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We derive an approximate analytical solution of the self-consistency equations of the bosonic dynamical
mean-field theory (B-DMFT) in the strong-coupling limit. The approach is based on a linked-cluster expansion
in the hybridization function of normal bosons around the atomic limit. The solution is used to compute the phase
diagram of the bosonic Hubbard model for different lattices. We compare our results with numerical solutions
of the B-DMFT equations and numerically exact methods, respectively. The very good agreement with those
numerical results demonstrates that our approach captures the essential physics of correlated bosons both in
the Mott insulator and in the superfluid phase. Close to the transition into the superfluid phase the momentum
distribution function at zero momentum is found to be strongly enhanced already in the normal phase. The
linked-cluster expansion also allows us to compute dynamical properties such as the spectral function of bosons.
The evolution of the spectral function across the transition from the normal to the superfluid phase is seen to be
characteristically different for the interaction driven and density driven transition, respectively.
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I. INTRODUCTION

Cold atoms in optical lattices provide a fascinating new
class of interacting quantum many-particle systems.1,2 Due
to the unprecedented precision of experimental techniques in
this field, it is now possible to simulate and experimentally test
theoretical models.2–7 In particular, experiments with bosonic
atoms have revived theoretical interest in the properties of the
bosonic Hubbard model.8–10 This model describes the quantum
mechanical competition between the kinetic energy of lattice
bosons, which is responsible for their Bose-Einstein condensa-
tion, and the repulsive interaction, which favors localization of
the particles. The phase diagram of the bosonic Hubbard model
was first calculated by Fisher et al.8 within a static mean-field
theory derived from the atomic limit. With the formulation
of the bosonic dynamical mean-field theory (B-DMFT)11,12

a comprehensive investigation scheme for correlated lattice
bosons in the thermodynamic limit has become available,
which allows one to also calculate dynamical properties such
as spectral functions of the interacting bosons. The B-DMFT is
a thermodynamically consistent, nonperturbative many-body
approach which is applicable for all values of the input
parameters, e.g., the interaction, density, and temperature.
It leads to a set of nonlinear equations which need to be
solved self-consistently. An exact solution can be found only
in special cases, e.g., for the Falicov-Kimball model.11,12

In general, the self-consistent equations have to be solved
numerically or by employing approximate analytical methods.
The experience with the fermionic DMFT13–15 shows that both
numerically exact (but computationally expensive) methods
and approximate analytical methods are important to gain
insight into the solution of the complicated self-consistency
equations. So far solutions of the B-DMFT equations had to
be obtained fully numerically. Hu and Tong,16 and Hubener,
Snoek, and Hofstetter17 employed exact diagonalization (ED),
and Anders et al.18,19 made use of continuous-time quantum
Monte Carlo (CT-QMC) to solve the B-DMFT equations.

Analytical or semianalytical solutions of the B-DMFT equa-
tions did not exist up to now.

In this paper we present an analytical strong-coupling
solution of the B-DMFT derived by a linked-cluster expansion
(LCE)20,21 around the atomic limit. The method is analogous to
the fermionic strong-coupling solver developed by Dai, Haule,
and Kotliar22 for the fermionic DMFT. While in the fermionic
case the strong-coupling expansion is unable to capture the
low temperature Fermi liquid physics due to the existence of a
characteristic low energy (Kondo) scale, there is no such limi-
tation in the bosonic case. Our approach differs from previous
strong-coupling expansions to the bosonic Hubbard model23–27

since they performed the expansion in the hopping amplitude.
The paper is organized as follows. We first introduce

the B-DMFT and its self-consistency equations. Then we
formulate the linked-cluster expansion and thereby derive
a strong-coupling approximation to the B-DMFT equations.
This is then applied to the Bethe lattice and the cubic lattice,
both with coordination number z = 6, and to the Bethe lattice
with z = ∞. The phase diagrams of the bosonic Hubbard
model calculated in this way are compared with those obtained
from numerical solutions of the B-DMFT computed with
ED17 and CT-QMC,18,19 respectively, from numerically exact
evaluations on a Bethe lattice,28 and from numerical results
obtained by direct Monte Carlo simulations of the bosonic
Hubbard model.29 The momentum distribution functions and
spectral functions of correlated lattice bosons in the normal
and the Bose-Einstein condensed phase are also calculated.
Finally we discuss possible extensions of the approach.

