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Microscopic origin of the linear temperature increase of the magnetic susceptibility of BaFe2As2
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Employing a combination of ab initio band-structure theory and dynamical mean-field theory we explain the
experimentally observed linear temperature increase of the magnetic susceptibility of the iron pnictide material
BaFe2As2. The microscopic origin of this anomalous behavior is traced to a sharp peak in the spectral function
located approximately 100 meV below the Fermi level. This peak is due to the weak dispersion of two-dimensional
bands associated with the layered crystal structure of pnictides.
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I. INTRODUCTION

Since the discovery of high-temperature superconductivity
in the iron pnictides1 the unusual electronic properties of
this class of materials has attracted considerable attention.2–13

The interest was stimulated by the fact that the new super-
conductors share several similarities with the well-studied,
but still not well-understood, high-Tc cuprates. First, both
classes of superconductors crystallize into a layered structure.
Second, in most cases the parent compounds of the pnic-
tides are not superconducting, and superconductivity emerges
only under doping or pressure and is associated with the
suppression of antiferromagnetic (AFM) order. However, in
contrast to the cuprates whose parent compounds are Mott
insulators, the parent compounds of the pnictides are multi-
band metals. The nature of the magnetic ground state of
the parent compounds is also different: In the cuprates it
corresponds to a Néel-type order of a Mott-Hubbard insulator,
while in the pnictides magnetism is associated with a nesting-
induced spin density wave2,3,14 (SDW).

The magnetic properties of pnictide materials show anoma-
lous behavior even in the paramagnetic state. An unusual linear
temperature increase of the uniform magnetic susceptibility
was reported in the parent compound BaFe2As2 (Ref. 4)
as well as in stoichiometric and fluorine-doped LaFeAsO
(Ref. 5). It is now well established that the linear increase
of the magnetic susceptibility with temperature is a general
property of all pnictide superconductors for temperatures
above the SDW transition. Nevertheless, no consensus has
been reached so far about the origin of this phenomenon.
To date several mechanisms were proposed to explain the
observed T- dependence in the pnictides. Wang et al.4 and
Zhang et al.6 suggested that the linear-T behavior is a conse-
quence of strong antiferromagnetic fluctuations present above
the SDW transition temperature. Korshunov et al.7 argued that
short-range antiferromagnetic fluctuations are the source of a
linear-T term in the susceptibility of a two-dimensional Fermi
liquid which allowed them to obtain good agreement with the
experimental data.

A very important issue concerning the spectral and mag-
netic properties of the pnictides is the role of Coulomb correla-
tions. It is now generally accepted that electronic correlations
in the pnictides are not as strong as in the cuprates and should

be classified as moderate.8,9 It was shown9,10 that the spectral
properties of the pnictides can be reproduced by first-principles
techniques only if local dynamical Coulomb correlations
are taken into account. This can be achieved by employing
the LDA + DMFT method.15 This computational scheme
combines electronic band-structure calculations in the local
density approximation (LDA) with the many-body physics
incorporated in the dynamical mean-field theory (DMFT).16

In our earlier study11 we proposed an explanation of
the temperature increase of the magnetic susceptibility of
LaFeAsO which was based on a first-principles analysis
of the low-energy spectral properties caused by local dy-
namical Coulomb correlations, without taking into account
interatomic magnetic fluctuations. In the present paper we
employ the LDA + DMFT scheme to demonstrate that the
proposed mechanism can be applied also to understand the
origin of the linear temperature dependence of the uniform
magnetic susceptibility in stoichiometric BaFe2As2.

