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We calculate the momentum dependent spectral function of the Bose-Hubbard model on a simple cubic lattice
in three dimensions within the bosonic dynamical mean-field theory (B-DMFT). The continuous-time quantum
Monte Carlo method is used to solve the self-consistent B-DMFT equations together with the maximum entropy
method for the analytic continuation to real frequencies. Results for weak, intermediate, and strong interactions are
presented. In the limit of weak and strong interactions very good agreement with results obtained by perturbation
theory is found. By contrast, at intermediate interactions the results differ significantly, indicating that in this
regime perturbative methods fail to describe the dynamics of interacting bosons.

DOI: 10.1103/PhysRevB.92.045102 PACS number(s): 67.85.Hj, 03.75.Kk, 05.30.Jp, 71.10.Fd

I. INTRODUCTION

During the past few years impressive progress was made
in the experimental investigation of ultracold atomic gases
in optical lattices [1,2]. It is now possible to measure not
only density profiles and static correlation functions but
even dynamical quantities such as spectral functions of the
trapped particles, using Bragg spectroscopy [3]. Thereby
momentum resolved bosonic spectral functions were obtained
in the case of condensed bosons [4–6] and across the phase
transition to a Mott insulator [7,8]. By contrast, only rather few
calculations of bosonic spectral functions have been performed
so far for the Bose-Hubbard model. Early studies were based
on the strong-coupling approximation to the Bose-Hubbard
model [9]. Later the weak-coupling limit at zero temperature
was thoroughly analyzed with the functional renormalization
group [10–13]. Other approaches include the variational clus-
ter approximation [14], which was used to investigate systems
in one [15,16] and two [14,17] dimensions, the quantum rotor
approximation [18], which was recently applied to three-
dimensional systems [19], and the linked-cluster expansion
(LCE) [20]. In particular the LCE, which was employed to
approximately solve the equations of the bosonic dynamical
mean-field theory (B-DMFT) [21], allows one to study the
Bose-Hubbard model for strong interactions and near the
phase boundary between the superfluid and the Mott-insulating
phase. The B-DMFT treats local correlations in time exactly
and includes spatial correlations on the mean-field level. It is
applicable for all values of the Hubbard interaction, density
and temperature. The B-DMFT was derived subsequent to the
DMFT for lattice fermions [22,23] and was applied to various
bosonic problems [24,25] as well as to mixtures [26,27] of
bosons and fermions. It has been extended and applied also
to inhomogeneous situations [28] and to bosonic systems in
nonequilibrium [29].

In this paper we solve the Bose-Hubbard model within
the B-DMFT framework on a simple cubic lattice in three
dimensions using a continuous-time quantum Monte Carlo
(CT-QMC) solver [30]. This approach is known to give excel-
lent results for the phase diagram and static properties [24,31]

of interacting bosons. We compute the momentum resolved
and the momentum integrated spectral functions and the
dispersion relation of interacting bosons in both the superfluid
and the Mott insulating phase. The following questions will
be addressed and answered. (i) How well can strong-coupling
approaches, which are known to capture the phase diagram
of correlated bosons very well, describe dynamical properties
such as spectral functions? (ii) How does the presence of the
superfluid influence the spectral properties of normal bosons?
(iii) How is the dispersion relation modified by the interaction?

The paper is organized as follows. In Sec. II we introduce
the Bose-Hubbard model and recapitulate the main steps of the
B-DMFT framework. We also introduce an improved method
for calculating the self-energy which makes use of two-particle
Green functions and discuss the method for the numerical
analytic continuation. In Sec. III we present the results for the
momentum resolved spectral function in the limit of weak,
intermediate, and strong interactions, respectively. Finally,
Sec. IV concludes the paper with a summary.

II. MODEL AND INVESTIGATION METHOD

We consider spinless bosons on a lattice described by the
Bose-Hubbard Hamiltonian

Ĥ = −
∑
ij

tij b̂
†
i b̂j − μ

∑
i

b̂
†
i b̂i + U

2

∑
i

b̂
†
i b̂

†
i b̂i b̂i , (1)

where b̂
†
i (b̂i) is a bosonic creation (annihilation) operator on

a lattice site i, μ is the chemical potential, U is the local
interaction strength, and tij is the hopping amplitude. We
assume nearest neighbor (NN) hopping, i.e., tij = t > 0 if
sites i and j are NN and 0 otherwise. Our calculations were
performed for a simple cubic lattice with coordination number
z = 6 and t = 0.5 in arbitrary units.