II. CUMULANT EXPANSION IN THE BOSONIC
DYNAMICAL MEAN-FIELD THEORY

The B-DMFT is the bosonic counterpart to the well-
established DMFT for lattice fermions described by the
Hubbard model. Its derivation is described in detail in Ref. 11.
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Here we focus on a single species of bosons. The expansion
presented below is easily generalized to the case of more than
one type of boson.

The bosonic Hubbard model is given by the Hamiltonian

H =
∑
ij

tij b
†
i bj + 1

2
U

∑
i

ni(ni − 1), (1)

where b
†
i and bi are creation and annihilation operators,

respectively, for a boson at a lattice site i, tij is the hopping
between lattice sites i and j , U is the local interaction, and
ni = b

†
i bi is the number operator of the local occupation. In

this paper we consider nearest-neighbor hopping, i.e., tij = −t

for the nearest-neighbor sites i and j , and tij = 0 otherwise. In
the following we set the Boltzmann constant kB and the lattice
spacing a equal to unity.

A. Local action of the B-DMFT

In the B-DMFT the d-dimensional lattice problem (1) is
replaced by an effective single-site (“impurity”) problem in
which the local interaction U remains unchanged, but the
rest of the lattice is replaced by two dynamical mean fields
(“baths”) corresponding to bosons in the normal state and in the
Bose-Einstein condensate, respectively.11 The time evolution
of bosons on a particular site i = 0 is represented by the local
Green function

G(τ ) = −〈Tτ b(τ )b†(0)〉Sloc , (2)

where we used the imaginary time, finite temperature formal-
ism, and Nambu notation with

b =
(

b

b∗

)
, (3)

and the Bose-Einstein condensate (BEC) is described by the
local order parameter

φ = 〈b(τ )〉Sloc . (4)

The impurity problem is defined by the local action

Sloc =
∫ β

0
dτb∗(τ )

(
∂

∂τ
− μ

)
b(τ ) + 1

2

∫ β

0
dτUn(τ )(n(τ )−1)

+ κ

∫ β

0
dτ�†(τ )b(τ )

+ 1

2

∫ β

0
dτ

∫ β

0
dτ ′ b†(τ )�(τ − τ ′)b(τ ′), (5)

where μ is the chemical potential, κ = ∑
i �=0 ti0 is a lattice

dependent parameter, and

� =
(

�

�∗

)
(6)

is the condensate wave function, i.e., a dynamical mean field.
The dynamical mean field corresponding to bosons in the
normal state is represented by the hybridization function

�(τ − τ ′) =
(

�11(τ − τ ′) �12(τ − τ ′)
�21(τ − τ ′) �22(τ − τ ′)

)
. (7)

The dynamical mean fields �(τ ), �11(τ ), and �12(τ ) are
determined by the self-consistency equations

�(τ − τ ′) = −
∑
i,j �=0

ti0t0j 〈Tτ bi(τ )b†
j (τ ′)〉(0)

=
∑
i,j �=0

ti0t0j G(0)
ij (τ − τ ′) (8)

and

� = 〈b(τ )〉(0). (9)

Here the notation 〈· · ·〉(0) indicates that the thermodynamic
average is performed on a lattice with a cavity, i.e., with one
site removed. We note that in equilibrium �(τ ) is constant.
For finite dimensional lattices � is related to the local BEC
order parameter (4) by

� =
(

1 − 1
κ

∫
dτ�11(τ ) − 1

κ

∫
dτ�12(τ )

− 1
κ

∫
dτ�21(τ ) 1 − 1

κ

∫
dτ�22(τ )

) (
φ

φ∗

)
.

(10)

The self-consistency loop is closed by introducing the self-
energy in the Matsubara frequency representation through the
k-integrated Dyson equation

�(iωn) =
(

iωn + μ 0
0 −iωn + μ

)
− �(iωn) − [G(iωn)]−1

(11)

and using the lattice Hilbert transform

G(iωn) =
∫

N0(ε)

[(
iωn + μ − ε 0

0 −iωn + μ − ε

)

−�(iωn)

]−1

. (12)

The latter equation links the local Green function to the self-
energy for a specific lattice described by the noninteracting
density of states N0(ε). The momentum dependent lattice
Green function G(k,iωn) is then given by

G(k,iωn)

=
[(

iωn + μ − εk 0
0 −iωn + μ − εk

)
−�(iωn)

]−1

,

(13)

where εk is the dispersion relation of the noninteract-
ing system and �(iωn) is the self-consistent solution of
equations (2)–(12). The self-energy of the lattice Green
function is thus identified with the self-consistent solution of
the effective impurity problem.