II. COMPUTATIONAL METHOD

The LDA + DMFT computational scheme implemented in
the present work proceeds in four steps: (i) the construction
of an effective tight-binding Hamiltonian Ĥ WF(k) from a
converged LDA solution by projecting17 onto Wannier func-
tions, (ii) the addition of the local Coulomb interaction Ĥ Coul,
(iii) a double-counting correction which takes into account
the local interactions already described by the LDA, and
(iv) the self-consistent solution of the DMFT equations on
the Matsubara contour with continuous-time quantum Monte
Carlo18 (CT-QMC) as impurity solver. The Hamiltonian to be
solved by DMFT is given by

Ĥ DMFT(k) = Ĥ WF(k) + Ĥ Coul + Ĥ DC. (1)

Exact investigations of the magnetic response of this model
must employ a rotationally invariant form of the interaction
term Ĥ Coul. However, up to now there did not exist effec-
tive algorithms for the solution of a five-orbital Hubbard
model with the full Coulomb interaction within CT-QMC.
Furthermore, our investigation of the magnetic properties of
BaFe2As2 requires a separate, and extremely time-consuming,
self-consistent DMFT calculation for each point of the
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susceptibility curve. To make computations feasible, we
therefore include only the density-density contributions to the
full interaction

Ĥ Coul ≡ Ĥ U = 1

2

∑
i,α,α′,σ,σ ′

Uσσ ′
αα′ n̂

d
iασ n̂d

iα′σ ′ . (2)

Here Uσσ ′
αα′ is the Coulomb interaction matrix, n̂d

iασ is the
occupation number operator for d electrons in the orbital α

or α′, with spin σ or σ ′, on the ith site. This approximation
neglects spin flip and pair hopping processes. Nevertheless, as
will be shown below, it is able to provide correct results for the
spectral and magnetic properties of BaFe2As2. The double-
counting term is Ĥ DC = −Ū (nDMFT − 1

2 )Î , where nDMFT is
the total, self-consistently determined number of d electrons
obtained within LDA + DMFT, and Ū is the average Coulomb
parameter for the d shell.

We construct Wannier functions in the energy window
including Fe-d and As-p states. Hence, by construction energy
bands of the H WF Hamiltonian exactly reproduce 16 Fe-d and
As-p bands (two As and Fe atoms in the formula unit, one
formula unit in the unit cell) obtained in LDA calculations,
and the p-d hybridization is explicitly taken into account.

The interaction matrix Uσσ ′
αα′ is parametrized by the effective

on-site Coulomb parameter U and intra-orbital exchange
parameter J according to the procedure described in Ref. 19.
In the present calculation we use U = 3.5 eV and J = 0.85 eV
obtained with the constrained DFT procedure.20–22

The orbitally resolved spectral functions of the interacting
system are then computed as

Aα(ω) = − 1

π
Im

∑
k

[(ω + μ)Î − Ĥ WF(k) − Ĥ DC − �̂(ω)]−1
αα ,

(3)

where the subscript α refers to an orbital, μ is the self-
consistent chemical potential, and �(ω) is the self-energy on
the real axis obtained by analytic continuation using the Padé
approximant23 technique; the details are described in Ref. 10.

The uniform magnetic susceptibility is calculated as the
response of the system to a weak external magnetic field,

χ (T ) = ∂M(T )

∂Eh

= ∂[n↑(T ) − n↓(T )]

∂Eh

, (4)

where M(T ) is the field-induced magnetization, nσ (T ) is
the number of electrons with spin σ , and Eh is the energy
correction corresponding to the applied field. Since the field is
finite the calculations are performed in three steps: First, we
check that the polarization is zero in the absence of the field,
then we check that M(T ) is a linear function of Eh, and finally
we evaluate the derivative in Eq. (4) as a ratio of M(T ) and Eh.

III. RESULTS

A. Temperature dependence of the uniform
magnetic susceptibility

In Fig. 1 the uniform magnetic susceptibility χ (T ) com-
puted within LDA + DMFT is compared with the experimental
data of Wang et al.4 In the temperature range from 200 to
600 K the temperature dependence of the calculated χ (T ) is
found to be almost perfectly linear. However, the slope is by
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FIG. 1. (Color online) Uniform magnetic susceptibility χ (T ) of
BaFe2As2 calculated within LDA + DMFT (squares) in comparison
with experimental data of Wang et al. (Ref. 4) (circles and triangles).
The line is a least-square fit to the last six points of the computed data.
The inset shows the theoretical curve for the full temperature interval.

a factor of 1.7 smaller than in the experiment. The origin of
this quantitative discrepancy is not clear at the moment and
will be the subject of future investigations. To emphasize the
linearity we plot a least-square fit to the last six points of the
computed data. We note that the observed linear behavior is,
in fact, due to an extended linear region around the turning
point of χ (T ) at ≈350 K. The obtained χ (T ) has a maximum
at about 1000 K and decreases for higher temperatures.