A. B-DMFT action

In the B-DMFT the lattice problem is replaced by a single-
site (“impurity”) problem with self-consistency conditions. A
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detailed derivation can be found in Ref. [21]. The impurity
action reads

Sloc =
∫ β

0
dτ b∗(τ )(∂τ − μ)b(τ )

+ U

2

∫ β

0
dτ b∗(τ )b∗(τ )b(τ )b(τ ) − κ

∫ β

0
dτ �∗b(τ )

+ 1

2

∫ β

0
dτ

∫ β

0
dτ ′b∗(τ )´(τ − τ ′)b(τ ′). (2)

Here β = 1/T is the inverse of the temperature T ,
κ = ∑

i tij = zt is a geometrical parameter depending on a
lattice type, and τ is the imaginary (Matsubara) time. We
use the Nambu vector notation for operators b̂ and complex
variables b, i.e.,

b̂ =
(

b̂

b̂†

)
, b =

(
b

b∗

)
. (3)

Then the connected Green functions are defined by

G(τ ) = −〈Tτ b̂(τ )b̂†(0)〉c
= −〈Tτ b̂(τ )b̂†(0)〉 + 〈b̂(τ )〉〈b̂†(0)〉, (4)

where 〈· · · 〉 denotes the equilibrium average in the grand
canonical ensemble, and G(β + τ ) = G(τ ) [32]. The last two
terms in Eq. (2) represent the coupling of the site to two
types of external mean fields: (i) the Bose-Einstein condensate
(BEC), which is represented by a static mean field �, and
(ii) the dynamical mean field of normal bosons represented by
the matrix ´(τ − τ ′), the elements of which are hybridization
functions.

The hybridization functions are related to the Green
functions G(0) for a lattice with a cavity at site 0 (i.e., where
site 0 is removed) by [21]

´(τ − τ ′) =
∑
i,j �=0

ti0tj0G
(0)
ij (τ − τ ′). (5)

Similarly, the condensate field � for a lattice with a cavity at
site 0 reads

� = 〈b̂〉(0). (6)

The connection between the condensate field on a full lattice,
� = 〈b̂〉, and the condensate field on a lattice with a cavity,
�, is expressed by

� =
[

1 + 1

κ

∫ β

0
dτ ´(τ )

]
�. (7)

Once the mean fields � and ´(τ ) are known it is possible
to solve the impurity problem and calculate the local Green
functions and local condensate fields. This can be achieved by
exact diagonalization [25,33], the LCE approximation [20], or
CT-QMC [24,31]. In this paper we use the CT-QMC method to
solve the impurity problem. Our code is based on the work of
Anders et al. [24]. We employ an improved calculation of the
self-energy via two-particle Green functions, to be discussed
in Sec. II C and in the Appendix. Tests of our code show
numerical agreement with the results of Ref. [24].

B. Self-consistency

Once the single-particle Green functions have been ob-
tained by solving the single-site problem, the local self-energy
can be calculated from the Dyson equation

˚(iωn) =
(

iωn + μ 0
0 −iωn + μ

)
− ´(iωn) − [G(iωn)]−1,

(8)

where ωn are even Matsubara frequencies for bosons
(ωn = 2πn/β). In the B-DMFT the self-energies are local,
i.e., momentum independent. The momentum resolved Green
functions are then given by

G(k,iωn)

=
[(

iωn + μ − εk 0
0 −iωn + μ − εk

)
− ˚(iωn)

]−1

, (9)

where εk is the dispersion relation for noninteracting bosons.
To close the self-consistency equations we calculate the local
Green functions from the k-integrated Dyson equation

G(iωn) =
∑

k

G(k,iωn) =
∫

dε D(ε)

×
[(

iωn + μ − ε 0
0 −iωn + μ − ε

)
− ˚(iωn)

]−1

,

(10)

where D(ε) is the noninteracting density of states (DOS).

C. Efficient calculation of self-energies

The self-energies can be calculated by solving the single-
impurity model (2) with the CT-QMC method and then using
Eq. (8). However, this calculation is subject to stochastic
uncertainties at high positive and negative frequencies for
the following reason. In the first step the impurity problem
is solved with the CT-QMC from which one obtains the
Green function G(iωn), which has the form G(iωn) = 1

iωn
+

O( 1
(iωn)2 ) for large |ωn|. The numerical error of this result

is almost independent of ωn. Therefore, relative error grows
linearly with ωn. In the second step the Green function is
inverted and substituted into Eq. (8). The linear term cancels
out, and only terms of the order of (iωn)0, (iωn)−1, and smaller
remain. This results in a progressively larger relative error, i.e.,
the error increases quadratically with frequency ωn (see Fig. 1).