For a Bethe lattice with infinite connectivity (z = ∞)30,31

the self-consistency conditions reduce to the simple expres-
sions �(τ − τ ′) = t2G(τ − τ ′) and � = (φ,φ∗). In general,
e.g., for a cubic lattice, the self-consistency equations (10)–
(12) need to be solved numerically.

B. Cumulant expansion

In order to solve the impurity problem defined above we
use the cumulant (linked-cluster) expansion in the dynamical
mean fields �11 and �12. The action (5) is further divided into
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two parts

Sloc = S0 + S ′, (14)

where

S0 =
∫ β

0
dτb∗(τ )

(
∂

∂τ
− μ

)
b(τ ) + 1

2

∫ β

0
dτUn(τ )(n(τ ) − 1)

+ κ

∫ β

0
dτ�†(τ )b(τ ) (15)

and

S ′ = 1

2

∫ β

0
dτ

∫ β

0
dτ ′ b†(τ )�(τ,τ ′)b(τ ′). (16)

The partition function of the impurity problem Z is thus written
as

Z = Z0〈e−S ′ 〉0, (17)

where Z0 is the partition function for the system described by
S0, and 〈...〉0 denotes the thermodynamic average with respect
to the action S0.

Now the exponential function appearing in the average is
expanded, leading to an infinite series

〈e−S ′ 〉0 = 1 − 1

2

∫ β

0
dτ

∫ β

0
dτ ′ 〈Tτ b†(τ )�(τ,τ ′)b(τ ′)〉0

+ 1

4 · 2!

∫ β

0
dτ1

∫ β

0
dτ ′

1

∫ β

0
dτ2

×
∫ β

0
dτ ′

2 〈Tτ b†(τ1)�(τ1,τ
′
1)

× b(τ ′
1) b†(τ2)�(τ2,τ

′
2)b(τ ′

2)〉0 + · · · . (18)

The series is then re-exponentiated with the help of cumulants
(i.e., connected n-particle Green functions):20,32

〈e−S ′ 〉0 = exp

{
− 1

2

∫ β

0
dτ

∫ β

0
dτ ′ 〈Tτ b†(τ )�(τ,τ ′)b(τ ′)〉c0

+ 1

4 · 2!

∫ β

0
dτ1

∫ β

0
dτ ′

1

∫ β

0
dτ2

×
∫ β

0
dτ ′

2 〈Tτ b†(τ1)�(τ1,τ
′
1)

× b(τ ′
1) b†(τ2)�(τ2,τ

′
2)b(τ ′

2)〉c0 + · · ·
}
. (19)

Here the superscript c indicates that only the connected part of
the averages with respect to S0 is included. Now the partition
function (17) can be calculated to the desired order in �.

The above approximation is in the spirit of other strong-
coupling expansions26,27 and becomes exact in the atomic limit
(�11 = �12 = 0, φ = 0). However, it should be stressed that
it is not an expansion in the hopping amplitude but rather in
the dynamical mean fields �11 and �12. The fact that these
fields are obtained self-consistently implies that all orders of
the hopping amplitude contribute.11,20

In the following we perform the cumulant expansion to
second order in �11 and �12 in the partition function Z. Since
the Green function is determined by the functional derivative

Gαβ(τ − τ ′) = −2
δ ln Z

δ�βα(τ ′,τ )
, (20)

the diagonal element G11(τ − τ ′) and off-diagonal element
G12(τ − τ ′) are then of first order in �11 and �12:

G11(τ − τ ′) = −〈Tτb(τ )b∗(τ ′)〉0 + 1

2

∫ β

0
dτ1

∫ β

0
dτ ′

1

×〈Tτb(τ )b†(τ1)�(τ1,τ
′
1)b(τ ′

1)b∗(τ ′)〉c0, (21)

and

G12(τ − τ ′) = −〈Tτb(τ )b(τ ′)〉0 + 1

2

∫ β

0
dτ1

∫ β

0
dτ ′

1

×〈Tτb(τ )b†(τ1)�(τ1,τ
′
1)b(τ ′

1)b(τ ′)〉c0. (22)