More detailed information about the magnetic properties
of BaFe2As2 can be obtained from an analysis of the orbitally
resolved contributions χα(T ) (α = xy, yz, xz, 3z2 − r2, x2 −
y2) to the total magnetic susceptibility. In Fig. 2 we show
the temperature dependence of the Fe 3d susceptibilities of
BaFe2As2 obtained in LDA + DMFT. All contributions have
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FIG. 2. (Color online) LDA + DMFT results for the orbitally
resolved Fe 3d susceptibilities χα(T ) with α = xy, yz, xz, 3z2 − r2,
x2 − y2 of BaFe2As2 vs. temperature obtained from the derivative of
the magnetization.
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approximately equal slope in the temperature interval from 200
to 500 K. The dxy orbital of Fe provides the largest contribution
to the total susceptibility.

B. Connection between magnetic and spectral properties

In our previous paper11 we proposed a scenario according
to which the anomalous T behavior of χ (T ) in the pnictides
is connected with the presence of a sharp peak in the spectral
function below the Fermi energy. In Fig. 3 the total Fe 3d

spectral function A(ω) computed within LDA + DMFT is
shown in comparison with the LDA result. It demonstrates
that dynamical correlation effects strongly renormalize the
spectrum in the vicinity of the Fermi energy. In particular,
the electronic correlations are seen to lead to a narrow peak
below the Fermi level while the remaining part of the spectrum
is only weakly affected by the correlations. The peak in the
energy window from −4 to −2 eV should not be mistaken for
a lower Hubbard band since a similar peak is already present
in the LDA result. The Fe 3d spectral weight in this energy
area is a consequence of the hybridization with As 4p states.

A comparison of the orbitally resolved spectral functions
computed within LDA and LDA + DMFT, respectively, is
shown in Fig. 4. The LDA + DMFT results are in good agree-
ment with previously reported theoretical and experimental
spectra.9 Except for the dx2−y2 orbital the spectral functions
obtained by LDA + DMFT all show a sharp peak below the
Fermi energy. These peaks originate from local correlation
effects as pointed out above.

A quantitative measure of the correlation strength is the
quasiparticle renormalization factor Z. In the single-orbital
case it can be obtained from the real-axis self-energy �(ω)
which is related to the effective mass enhancement m∗/m

by Z−1 = 1 − ∂Re(�(ω))/∂ω = m∗/m. For a multi-orbital
problem the self-energy is a matrix. Therefore different orbitals
have different m∗/m. The computed values of the mass
enhancement range from 2.5 to 3.7 and agree well with
previous estimates of m∗/m for pnictides obtained from the
renormalization of the LDA band structure.8–10,12,13
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FIG. 3. (Color online) Comparison of the total Fe 3d spectral
function of BaFe2As2 as obtained from LDA + DMFT (solid line)
and LDA (shaded area), respectively.
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FIG. 4. (Color online) Orbitally resolved Fe 3d spectral functions
of BaFe2As2 obtained within LDA + DMFT (solid lines) in compar-
ison with LDA results (filled areas). The Fermi energy is set to 0 eV.

To identify possible reasons for the anomalous behavior
of the magnetic properties it is instructive to compute the
temperature evolution of the orbitally resolved spectral func-
tions. The spectral curves computed for temperatures ranging
from 232 to 580 K are shown in Fig. 5. All spectral functions,
except for the dx2−y2 orbital, show a temperature sensitive peak
which is located approximately 100 meV below the Fermi
energy. These peaks increase in amplitude and become narrow
with decreasing T . We note that the magnitudes of the orbital
contribution χα(T ) are proportional to the density of states of
the corresponding orbitals at the Fermi energy.

