phase transitions in the pseudogap
regime of underdoped cuprates.

II. HAMILTONIAN

The unit cell of a single CuO2 plane is shown in Fig. 2,
along with the choice of orbital phases and the corresponding
signs of the hopping terms.

The noninteracting part of the three band model is given by

Ĥ0 =
∑
iασ

εiαn̂iασ +
∑
iαjβσ

tiαjβ ĉ
†
iασ ĉjβσ , (1)

where i and j are unit cell labels, α and β are orbital labels,
σ is the spin label, εiα is the orbital energy, n̂iασ is the number
operator, tiαjβ is the tunneling matrix element between orbital

1098-0121/2015/92(19)/195140(7) 195140-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.195140


S. BULUT, A. P. KAMPF, AND W. A. ATKINSON PHYSICAL REVIEW B 92, 195140 (2015)

FIG. 1. (Color online) Staggered pattern of spontaneous loop
currents. Open circle,“x” and “y” symbols denote Cudx2−y2 , Opx ,
and Opy orbitals, respectively. Currents along p − d bonds (black
arrows) are about three times stronger than those in p − p bonds
(green arrows).

iα and jβ, and ĉiασ and ĉ
†
iασ are annihilation and creation

operators. Below, we suppress the spin labels.
Using the translational invariance, Ĥ0 can be Fourier

transformed to reciprocal space:

Ĥ0 =
∑

k

�
†
kH0(k)�k, (2)

where �
†
k = [ĉ†kd , ĉ

†
kx, ĉ

†
ky], and ĉ

†
kα (ĉkα) is the creation

(annihilation) operator for an electron with crystal momentum

FIG. 2. (Color online) Unit cell of a CuO2 plane (dashed box).
The orbital phase convention is indicated by the sign of the hopping
matrix elements. Numbers in green enumerate the inequivalent bonds,
and the direction of the blue arrows indicates a positive sign of the
current flow for the current operator definitions given in Appendix A.

k and orbital α. Explicitly,

ĉkα = 1√
N

∑
i

e−ik·Riα ĉiα, (3)

ĉ
†
kα = 1√

N

∑
i

eik·Riα ĉ
†
iα, (4)

where N is the number of unit cells in the system, and Riα is
the position vector of the α’th orbital in i’th unit cell. H0(k) is
readily obtained by plugging Eqs. (3) and (4) into Eq. (1):

H0(k) =
⎛
⎝ εd −2itpdsx 2itpdsy

2itpdsx εx 4tppsxsy

−2itpd 4tppsxsy εy

⎞
⎠, (5)

where sx = sin(kx/2) and sy = sin(ky/2). A more convenient
form of H0 is obtained after the following gauge transforma-
tion:

ĉkx → iĉkx, (6)

ĉ
†
kx → −iĉ

†
kx, (7)

ĉky → iĉky, (8)

ĉ
†
ky → −iĉky . (9)

Hence, the final form of H0 is obtained:

H0(k) =
⎛
⎝ εd 2tpdsx −2tpdsy

2tpdsx εp 4tppsxsy

−2tpdsy 4tppsxsy εp

⎞
⎠. (10)

We set tpd = 1 so that it defines the unit of energy.
The interacting part of the Hamiltonian includes the intra-

(Uα) and interorbital (Viα,jβ ) Coulomb interactions,

Ĥ ′ =
∑

iασ,jβσ ′

[
δiα,jβ (1 − δσ,σ ′ )Uα + Viα,jβ

2

]
n̂iασ n̂jβσ ′ , (11)

where i,j are unit cell indices, α,β are orbital labels, and Viα,jβ

is nonzero for nearest-neighbors only. Throughout, we sup-
press the spin index σ , set tpp = −0.5, εd − εp = 2.5, Ud = 9,
Up = 3, Vpd = 2.2, and Vpp = 1 unless otherwise stated. The
Hamiltonian Ĥ = Ĥ0 + Ĥ ′ is thus the conventional three-
band model of cuprates [38] with a typical parameter set [39].