Furthermore, the local BEC order parameter is given by

φ = 〈b(τ )〉0 + 1

2

∫ β

0
dτ1

∫ β

0
dτ ′

1〈Tτb(τ )b†(τ1)�(τ1,τ
′
1)b(τ ′

1)〉c0.
(23)

The thermodynamic averages are performed as 〈· · ·〉0 =
1
Z0

Tr(e−βH0 · · ·), with H0 = 1
2Un(n − 1) − μn + κ(�b† +

�∗b). The trace is calculated over the eigenstates of H0, which
are obtained by an exact diagonalization of the Hamiltonian
matrix which is represented in the occupation number basis.
Since the local Hilbert space of H0 for the bosonic impurity
problem is infinite dimensional, the diagonalization has to be
performed numerically, which, in principle, implies a further
approximation. The Hilbert space has to be cut off in the
occupation number of the impurity. The error introduced
thereby can be controlled by performing calculations with
different values of the cutoff and choosing the smallest cutoff
value such that the results do not differ within the required
accuracy.33

III. APPLICATION OF THE LINKED-CLUSTER
EXPANSION TO VARIOUS LATTICES

In the following we apply the results of the LCE to the Bethe
lattice and the cubic lattice, both with coordination number
z = 6, as well as to the Bethe lattice with infinite connectivity
(z = ∞). Our results for the Bethe lattice with coordination
number z < ∞ can be benchmarked by the exact numerical
solution based on the cavity method.28

A. Bethe lattice with coordination number z = 6

In Fig. 1 we show the results obtained with the LCE for
the interaction dependence of the Bose-Einstein condensation
temperature TBEC(U ), as well as for the phase diagram μ/U

vs t/U at T = 0.1t . We also compare them with results from
other methods: the exact numerical evaluation (cavity method)
by Semerjian, Tarzia, and Zamponi,28 the B-DMFT solution
with ED by Hubener, Snoek, and Hofstetter,17 and the static
mean-field solution of Fisher et al.8 The static mean-field and
the ED results were calculated at T = 0, whereas the results
of the cavity method were obtained for T � 0.25t . The phase
transition line μ/U vs t/U only weakly depends on T at such
low temperatures as can be seen in the upper panel of Fig. 1,
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20 25 30 35 40
U/t

0

2

4

6

8

TBEC

   t   
this work (B-DMFT with LCE)
numerically exact (cavity method), Ref. 28
static mean-field theory, Ref. 8

0 0.01 0.02 0.03 0.04
t/U

0

0.5

1

1.5

2

μ/U
this work (B-DMFT with LCE)
B-DMFT with ED, Ref. 17
numerically exact (cavity method), Ref. 28
static mean-field theory, Ref. 8

FIG. 1. (Color online) Results for the Bethe lattice with coordina-
tion number z = 6. Top: Dependence of the condensation temperature
TBEC on the interaction U at density 〈n〉 = 1. Bottom: Phase diagram
μ/U vs t/U computed by different methods: B-DMFT solved
with LCE (this work, T = 0.1t), B-DMFT solved with ED (T = 0)
(Ref. 17), numerically exact evaluation (cavity method) (T � 0.25t)
(Ref. 28), and static mean-field solution (T = 0) (Ref. 8). Inside the
Mott lobes the system is Mott insulating and the occupation number
is integer, while outside the system is superfluid.

where below TBEC(U )/t = 1 the curve is practically vertical.
For this reason we conclude that the phase diagram presented
in the lower panel of Fig. 1 is essentially the ground state phase
diagram.

The results shown in the lower panel of Fig. 1 demonstrate
that the agreement between the two B-DMFT solutions is
excellent. Namely, the blue circles (LCE, this work) are seen
to lie practically on the red line (ED from Ref. 17). Apparently
the transition from the Mott-insulator to the superfluid is
well described by the LCE approximation, which expands
to first order in the dynamical mean field �(τ ). This is
different from the case of the fermionic DMFT where the low
temperature physics of the Hubbard model close to the metal-
insulator transition cannot be described by the strong-coupling
approximation.22

The value of the transition temperature TBEC(U ) obtained
by the B-DMFT and the cavity method, respectively, is
significantly lower than the results obtained by the static mean-
field theory.8 Since the B-DMFT captures local fluctuations
exactly we conclude that they are responsible for the lowering
of TBEC(U ) and the associated increase of the size of the Mott
lobes.