The simplest way to establish a possible connection be-
tween the temperature evolution of the magnetic susceptibility
and the excitation spectrum in the multi-orbital case is to
estimate the susceptibility (per spin) using the bubble diagram
obtained by convoluting the DMFT Green’s functions, Eq. (5),

χ0
α (T ) = 1

β

∑
k,iω,α′

Ĝαα′ (k,iω)Ĝα′α(k,iω), (5)

where Ĝαα′ (k,iω) = [(iω + μ)Î − Ĥ DMFT(k) − �̂(iω)]αα′ .
This expression describes the spin susceptibility in the ab-
sence of vertex corrections (i.e., gives an estimate of the
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FIG. 5. (Color online) Fe 3d spectral functions of BaFe2As2

computed within LDA + DMFT in the temperature range 232–580 K.
The Fermi energy corresponds to 0 eV.

magnetic response due to single-particle excitations which are
characterized by the interacting spectral function). An explicit
connection between the magnetic response, Eq. (5), with the
excitation spectrum can be made in the one-orbital case when
off-diagonal elements of Ĝ are absent:

χ1(T ) = − 1

4π2

∫
dω1dω2

fF(ω1) − fF(ω2)

ω1 − ω2
A(ω1)A(ω2).

(6)

Here A(ω) is the spectral function of the interacting system
(per spin), and the temperature enters via the Fermi function,
fF(ω). In real compounds multi-orbital physics, including
hybridization effects, is important, in which case the full matrix
Green functions must be used in Eq. (5).

The influence of interaction effects may be estimated
by calculating the magnetic susceptibility in the random-
phase approximation (RPA). If the orbital dependence of
the Coulomb interaction between d electrons is neglected,
the orbital contributions to the total uniform d magnetic
susceptibility within RPA are given by

χRPA
α (T ) = 2χ0

α (T )

1 − Ūχ0
α (T )

, (7)
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FIG. 6. (Color online) LDA + DMFT results for the orbitally
resolved Fe 3d susceptibilities χRPA

α (T ) with α = xy, yz, xz,
3z2 − r2, x2 − y2 of BaFe2As2 vs. temperature, obtained from the
RPA expression for the susceptibility in Eq. (7).

where the factor 2 is due to the spin degeneracy. The
temperature dependence of the orbitally resolved suscepti-
bilities computed according to Eq. (7), is shown in Fig. 6.
For the d3z2−r2 and dx2−y2 orbitals the results are in good
qualitative agreement with the full LDA + DMFT solution.
By contrast, the temperature dependence of the susceptibilities
corresponding to the dxy , dyz, and dxz states is not reproduced
by Eq. (7); Apparently vertex corrections are important in this
case.

The above results suggest the following interpretation,
whose correctness will be demonstrated later: The electronic
states forming the sharp peak in the spectral function below
the Fermi energy lead to thermal excitations which contribute
to the susceptibility. When the energy kBT is larger than
the distance between the peak and the Fermi level, the
number of states which can be excited is reduced and the
susceptibility starts to decrease. A more complex mechanism
is responsible for the increase of the dx2−y2 susceptibility
where the corresponding spectral function does not show a
peak below the Fermi energy.

Namely, as in the case of LaFeAsO (Ref. 11) the off-
diagonal contributions to the susceptibility, χ0

αα′ = 1/β
∑

k,iω

Ĝαα′ (k,iω)Ĝα′α(k,iω), and in particular χ0
x2−y2,3z2−r2 (T ), are

responsible for the increase of χ0
x2−y2 (T ). Thus the temperature

increase of χRPA
x2−y2 (T ) is caused by the magnetic response of

the other orbitals (for details see the supplementary material of
Ref. 11). A detailed analysis of the proposed mechanism of the
increase of χ (T ) using a simplified model will be presented in
the following section.