To improve the accuracy of the calculation of the self-
energies we adapt the method proposed by Snoek and
Hofstetter [34], and use the two-particle Green functions.
The strategy goes as follows. Finding equations for the
self-energies requires solving the equations of motion for the
Green functions in the bosonic single-impurity model (2). This
is similar to the method proposed for fermions [35]. The final
expression for the self-energy reads

˚(iωn) =
[
UF(iωn) + (κ + μ)

(
φφ∗ φφ

φ∗φ∗ φ∗φ

)
δn0

]
G−1,

(11)
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FIG. 1. (Color online) Comparison of the error of the real part
of the self-energy calculated with the conventional (red) and the
improved (blue) method. Parameters are U = 20, μ = 0.23U , and
T = 1. The improved method significantly reduces the error by
making it linearly, rather than quadratically, dependent on frequency.

where F(iωn) is the Fourier transform of a matrix of two-
particle, disconnected Green functions F(τ ) given by

F(τ ) = −
〈
Tτ

(
[b̂†b̂b̂](τ )b̂†(0) [b̂†b̂b̂](τ )b̂(0)

[b̂†b̂†b̂](τ )b̂†(0) [b̂†b̂†b̂](τ )b̂(0)

)〉
. (12)

Details of this derivation are presented in the Appendix. In
Fig. 1 we see that the improved method significantly reduces
the error, i.e., it now grows only linearly in frequency.

D. Analytic continuation

The main goal of this paper is to calculate the momentum re-
solved spectral function A(k,ω) and the momentum integrated
spectral function A(ω), respectively, of the Bose-Hubbard

0

 0.2

 0.4

 0.6

 0.8

1

0 0.01 0.02 0.03 0.04

μ/
U

t/U

Fisher MF theory
CT-QMC; T=1

LCE; T=1

FIG. 2. (Color online) Phase diagram of the Bose-Hubbard
model on the simple cubic lattice obtained with the static Fisher
mean-field (MF) theory [41] and the B-DMFT, which is solved by CT-
QMC and LCE. Only the first lobe corresponding to 〈n〉 ≈ 1 is plotted.
Circles, diamonds, and triangles represent sets of parameters at which
calculations for strong and intermediate interactions, respectively,
were performed. Circles (orange): strong-coupling regime; triangles
(violet) and diamonds (blue): intermediate interaction regime.
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FIG. 3. (Color online) (a) Momentum resolved spectral functions
at T = 0.5, U = 0.25, and μ = −2.875 along the symmetry lines in
the first Brillouin zone of a simple cubic lattice. (b) Results obtained
by B-DMFT (red) and by the Bogoliubov approximation (black) for
the dispersion relations along the �-R line. The Brillouin zone of a
simple cubic lattice with points of special symmetry is shown in the
inset of panel (b).

model (1). From the CT-QMC impurity solver we obtain the
Green functions and the self-energies in imaginary time or in
Matsubara frequencies. Since these functions are analytic in
the upper complex plane we can analytically continue them
to the real axis. This involves an inversion of the Hilbert
transform:

G(iωn) =
∫ ∞

−∞
dω

A(ω)

iωn − ω
(13)

or

G(τ ) =
∫ ∞

−∞
dω

A(ω)e−τω

1 − e−βω
. (14)

It is well known that this is a numerically ill-posed problem, in
particular for noisy data obtained with CT-QMC. To make
the analytic continuation tractable we use the maximum
entropy (MaxEnt) method [36–38]. We found that the MaxEnt
procedure sometimes fails to converge [39], especially in
calculations of sharply peaked momentum resolved spectral
functions A(k,ω). In these cases we use the historic rather
than the Bryan version of MaxEnt [40].