III. INTERACTING CURRENT SUSCEPTIBILITY

The current operator associated with the bond between sites
iα and jβ is Ĵiα,jβ = −itiα,jβ (ĉ†iαcjβ − ĉ

†
jβ ĉiα) where tiα,jβ is

the corresponding hopping matrix element. If 〈Ĵiα,jβ〉 > 0 then
current flows from jβ to iα. In momentum space, the current
operator along bond m is given by

Ĵm(q) = −i
∑

k

[
hm

αβ(k,q)ĉ†kα ĉk+qβ − hm
βα(k,q)ĉ†kβ ĉk+qα

]
,

(12)
where α,β are the orbitals associated with the bond and the
matrix elements of the current operators hm

αβ(k,q) are listed in
Table I. As shown in Fig. 2, there are eight distinct bonds on
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TABLE I. Matrix elements of the current operator. i is the
imaginary constant. The overall sign of each term results from three
factors: the complex constant in the current operator definitions, the
sign of the hopping terms, and the gauge transformation.


 θθ ′ h

θθ ′ (k,q)

1 dx tpde
i(qx+kx )/2

1 xd −tpde
−ikx/2

2 dy −tpde
i(qy+ky )/2

2 yd tpde
−iky/2

3 xy −itppei(qy−kx+ky )/2

3 yx −itppei(qx+kx−ky )/2

4 dx −tpde
−i(qx+kx )/2

4 xd tpde
ikx/2

5 dy tpde
−i(qy+ky )/2

5 yd −tpde
iky/2

6 xy −itppe−i(qy+kx−ky )/2

6 yx −itppe−i(qx+kx−ky )/2

7 xy itppei(qy+kx+ky )/2

7 yx itppe−i(qx+kx+ky )/2

8 xy itppe−i(qy+kx+ky )/2

8 yx itppei(qx+kx+ky )/2

the CuO2 lattice. Accordingly the current susceptibility,

χJ
mn(q,iω
) =

∫ β

0
dτ eiω
τ 〈Ĵm(q,τ )Ĵn(−q,0)〉, (13)

is an 8 × 8 matrix, where ω
 = 2π
T denotes the bosonic
Matsubara frequencies. Each matrix element can be decom-
posed as

χJ
mn = χmn

αβα′β ′ − χmn
αββ ′α′ − χmn

βαα′β ′ + χmn
βαβ ′α′ , (14)

where

χmn
θθ ′γ γ ′(q,iω
) = −1

N

∑
kk′

hm
θθ ′(k,q)hn

γ γ ′ (k′, − q)

×
∫ β

0
dτ eiω
τ 〈ĉ†kθ (τ )ck+qθ ′(τ )

×ĉ
†
k′γ (0)ck′−qγ ′(0)〉. (15)

Previously, we investigated charge instabilities in the
same three-band model with nonlocal interactions using a
generalized random phase approximation (gRPA) [34,40].
While methods like QMC or cluster DMFT are at first glance
more desirable as they are designed to handle strong local
correlations, they are less accurate in treating nonlocal inter-
actions, and are also limited in momentum-space resolution.
Although it neglects strong correlation physics, the gRPA has
the advantage that it treats local and nonlocal interactions
on the same footing, and is unbiased with respect to wave
vector and to the unit cell-resolved current pattern. Within
gRPA, the two-particle vertex function includes both exchange
and direct interaction diagrams and hence also generates
combinations of both (see Fig. 3), while Green functions
remain unrenormalized.

Following Ref. [34], we project the interactions onto a
set of 19 basis functions gi

αβ(k) in orbital and momentum
space, leading to a 19 × 19 matrix equation for the effective

=(a)

(b)

(c)

=

=

+

+

+

V (q)
V (k − k )

Γ

ΓΓ Vρ Vρ

Vρ

VX VD

FIG. 3. Diagrammatic structure of gRPA. (a) Interacting suscep-
tibility, (b) vertex function, (c) effective interaction. Reprinted with
permission from [34]. ©American Physical Society.

interaction vertex �̃ij (q), where q ≡ (q,ω), and i,j label the
basis functions. The basis functions and the interaction vertex
are the same as in Ref. [34]. Closing �̃ij (q) on the left and right
with current vertex functions A

i,ηm

αα′ (q) yields the susceptibility,

χmn
αα′ββ ′(q) = χ

0,mn
αα′ββ ′ (q) −

∑
ij

A
i,Lm
αα′ (q)�̃ij (q)Aj,Rn

ββ ′ (q), (16)

where

χ
0,
1
2
αα′ββ ′ (q) = 1

N

∑
kμν

h

1
αα′(k,q)Mα′ββ ′α

μνkq F
νμ

kq (ω)h
2
ββ ′(k − q,q),

A
i,L

αα′ = 1

N

∑
kμνθθ ′

h

αα′(k,q)Mα′θθ ′α

μνkq F
νμ

kq (ω)gi
θθ ′(k), (17)