For strong interactions the system is a Mott insulator for
most values of the chemical potential μ. Upon lowering the
interaction the system enters the superfluid phase with an order
parameter φ �= 0. For the values of the chemical potential
between the Mott lobes the superfluid phase persists up to very
large values of U . Since the LCE calculations were performed
at a low but finite temperature (T = 0.1t), there is no superfluid
phase at μ = U below t/U ≈ 0.0001 (not discernible in the
figure).

B. Cubic lattice

1. Phase diagram

The phase diagram of the Bose-Hubbard model for the
cubic lattice obtained from the B-DMFT with the LCE and
with CT-QMC, respectively, is presented in Fig. 2. These
results are compared with the lattice quantum Monte Carlo
(QMC) results.29 The LCE results are shown for two different
temperatures (T = 2t and T = 0.5t). It is evident that the
size of the Mott lobes decreases with decreasing temperature.
Upon lowering the temperature the computation of the phase
boundary using the B-DMFT with the LCE was found to

0 0.01 0.02 0.03 0.04
t/U

0

0.5

1

1.5

2

μ/U

this work (B-DMFT with LCE), T=2t
this work (B-DMFT with LCE), T=0.5t
B-DMFT with CT-QMC, T=0.5t, Ref. 18
lattice QMC, T=0.025t, Ref. 29
static mean-field theory, Ref. 8

FIG. 2. (Color online) Phase diagram μ/U vs t/U for the cubic
lattice obtained from B-DMFT with LCE compared with the results
obtained from B-DMFT with CT-QMC (data from Ref. 18), lattice
QMC (data from Ref. 29), and static mean-field theory (Ref. 8).
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become more elaborate. As already noted in Ref. 19 for the
CT-QMC solver, the convergence of the DMFT cycle close to
the phase transition is very slow and the initial guess of �(τ )
and � has to be carefully chosen.

Figure 2 shows that there is a small quantitative difference
between the results obtained by different methods. It is
unlikely that these differences can be explained by the different
temperatures used in the computations (the lattice QMC
calculations29 were performed at T = 0.025t , which is lower
than the temperature used in the B-DMFT calculations).
Indeed, at such low temperatures the temperature dependence
of the phase diagram is very weak, as discussed earlier for
the z = 6 Bethe lattice. Nevertheless, the overall agreement
between the results obtained from the three different methods
is clearly very good. As in the case of the z = 6 Bethe lattice
the local dynamical fluctuations described by the B-DMFT
lead to an increase of the size of the Mott lobes compared to
the static mean-field solution.

2. Momentum distribution

The momentum distribution function n(kx,ky,kz) of the
normal phase, calculated at T = t , is found to have an
interesting behavior close to the transition to the superfluid
phase. As shown in the upper panel and the inset of Fig. 3, the
distribution n(kx) ≡ n(kx,0,0) is strongly peaked at kx = 0
already in the normal phase. In the B-DMFT the momentum
dependence of the momentum distribution is expressed only
through the noninteracting dispersion relation εk [cf. Eq. (13)].
Therefore, n(ε) = n(εk) implicitly determines the momentum
distribution. The plots in Fig. 3 show n(ε) and n(kx) for
different values of U upon approaching the phase transition at
constant density 〈n〉 = 1.

The peak in the momentum distribution in the normal phase
close to the phase transition was noted previously by Kato
et al.34 within a lattice QMC solution. The lower panel in
Fig. 3 shows a comparison between n(ε) obtained for the
same parameters using different methods. As pointed out by
Freericks et al.27 the increase in the occupation at ε = 0 is an
effect which is only partially described by a strong-coupling
expansion in the hopping amplitude. The B-DMFT does
capture this enhancement, and our LCE results are in very
good agreement with the lattice QMC data of Ref. 27.

3. Spectral functions

The B-DMFT approach with the LCE solver also allows one
to investigate the behavior of the k-integrated spectral function
A(ω) = − 1

π

∑
k ImG(k,ω) across the phase transition from

the superfluid to the Mott phase (Figs. 4 and 5). Since in
our current implementation of the LCE the computations are
performed on the imaginary time or imaginary frequency axes,
spectral functions at real frequencies have to be calculated by
analytic continuation.35 The spectral functions presented in
Figs. 4 and 5 were obtained by analytic continuation with
Padé approximants. Calculations of bosonic spectral functions
were also done with the functional renormalization group36–39

and in the variational cluster approach (VCA).40,41

-6 -4 -2 0
ε/t

0

5

10

15
n(ε) U=29t

U=30t
U=31t
U=32t
U=33t

0 0.2 0.4 0.6 0.8
kx/π

0

5

10

15

n(kx)