III. RESULTS

In the following we present results for spectral functions
of the Bose-Hubbard model on a simple cubic lattice for
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FIG. 4. (Color online) Momentum resolved spectral function ob-
tained from analytic continuation with MaxEnt of the CT-QMC data.
Top panel: Mott insulating phase at μ = 0.4U and U = 50; bottom
panel: superfluid phase at μ = 0.9U and U = 50. Spectral functions
are plotted along the symmetry lines in the first Brillouin zone for a
simple cubic lattice.

weak, intermediate, and strong interaction strengths. For
illustration we indicate the sets of parameters at which the
calculations for strong and intermediate coupling, respectively,
were performed in the phase diagram (Fig. 2). The diagram was
calculated within the static Fisher mean-field theory [41] and
the B-DMFT [21,31], which was solved by CT-QMC [24,30]
and LCE [20].

A. Weak-coupling limit

Our results in the weak interaction limit were obtained for
T = 0.5, U = 0.25, and μ = −2.875. For these parameters
the average occupation per site is 〈n〉 = 0.4968 ± 0.0005
and the average number of condensed bosons per site is
〈b〉2 = 0.4542 ± 0.0004. Since U 〈n〉 ≈ 0.1242 is small in
comparison to the bandwidth 2zt = 6, the weak-coupling
Bogoliubov approximation [42–44] can be expected to be
applicable. The momentum resolved spectral function A(k,ω)
obtained within the B-DMFT is presented in Fig. 3(a). There
are two bands: with positive energies for particle addition
and with negative energies for particle removal. Most of the
spectral weight is concentrated in the upper band. The widths
of the peaks for specific k points represent the mean lifetime
of the quasiparticles. The weight of the lower band is orders of
magnitude smaller, and therefore its exact shape and position
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FIG. 5. (Color online) Dispersion relation as calculated within
the B-DMFT and the static Fisher mean-field (MF) theory [41],
respectively. Top panel: Mott insulating phase at μ = 0.4U and
U = 50; bottom panel: superfluid phase at μ = 0.9U and U = 50.
Only the three dominant bands are plotted.

is not determined reliably by MaxEnt. The dispersion relation
ε(k) is obtained from the local maxima of |A(k,ω)|

ε(k) = arg max
ω

|A(k,ω)|, (15)

and is shown in Fig. 3(b). The dispersion relation obtained
from the Bogoliubov approximation is found to be in very
good agreement with the B-DMFT result, except near the �

point, where the B-DMFT dispersion does not go to zero. This
is attributed to the fact that the Hugenholtz-Pines theorem [45]
is not fulfilled in the B-DMFT as already reported by Anders
et al. [24].

B. Strong-coupling limit

Calculations in the limit of strong interactions were per-
formed for T = 0.5, and U = 50. In Fig. 4 we present the
spectral function A(k,ω) for the Mott insulating phase at
μ = 0.4U and the superfluid phase at μ = 0.9U (see Fig. 2). A
striking difference between the spectra in the Mott insulating
and superfluid phases, respectively, is the number of bands and
their width at specific k points.

In the Mott insulating phase there are two bands, separated
by a gap whose width is approximately given by U − 3zt . This
value becomes exact in the atomic limit (t → 0). The factor
3zt corresponds to the sum of half-widths of the upper and
lower bands. The shape of this dispersion relation is almost the
same as that for a noninteracting band. In the Mott insulating
phase with average occupation 〈n〉 ≈ 1 one particle is frozen
on every lattice site such that an extra particle or hole can
move almost freely through the system. Since the energy for
creating an excitation is large, the density of excitations is
very low, and therefore one can neglect their interaction. As
a result quasiparticle and quasihole excitations behave almost
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FIG. 6. (Color online) Spectral function A(ω) obtained with LCE (dotted line) and CT-QMC (full lines) at T = 1. Padé approximants were
used for the data obtained with the LCE. Left panel: Calculations at μ = 0.4U for different values of U ; right panel: calculations at U = 15.5
for different values of μ. For U = 12.5, μ = 0.4U and U = 15.5, μ = 0.2U the system is in the superfluid phase; for reference see Fig. 2.

like noninteracting particles, i.e., have almost noninteracting
dispersion relations. The width of the peaks is therefore small,
implying that the mean lifetime is large. In fact, we checked
that the width corresponds to the uncertainty of the analytic
continuation rather than to the mean lifetime.

The bandwidth of particle excitations is wider than that of
hole excitations by approximately 2zt . In the strong interaction
limit the bandwidths of the hole and particle excitations in the
Mott insulating phase with integer filling 〈n〉 are 2zt〈n〉 and
2zt(〈n〉 + 1), respectively. This is a quantum effect related
to particle indistinguishability, which is simple to derive by
starting with a state in which each site is occupied by n particles
and treating the hopping term in the Hamiltonian (1) as a small
perturbation.