A
i,R

αα′ = 1

N

∑
kμνθθ ′

h

αα′(k − q,q)Mα′θθ ′α

μνkq F
νμ

kq (ω)gi
θθ ′(k),

M
γ ′θθ ′γ
μνkq = Sγ ′ν(k)S∗

θν(k)Sθ ′μ(k + q)S∗
γμ(k + q), (18)

F
νμ

kq (ω) = f
(
Eν

k

) − f
(
E

μ

k+q

)
ω + Eν

k − E
μ

k+q + iδ
, (19)


 denotes bond indices, h

αα′ (k,q) are matrix elements of the

current operators which are explicitly defined in Table I, Sαν(k)
is the αth element of the νth eigenvector of H0(k), S∗

αν(k) is
its complex conjugate, Eν

k are the eigenvalues, f (E) is the
Fermi function, and i and δ in Eq. (19) are the complex
constant and a small broadening parameter, respectively. The
bare current susceptibility χ

0,mn
αα′ββ ′(q) and the functions A

i,L

αα′ (q)

and A
i,R

αα′ (q) differ from Ref. [34] as they contain current

operators.
We search for the existence of spontaneous currents by fol-

lowing the evolution of the current susceptibility upon cooling.
The instability is signalled by a divergence of the momentum-
resolved susceptibility at zero frequency χJ

mn(q,ω = 0).

IV. RESULTS

Figure 4 shows typical results for the current susceptibil-
ity. The inset shows that the matrix element χJ

11(q,ω = 0),
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FIG. 4. (Color online) Temperature evolution of χJ
11(Q,ω = 0)

for Q = (π,π ). (Inset) χJ
11(q,ω = 0) at T = 0.011. The parameter

values are Vpd = 2.2, Vpp = 1, and the hole density is p = 0.13.

corresponding to currents along the d − px bonds, becomes
strongly peaked at q = Q ≡ (π,π ) as the temperature is
lowered. This peak indeed diverges upon cooling to the critical
temperature near T = 0.01 (main panel), which signals an
instability towards a current-carrying state. The ordering wave
vector Q of the πLC phase is the same as in the DDW scenario
[36], and should be contrasted with the θII phase [6], for which
q = 0.

The example result in Fig. 4 was obtained for Vpd = 2.2
and Vpp = 1. However, the instability towards a πLC phase
persists when Vpp = 0, and hence is driven by the Coulomb
repulsion Vpd between copper and oxygen orbitals. In fact,
also the local interactions Ud and Up have no effect on the
πLC instability. As we have explicitly verified, the staggered
current instability originates from the exchange (ladder only)
diagrams.

As previously established [35], an ICO with a predominant
charge redistribution between Opx and Opy orbitals can be
generated by the Coulomb repulsion Vpp between Opx and
Opy orbitals. Based on the interorbital distances, we expect
Vpd > Vpp, which implies that loop currents emerge at higher
temperatures than ICO. Indeed, for our parameter values, the
critical temperature for the πLC instability is about twice as
large as the critical temperature for ICO.

To determine the bond-resolved πLC pattern, we
calculate the eigenvector of the leading eigenvalue of
the current susceptibility matrix. In the current opera-
tor basis Ĵ1(q), . . . ,Ĵ8(q), this normalized eigenvector is
[0.48,−0.48,−0.15, 0.48,−0.48,−0.15,−0.15,−0.15]; this
eigenvector reveals the direction and the relative magnitudes
of the currents on the eight inequivalent bonds: All bonds are
involved in the πLC instability, and for the selected parameter
set the currents along the p − d bonds are about three times
stronger than those along the p − p bonds. The relative
strength of the p − d and p − p currents varies with the ratio
tpp/tpd . The wave vector Q of the instability further implies

that the pattern alternates between adjacent unit cells. We thus
obtain the cartoon shown in Fig. 1, in which two distinct (green
and black) and interpenetrating loop currents are evident. This
pattern is similar to the previously proposed current-carrying
phases of either the DDW [36] or the staggered flux-phase type
[41–43], but differs in having two circulating current loops one
of which involves oxygen orbitals only.