C. Model analysis

To further clarify the relation between the shape of the
spectral function and the anomalous temperature behavior
of the magnetic properties we will now perform a model
calculation, where multi-orbital effects are neglected. As a first
step we compute the DMFT spin susceptibility for a single-

125124-4



MICROSCOPIC ORIGIN OF THE LINEAR TEMPERATURE . . . PHYSICAL REVIEW B 86, 125124 (2012)

2

4

6

S
us

ce
pt

ib
il

it
y 

(1
/e

V
)

μ =0.8 eV
μ =0.5 eV
μ =0.2 eV

-0.5 -0.25 0 0.25 0.5
Energy (eV)

0

0.5

1

1.5

2

2.5

3

S
pe

ct
ra

l f
un

ct
io

n 
(1

/e
V

)

0 500 1000 1500 2000 2500
T (K)

0

2

4

6

8

χ
R

P
A

(T
) 

(1
/e

V
)

FIG. 7. (Color online) LDA + DMFT results for the uniform
magnetic susceptibility of a one-band model with the noninteracting
Fe dxy DOS of BaFe2As2 as a function of temperature. Upper panel:
Results computed according to Eq. (4); the inset shows the spectral
function of the interacting system. Lower panel: RPA results for the
uniform magnetic susceptibility using Eq. (7); the divergence of the
susceptibility for μ = 0.2 eV at about 300 K is an artifact of the RPA.

band model, constructed in such a way that the noninteracting
system has exactly the same spectral function as the one for the
dxy orbital of the tight-binding Hamiltonian HWF in Eq. (1).
In the upper panel of Fig. 7 the temperature dependence of
the spin susceptibility computed for the model within DMFT
is shown for several values of the chemical potential. The
corresponding spectral functions of the interacting system
are presented in the inset of Fig. 7. Depending on the peak
position there are two characteristically different temperature
dependencies of the susceptibility: (i) An increase in the
low temperature region with a maximum at an intermediate
temperature followed by a decrease at higher T (μ = 0.5,
0.8 eV), and (ii) a monotonic decrease with temperature
(μ = 0.2 eV). The former regime is obtained when the peak
is substantially below the Fermi energy, the latter regime
corresponds to the case when the peak is very close to, or
right at, the Fermi energy. The result of the estimate of the
susceptibility according to Eq. (7) is presented in the lower
panel of Fig. 7. It is seen to reproduce all features of the curves
computed by Eq. (4).

This confirms that the magnetic response of the system is
indeed governed by its spectral properties. Thus, the driving
force of the nonmonotonic behavior of the susceptibility is
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FIG. 8. (Color online) Spin susceptibility χ1(T ) of a model
defined by the density of states (8) calculated from Eq. (6) for different
values of the peak position. The inset shows the density of states
plotted relative to the Fermi energy (zero energy).

the peak below the Fermi energy. In particular, the distance
between the peak and the Fermi level is important. In spite
of the fact that the peak in the spectral function exists at the
level of LDA, its position is too far from the Fermi energy to
cause a serious increase of the susceptibility. The correlations
shift the peak towards the Fermi level which results in more
pronounced temperature dependence of χ (T ).

To relate the shape of the spectral function with the two
temperature regimes of the magnetic susceptibility even more
explicitly, we now compute the temperature behavior of χ0(T )
for a system with a density of states given by a Gauss function
with offset from the energy axis

A(ω) = A + B exp

[(
ω − C

2σ

)2]
. (8)

The parameters in Eq. (8) were adjusted such that the
maximum and the width of the function are close to the
ones obtained with LDA + DMFT for the material specific
Hamiltonian for BaFe2As2. The results for χ1(T ) computed
according to Eq. (6) are shown in Fig. 8. The temperature
behavior of χ1(T ) and its evolution upon changes of the
peak position in the spectral function are seen to qualitatively
reproduce all features obtained in DMFT for the one-band
model. This can be viewed as a direct indication that the
peculiarities observed in the anomalous behavior of the spin
susceptibility in DMFT originate from the shape of the spectral
function in the vicinity of the Fermi energy.

Finally we address the question concerning the microscopic
origin of the peaks in the spectral function below the Fermi
level. In the following analysis we focus on the dxy orbital
since the peak in its spectral function is sharper than those
of the other orbitals. The contributions of the dxy states to
the band structure are shown in the left upper panel of Fig. 9
as “fat bands” (i.e., the thickness of a band is proportional
to the contribution of states with selected symmetry). The
peak in the dxy spectral function (Fig. 9, right upper panel)
is formed by regions of relatively flat bands centered at
the energy approximately −0.4 eV relative to the Fermi
level.
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FIG. 9. (Color online) Band structure and spectral functions
computed for BaFe2As2; the Fermi energy corresponds to 0 eV.
(a) Dispersion curves calculated within LDA (dashed curves),
contributions of the orbitals with dxy symmetry (fat bands), energy
bands of a two-orbital model obtained as a projection onto the dxy

states (solid curves). (b) Spectral function of the dxy orbital from
LDA. (c) Energy bands of a model corresponding to the real hopping
parameters. (d) Spectral function of the model Hamiltonian (9).