In the superfluid phase this is no longer valid. As the
chemical potential increases, the energy for creating particle
excitations decreases. Therefore, the interaction between
the quasiparticles needs to be taken into account. Indeed
the spectrum of the superfluid is significantly different from
that in the Mott insulating phase. In particular, we find four
rather than two bands. Only the positions of the three lowest
bands are determined reliably by MaxEnt. The four bands
arise from two processes: (i) the splitting of a single band
due to the interaction, similar to the Mott insulating phase;
(ii) the creation of Bogoliubov quasiparticles due to the
mixing of particle and hole excitations. We checked that, in
contrast to the Mott insulating phase, the width of the peaks
for small |ω| is robust with respect to MaxEnt parameters
as well as resampling and therefore represents the mean

lifetime of quasiparticles and not the accuracy of analytic
continuation.

In Fig. 5 we show the dispersion relations ε(k) obtained
within the B-DMFT scheme according to Eq. (15). We
compare them with the dispersion relations obtained from
the self-energies calculated within the static Fisher mean-field
approximation [41]. The results of both methods are in good
agreement in the Mott insulating phase (Fig. 5, top panel).

In the superfluid phase (Fig. 5, bottom panel) this compar-
ison is presented for the three dominant bands. The results
are also in good agreement with the static Fisher mean-field
results. In both approaches the high-energy (negative) band is
similar to the band of a noninteracting hole. The remaining two
dispersions are linear for small values of k = 0 in the Fisher
mean-field theory and correspond to massless Bogoliubov
quasiparticles. In the B-DMFT we also see the linear behavior
except for the vicinity of the � point. The dispersion relation
around ω = 0 does not go to zero, since the Hugenholtz-Pines
theorem is not obeyed in the B-DMFT (see also Sec. III A). The
slight deviation of the CT-QMC result from that of the static
Fisher mean-field theory [41] in the middle of the band around
the R point is attributed to the finite resolution of MaxEnt.

C. Intermediate interaction and comparison
with the strong-coupling solver

The most interesting regime is that of intermediate inter-
actions where both the Bogoliubov approximation and the
static Fisher mean-field theory [41] are no longer valid. In this
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FIG. 7. (Color online) Momentum resolved spectral function
A(k,ω) in the first Brillouin zone of a simple cubic lattice at μ = 0.4U

and T = 1. Interaction strengths are the same as in Fig. 6, left panel.

regime we computed the spectral functions within B-DMFT.
We compare our CT-QMC results with those obtained within
the LCE [20].

We used the same set of parameters as in Ref. [20], i.e., each
set corresponds to a point in a {μ/U,t/U} parameter space
for T = 1. The selected points allow us to study the evolution
of the spectral functions through the phase transition. Here
we consider the phase transitions driven by the change of the
interaction and by the change of the chemical potential (Fig. 2,
left and right panel, respectively).

In Fig. 6 we present the B-DMFT results and compare
results obtained with two different impurity solvers: CT-QMC
and LCE. There is good agreement regarding the widths and
the positions of the bands in the superfluid phase. However, in
the Mott insulating phase the LCE spectral functions develop a
two-peak structure for both positive and negative energies. This
is not supported by the CT-QMC results. Additional test, not
discussed here, showed that the momentum dependent spectral
functions obtained with LCE method look similar to the ones
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FIG. 8. (Color online) Dispersion relation of correlated bosons
for intermediate interaction strengths obtained within the B-DMFT.
The momentum resolved spectral function A(k,ω) presented in Fig. 7
was employed together with Eq. (15). The results are compared to
those of the static Fisher mean-field (MF) theory [41] except for the
value U = 14, where the B-DMFT finds the system to be in the Mott
insulating phase, while it is in the superfluid phase according to the
Fisher mean-field theory.

presented in Fig. 7. Therefore, the two-peak structure is not
an effect of the approximation used in the LCE approach. It is
rather a numerical effect related to the procedure of analytic
continuation for k-integrated Green functions.

We now focus on the momentum dependence of the spectral
functions and the dispersion relations for the Mott insulating
and superfluid phases (Figs. 7 and 8). The most striking feature
is the difference of the width of the peaks for specific k points
in these two phases. Deep in the Mott insulating phase the
width represents the uncertainty of the MaxEnt fit. This is not
the case in the superfluid phase in which the width represents
the mean lifetime of quasiparticles. Effectively, deep in the
insulating phase we can describe the particles as almost free,
whereas approaching the phase transition the quasiparticles
obtain a mean lifetime.