The instability towards spontaneous πLCs will naturally
reconstruct the Fermi surface. To explore this we implement
the πLCs on the mean-field level. The starting point for this
calculation is the general identity n̂a n̂b = (ĴabĴ

∗
ab/t2

ab + n̂a +
n̂b)/2 that is true for any pair of orbitals a and b [44]. Hence, the
nonlocal density-density interactions 1

2

∑
iα,jβ Viα,jβ n̂iαn̂jβ

can be decoupled by introducing the current amplitudes
ziα,jβ = 〈Ĵiα,jβ〉 = ±zαβ . The mean-field version of the in-
terorbital Coulomb interactions thus reads

Ĥ ′
MF = ε̃p(n̂x + n̂y) + ε̃d n̂d −

∑
〈iα,jβ〉

Viα,jβ

2t2
iα,jβ

Ĵiα,jβziα,jβ,

(20)
where ε̃p = Vpd + 2Vpp and ε̃d = 2Vpd renormalize the or-
bital energies. The intraorbital interactions lead to additional
Hartree shifts of the orbital energies; these are assumed to be
already included in εd and εp. We obtain the mean-field Hamil-

tonian ĤMF = Ĥ0 + Ĥ ′
MF, with ĤMF = ∑

k �
†
kHMF(k)�k,

�k = (�k,�k+Q)T , and

HMF(k) =
[

H0(k) H1(k,Q)
H†

1(k,Q) H0(k + Q)

]
, (21)

H1(k,Q) =
⎡
⎣ 0 iRpds

′
x iRpds

′
y

Rpdc
′
x 0 +Rppc′

xs
′
y

Rpdc
′
y −Rpps ′

xc
′
y 0

⎤
⎦, (22)

where Rpd = zpdVpd/tpd , Rpp = 2zppVpp/tpp, s ′
x = sin

[(kx + Qx)/2], c′
x = cos[(kx + Qx)/2], and s ′

y,c
′
y are defined

accordingly, and the orbital energies in H0(k) are shifted by ε̃d

and ε̃p.
We show the reconstructed (zpd = 0.04, zpp = zpd/3) and

normal (zpd = zpp = 0) Fermi surfaces and densities of states
in Fig. 5. For very small zpd and zpp, hole pockets, as well
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0.5
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k y/π

-0.1 0 0.1
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y 

of
 s

ta
te

s

FIG. 5. (Color online) (Left) Normal (red) and reconstructed
(blue) Fermi surfaces. The loop current strengths are set to zpd = 0.04
and zpp = zpd/3. The hole density here is p = 0.10. (Right) Density
of states near the Fermi energy.
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as small electron pockets near (π,0) and symmetry-related
points, are formed. The shapes of the pockets depend on the
strength of the loop currents, the hole filling, and the curvature
of the unfolded Fermi surface. With increasing zpd and zpp,
the electron pockets rapidly disappear, and only the hole
pockets persist (Fig. 5). If one takes tpd from band structure
calculations, zpd = 0.04 corresponds to a p − d current of
16 μA; empirical bandwidths are 3 times smaller [45], giving
a current of 5 μA and a plaquette magnetic moment in the
range of 0.05μB to 0.09μB (see Appendix B).

We propose that the pseudogap appearing at T ∗ arises from
the πLC shown in Fig. 1. Physical properties of staggered
currents have been discussed previously [36,41,46,47], and
we focus here on aspects related to the recent discoveries of
charge order and time-reversal symmetry breaking. The main
distinguishing feature of the pseudogap is the depletion of
spectral weight along regions of the Fermi surface near (±π,0)
and (0, ± π ).

This leads to a pseudogap in the density of states, as shown
in Fig. 5 for the πLC phase. In our calculations zpd is about
one-third of the peak-to-peak pseudogap; experimental pseu-
dogaps of ∼ 100 meV [48] therefore suggest zpd ∼ 0.033 eV,
corresponding to a p − d current of ∼ 7 μA, consistent with
the estimate above.