To construct a minimal model describing the energy
dispersion of the dxy states we solve an effective two-band
Hamiltonian H 2D(k) with two Fe atoms in the unit cell, which
is obtained from a projection of Bloch states in the vicinity
of the Fermi energy onto a subspace of Wannier functions
with dxy symmetry. The energy bands of H 2D(k) are shown
in the left upper panel of Fig. 9 by solid curves. In the next
step we introduce the real-space Hamiltonian H 2D

real written for
a square lattice with two atoms in the unit cell and nonzero
hoppings within three coordinate spheres. The Hamiltonian
H 2D

real has the form

H 2D
real = t

∑
iR

c
†
iRci + t ′

∑
iR′

c
†
iR′ci + t ′′

∑
iR′′

c
†
iR′′ci, (9)

where i labels the atoms and the radius vectors R, R′, and
R′′ correspond to the cluster of nearest, next-nearest, and
next-next-nearest neighbors, respectively, around atom i.
The hopping parameters t = −170 meV, t ′ = 98 meV, and
t ′′ = 21 meV were computed as Fourier transforms of the
material-specific Hamiltonian H 2D(k).

The shape of the energy bands and the spectral function
computed for Hamiltonian (9) are shown in the lower panels
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FIG. 10. (Color online) Spectral functions of Hamiltonian (9)
calculated in the basis of bonding (solid curve) and antibonding
(dashed curve) wave functions. The total spectral function is shown
by a dotted line. The Fermi energy is set to zero.

of Fig. 9. They are in good agreement with the corresponding
characteristics obtained from the direct calculation. As in the
multi-orbital case, the band structure of Eq. (9) represents
a combination of dispersive bands and bands with less
pronounced k dependence. In particular, it follows that the
peak below the Fermi energy is formed by a relatively flat
band located in the same energy interval as the peak.

To understand the coexistence of the flat and dispersive
regions within a band of given symmetry (dxy in our case) it
is instructive to plot the spectral functions of the Hamiltonian
(9) in the basis of bonding and antibonding wave functions.
In other words, if |φ1〉 is the wave function on the one
atom in the unit cell, |φ2〉 is the wave function of the other
atom. Then the new basis is defined as |φ+〉 = φ1〉 + |φ2〉 and
|φ−〉 = |φ1〉 − |φ2〉. Spectral functions of the Hamiltonian (9)
computed for that basis with realistic hopping parameters and
chemical potential are shown in Fig. 10. From Fig. 10 it follows
that the band with a pronounced dispersion is mainly formed by
antibonding linear combination |φ−〉 and the main contribution
to the peak is provided by the bonding function |φ+〉 whose
dispersion is less pronounced.

IV. CONCLUSION

By employing the LDA + DMFT method we investigated
the interplay between the spectral and magnetic properties
of BaFe2As2. The calculated temperature dependence of
the uniform magnetic susceptibility is in good agreement
with experimental data. Our calculations show that there are
pronounced, temperature sensitive peaks below the Fermi
energy in the spectral function of BaFe2As2. We proposed
a scenario according to which the temperature increase of the
susceptibility is a consequence of the thermal excitation of
the electronic states which lead to these peaks. Our analysis
is based on the DMFT solution of a one-band model with a
density of states corresponding to the Fe-dxy spectral function
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of BaFe2As2. The results clearly demonstrate that the peak in
the spectral function in the vicinity of the Fermi energy is a
prerequisite for the linear temperature increase of magnetic
susceptibility. The peaks in the real compound are due to the
weak dispersion of bonding states arising from the layered
structure of BaFe2As2.
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