In the superfluid phase we observe high-energy excitations,
which are shown in Fig. 7(c), resembling a structure found in
the strong-coupling regime. Within the accuracy of our method
a more precise calculation of their position is not possible.
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FIG. 9. (Color online) (a) Momentum resolved spectral function
at T = 0.5, U = 5, and μ = −2.625 along the symmetry lines in the
first Brillouin zone of a simple cubic lattice. (b) Results obtained by
the B-DMFT (red) and by the Bogoliubov approximation (black) for
the dispersion relations along the �-R line.

The dispersion relations shown in Fig. 8 are compared
with the strong-coupling dispersions obtained for U = 18
and U = 12.5. In the Mott insulating phase the gap obtained
by the static Fisher mean-field theory [41] is much smaller
than in the B-DMFT. Thereby the phase transition is shifted
to larger interactions; see Fig. 2. Similar behavior has been
observed in quantum Monte Carlo (QMC) simulations in one
dimension [46]. In the superfluid phase we observe that, in
contrast to the weak and strong-coupling limits, the dispersion
relation obtained at intermediate coupling within the B-DMFT
is not symmetric with respect to zero energy [47].

In Fig. 9 we present the results obtained in the dilute gas
regime. The parameters are T = 0.5, U = 5, and μ = −2.625.
This corresponds to 〈n〉 = 0.12713 ± 0.00001 and 〈b〉 =
0.30301 ± 0.00001. As in the previous cases (superfluid
phase) we observe that the peaks in the spectral function are
wide, which means that the mean lifetime of excitations is
finite. The negative energy band has a weight which is orders of
magnitude smaller, and therefore its exact shape and position
is again not determined reliably by our method of analytic
continuation. The results at the � point are not included, since
MaxEnt failed to converge for very small k.

Although the particle density is low and the majority of
the particles constitute the condensate, the interaction is not
weak. Therefore, one is not in the parameter range where the
Bogoliubov approximation is applicable. Indeed, as seen in
Fig. 9(b), the dispersion relation is not reproduced by this

approximation. A similar discrepancy was reported in the
experiment [4] and in one-dimensional QMC simulations [46],
where at high momenta the Bogoliubov approximation was
found to overestimate the measured excitation energy. A
further effect of the interaction is the appearance of an
additional band at high energies; see Fig. 9(a). This high energy
band appears to repel the one with low energies. As a result
the low energy band is narrower. This explains the discrepancy
between the B-DMFT and the Bogoliubov results, since the
high energy band is absent in the latter.

IV. SUMMARY

We presented a computational method which allows one to
calculate spectral functions for bosonic systems described with
the Bose-Hubbard Hamiltonian. This approach has the great
advantage of being applicable for arbitrary values of U/t , the
ratio of the interaction strength, and the hopping amplitude. It
reproduces well the results in the limiting cases of large and
small values of the interaction. Results obtained by this method
were shown for parameters where perturbative methods fail,
thus providing new insights into the properties of correlated
lattice bosons in previously inaccessible parameter ranges. The
results show that while in the insulating phase particle and hole
excitations tend to behave like free particles, in the superfluid
phase the system is described by Bogoliubov quasiparticles
with a finite mean lifetime. Finally, we discussed an alternative
method for calculating the local self-energy in the CT-QMC
solver which employs two-particle Green functions, and which
produces accurate data at large Matsubara frequencies.
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APPENDIX: CALCULATION OF BOSONIC SELF-ENERGY
FROM EQUATIONS OF MOTION

We consider the Hamiltonian representation [34] of the
impurity model (2)

Himp = −μb̂†b̂ + U

2
b̂†b̂†b̂b̂

+
∑

l

(b̂†Vl âl + εlâ
†
l âl) − κ�†b̂, (A1)

where â†l = (â†
l âl) and b̂† are vectors in Nambu notation.