V. DISCUSSION

Within the phase with staggered loop currents subsequent
phase transitions are likely to occur. Notably, we showed
previously that persistent discrepancies between theory and
experiment regarding the ordering wave vector q∗ of the
charge ordered phase are resolved, if the charge order emerges
from a preexisting pseudogap phase, rather than causing it. In
Ref. [35], a spin-density wave (SDW) with ordering wave
vector Q = (π,π ) was invoked ad hoc as a proxy for the
pseudogap in underdoped cuprates. While the presence of a
static SDW is not supported by experiment, we view the πLC
phase instead as a viable alternative phase out of which a
charge-density wave will form with a q∗ that connects adjacent
hole pockets. In the coexistence with charge order, the Fermi
surface of the πLC phase will further reconstruct. The Fermi
surface in the coexistence phase should then serve as the basis
to analyze the quantum oscillation experiments which reported
evidence for the existence of hole pockets [49,50].

The πLC phase shares neutron-scattering signatures with
the DDW state, specifically an elastic magnetic peak centered
at Q = (π,π ) and the opening of a spin excitation gap. Soon
after the original proposal of the DDW state it was argued
[51] that the neutron-scattering data obtained by Mook et al.
in underdoped YBCO [52] are consistent with the expected
features of a DDW state. Other subsequent neutron scattering
measurements on oxygen ordered ortho-II YBCO instead
[53] reported no evidence for the predicted characteristics
of an ordered DDW state. The conflicting results of these
experiments have remained unresolved.

An obvious signature of the πLC phase is that it breaks
time-reversal symmetry. It does not, however, generate a
polar Kerr effect because the pattern in Fig. 1 preserves
mirror symmetries. Given this result, an explanation for the
observed nonzero Kerr angle at TKerr requires the onset of a

further transition that eliminates these symmetries [14]. This
could naturally occur, for example, with the appearance of
incommensurate charge order at Tco. The experimental doping
dependencies of TKerr [12] and Tco [54,55] are, however,
different; a possible connection between the two is therefore
not obvious.

It is nevertheless possible that the different symmetries
associated with the charge ordering transition are broken
at distinct temperatures [24]. Charge order involves both a
continuous broken symmetry associated with the spatial lock-
in of the charge modulation, and a discrete broken symmetry
associated with the orientation of q∗ [56]. In this scenario,
TKerr may signal the onset of a charge-nematic phase, in which
only the discrete rotational symmetry is broken, while Tco may
mark the pinning of the charge modulation by disorder [56].

We are led to trace the origin of the intriguingly complex
physics of underdoped cuprates to the distinct phenomena
which emerge from the Coulomb interactions in the CuO2

planes: The local Coulomb repulsion on the Cu d orbital is
the source of antiferromagnetism in the undoped compounds
and of spin-fluctuation mediated d-wave superconductivity
upon doping. From the results of this work we conclude
that the nonlocal interaction Vpd can cause an orbital current
instability, while the nonlocal interaction Vpp is responsible
for the charge redistribution between Opx and Opy orbitals
and incommensurate charge order. Vpp and Vpd weaken the
spin-fluctuation mediated pairing interaction, which suggests
a possible reason why Tc < Tco below optimal doping. The
physics of underdoped cuprates therefore appears to reflect
the mutual competition and/or coexistence of these ordering
tendencies.

VI. CONCLUDING REMARKS

Within gRPA, we find no trace of a q = 0 current instability
that has been proposed to exist in the three-band model.
Recently, Weber et al. [9] concluded that the charge-transfer
energy, εd − εp, is one of the key parameters for this instability.
However, over an exhaustive range of this parameter, our cal-
culations did not trace any instability or a sizable enhancement
of the q = 0 current susceptibility. Intra-unit cell magnetism
has been inferred from spin-flip neutron scattering experiments
[3,5]. At this stage, our calculations offer no explanation for
this observation.

The close connection between axial charge order with a
d-wave form factor [31] and oxygen orbitals makes the three-
band model a necessary starting point for the microscopic
theory. In this context, the focus has so far been on spin
fluctuations, and hence on the local Coulomb interactions
Ud and Up. Our findings, however, point to the important
role of nonlocal interactions. The development of accurate
numerical tools capable of handling multiorbital models with
intermediate to strong and nonlocal interactions is, therefore,
on demand.