Here âl (â†
l ) annihilates (creates) a particle from the bath state

l, b̂ (b̂†) annihilates (creates) a particle on the impurity, Vl

is the Nambu matrix of couplings between the impurity and
a bath state l, εl is the energy of the bath state l, and the
vector � represents the condensate field to which the impurity
is coupled. The bath state energies εl and couplings Vl are
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chosen such that

´(iωn) =
∑

l

Vl(iωnff3 − εl1)−1V†
l , (A2)

where ´(iωn) is the dynamical mean field from Eq. (2).
For this Hamiltonian we consider the disconnected Green

functions

Gd
00(τ ) = −〈Tτ b̂(τ )b̂†(0)〉, (A3)

Gd
l0(τ ) = −〈Tτ âl(τ )b̂†(0)〉. (A4)

Here the indices 0 and l refer to the impurity and bath states,
respectively. The relation between Gd

00(τ ) and the connected
impurity Green function G00(τ ) defined in (4) is given
by

Gd
00(τ ) = G00(τ ) − 〈b̂(τ )〉〈b̂†(0)〉. (A5)

The time evolution of the operators is governed by
the Hamiltonian Himp (for brevity we will drop the index
henceforth), and we can calculate the derivatives of the Green
functions with respect to imaginary time. For the local Green
function we have

∂τG
d
00(τ ) = −δ(τ )ff3 −

〈(
[Ĥ ,b̂](τ )

[Ĥ ,b̂†](τ )

)
(b̂†(0) b̂(0))

〉

= −δ(τ )ff3 + μff3G
d
00(τ ) − Uff3F(τ )

−ff3

∑
l

VlG
d
l0(τ ) − κff3��†, (A6)

where [· · · , · · · ] denotes the commutator, ff3 is the diagonal
Pauli matrix, �† = (〈b†〉 〈b〉) is a Nambu vector, and the
Nambu matrix F is defined as

F(τ ) = −
〈
Tτ

(
b̂†(τ )b̂(τ )b̂(τ )b̂†(0) b̂†(τ )b̂(τ )b̂(τ )b̂(0)

b̂†(τ )b̂†(τ )b̂(τ )b̂†(0) b̂†(τ )b̂†(τ )b̂(τ )b̂(0)

)〉
.

(A7)

A similar relation holds for Gd
l0:

∂τG
d
l0(τ ) = −

〈(
[Ĥ ,âl](τ )

[Ĥ ,â
†
l ](τ )

)
(b̂†(0) b̂(0))

〉

= −εlff3G
d
l0 − ff3V

†
lG

d
00. (A8)

To handle the imaginary time derivative we per-
form a Fourier transform to Matsubara frequencies and

obtain

iωnff3G
d
00(iωn) = 1 − μGd

00(iωn) +
∑

l

VlG
d
l0(iωn)

+ δn0κ��† + UF(iωn), (A9)

iωnff3G
d
l0(iωn) = εlG

d
l0(iωn) + V†

lG
d
00(iωn). (A10)

Using (A10) it is easy to find an expression for Gd
l0 in terms

of Gd
00:

Gd
l0(iωn) = (iωnff3 − εl1)−1V†

lG
d
00(iωn). (A11)

We concentrate now on the case n �= 0, i.e., nonzero
Matsubara frequencies. Inserting (A11) into (A9) one obtains

Gd
00(iωn) =

[
iωnff3 + μ1 −

∑
l

Vl(iωnff3 − εl1)−1V†
l

]−1

× (1 + UF(iωn)). (A12)

Using (A2) one can write

Gd
00(iωn) = (iωnff3 + μ1 − ´(iωn))−1(1 + UF(iωn)). (A13)

Combining (A13) with the Dyson equation (8) we arrive
at (11) for nonzero Matsubara frequencies (for n �= 0 one has
Gd

00 = G00 ≡ G).
By inserting (A11) into (A9) one finds in the case n = 0

Gd
00(0) =

(
μ1 +

∑
l

ε−1
l VlV

†
l

)−1

(1 + κ��† + UF(0)).

(A14)

Starting from (A2) for n = 0 and replacing the disconnected
Green function with the connected one leads to

G00(0) − ��† = (μ1 − ´(0))−1(1 + κ��† + UF(0)).

(A15)

In the last step the self-consistency condition (7), i.e., κ� =
(κ1 + ´(0))�, is inserted into (A15). After some regrouping
one obtains

G00(0) − ��†

= (μ1 − ´(0))−1[1 + (κ + μ)��† + UF(0)] − ��†.

(A16)

After the above transformations one finally finds

G00(0) = (μ1 + ´(0))−1[1 + (κ + μ)��† + UF(0)], (A17)

which, in combination with the Dyson equation (8), reduces
to (11) for n = 0.
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