We finally note that, for the typical parameter values used
in this work, an SDW phase will, within gRPA, in fact set in at
a higher temperature than the πLC phase. This SDW is driven
by the local Coulomb interaction Ud on the Cu sites, and it
is known that correlation effects beyond the approximations
discussed here suppress this SDW. Indeed, the feedback of
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spin fluctuations renormalizes the electronic structure in a
way that reduces the tendency towards antiferromagnetism.
We have neglected this aspect here, since we are primarily
interested in the charge degree of freedom in the underdoped
part of the cuprate phase diagram where pseudogap and
charge order occurs. Furthermore, we confirmed that the local
interactions Ud and Up, the key parameters which control
antiferromagnetism and spin fluctuations, do not have any
effect on the emergence of the πLC phase.

It remains yet to be explored how self-energy corrections
in our present approach will influence the instability towards
spontaneous loop currents. This is on the agenda for further
work on loop currents in the three-orbital model for cuprates.
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APPENDIX A: CURRENT OPERATORS

The current operator is conventionally defined as

Ĵij = −itij (ĉ†i ĉj − ĉ
†
j ĉi). (A1)

At this point, however, it is important to take into account
that we are working with a Hamiltonian which is gauge
transformed according to Eqs. (6)–(9). In the transformed
operator basis, the current operators in real space take the
following form:

Jid,jx = tid,jx(ĉ†id ĉjx + ĉ
†
jx ĉid ), (A2)

Jix,jd = −tix,jd (ĉ†id ĉjx + ĉ
†
jx ĉid ), (A3)

Jid,jy = tid,jy(ĉ†id ĉjy + ĉ
†
jy ĉid ), (A4)

Jiy,jd = −tiy,jd (ĉ†id ĉjy + ĉ
†
jy ĉid ), (A5)

Jix,jy = −itix,jy(ĉ†ix ĉjy − ĉ
†
jy ĉix), (A6)

Jiy,jx = −itiy,jx(ĉ†iy ĉjx − ĉ
†
jx ĉiy). (A7)

APPENDIX B: ESTIMATING THE RESULTING
MAGNETIC MOMENT

Here, we perform a simple estimate of the magnetic moment
associated with the πLC loop currents.

We start by expressing the currents in absolute units. The
unit of the current operators is e[tij ]/[�] = C(eV )/(eV · s) =
C/s. For zpd = 0.04tpd , the current along p − d

bonds is Ipd = zpd × (e/�) = 0.04tpd × (2.4 × 10−4)A =
9.6tpd μA, where tpd is measured in eV. Band structure
calculations suggest tpd ≈ 1.6 eV, yielding Ipd = 16 μA;
experimental bandwidths, however, are typically a factor
of 3 smaller than predicted by band structure calculations
suggesting Ipd ∼ 5 μA. This is comparable to other estimates
of loop current amplitudes: Within a cluster calculation of
multiorbital t − J model, the upper bound of θII -like loop
currents was previously estimated to be between 5 μA and
15 μA for different parameter sets [10]; similarly, in the single
band DDW studies, the staggered loop currents were estimated
to be ∼ 7 μA by assuming a DDW gap value of ∼0.03 eV [36].

Next, we calculate the magnetic moments of loop currents
using the formula M = Iη where I is the current, and η is the
area enclosed by the loop. This is indeed a crude calculation,
however, we believe this should yield a qualitatively correct
number. The total magnetic moment in a given plaquette has
two contributions: Ibηb and Igηg due to two independent
current loops (shown in black and green in Fig. 1). We set
Ib = 5 μA, and since it circulates around the whole plaquette,
ηb = a2. As given by the eigenvectors of χJ (q), Ig ≈ Ipd/3,
and it circulates around an area of ηg = a2/2. Thus, the
magnetic moment is calculated as

M = Ibηb + Igηg (B1)

= Ipd × a2 + Ipd/3 × a2/2 (B2)

= 7Ipda
2/6 (B3)

= 7(5μA)(3.85 × 10−10m)2/6 (B4)

≈ 0.09μB . (B5)

However, since Ipd is shared by the neighboring plaquettes, the
effective moment for individual plaquettes might be reduced
to ∼ 0.05μB .
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