-6 -4 -2 0             2              4             6
ε/t

0

1

2

3

4

5
n(ε) this work (B-DMFT with LCE)

lattice QMC, Ref. 27
3rd order strong coupling, Ref. 27

FIG. 3. (Color online) Momentum distribution function for the
cubic lattice in the normal phase calculated with the LCE at
temperature T = t . Top: n(ε) obtained for several values of the
interaction close to the phase transition, which takes place at Uc =
28.5; inset: n(kx) for ky = kz = 0 for the same parameters. Bottom:
Comparison of the result for n(ε) close to the transition (U = 1.13Uc)
obtained by different methods. The results obtained with the third
order strong coupling expansion in the hopping amplitude and the
lattice QMC results are both from Ref. 27.

Here we focus on three distinct cases: (i) the interaction
driven phase transition at the tip of the Mott lobe, keeping
the ratio μ/U constant; (ii) the interaction driven transition
at the bottom of the lobe, also with μ/U constant; and
(iii) the density driven transition at constant interaction U . Due
to the approximation introduced by the analytic continuation
one can draw only qualitative conclusions about the spectral
density in the region close to the chemical potential (e.g.,
one cannot reliably estimate the size of the gap). Nevertheless
the qualitative behavior and the spectral weight transfer is
well illustrated and the difference between the three cases
considered here is clearly visible. At the tip of the Mott lobe
[case (i), left panel of Fig. 4] an increase of the interaction
leads to a symmetric shift of the spectral weight on both sides
of the chemical potential. At the same time a Mott gap opens
and two Hubbard bands are formed (see the bottom plot in
the left panel of Fig. 4). The shape of the bands vaguely
resembles the noninteracting density of states N0(ε) for the
cubic lattice. Away from the tip [case (ii), right panel of Fig. 4]
the shift of the spectral weight is not symmetric with respect
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0 2 0

ω/t
-1

-0.5
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0.5

A(ω) U=40t, φ = 0

0 2 0

ω/t

-0.25

0

0.25

A(ω) U=31t, φ =/ 0

0 2

0 4

0 4

0 40

ω/t

-0.25

0

0.25

A(ω) U=20t, φ =/ 0

-20 0 20

ω/t

-0.25

0

0.25

A(ω) U=28.4t, φ =/ 0

-20 0 20

ω/t

-0.25

0

0.25

A(ω) U=25t, φ =/ 0

-20 0 20

ω/t
-1

-0.5

0

0.5

A(ω) U=36t, φ = 0

FIG. 4. (Color online) Evolution of the spectral function (in
arbitrary units) across the interaction driven phase transition at T =
2t ; left column: phase transition at the tip of the Mott lobe, 〈n〉 = 1;
right column: phase transition away from the tip, μ = 0.23U . In both
columns the bottom plot is for the normal phase, whereas the two
upper plots are for the superfluid phase. The energy scale is plotted
relative to the chemical potential which is at ω = 0.

to the chemical potential. The lower Hubbard band resides
close to the chemical potential, whereas the upper Hubbard
band is shifted to higher frequencies. A different behavior
is observed in the density driven transition [case (iii), Fig. 5].
Upon increasing the chemical potential at constant interaction,
the spectral function is shifted as a whole to lower frequencies,
simultaneously forming a gap.

C. The Bethe lattice with z = ∞
The phase diagram for the z = ∞ Bethe lattice is presented

in Fig. 6. At sufficiently high temperatures (e.g., T = 0.6t as in
Fig. 6) the LCE gives convergent results both for the superfluid
and normal phases near the phase transition. However, at
temperatures below 0.4t we have not been able to find a
convergent solution in the superfluid phase around the tip
of the second Mott lobe. The iterations converge either to
φ = 0 (normal phase), or to a solution with φ �= 0 but with
a nonconcave, and hence unphysical,42 G11(τ ). The results
for T = 0.3t are shown in Fig. 6, where the solution at μ/U

around the first Mott lobe converges both in the normal and
the superfluid phase, thus making it possible to calculate the
phase boundary. In the range 1.26U < μ < 1.8U a convergent
solution was only obtained in the normal phase (φ = 0), i.e., it
was not possible to determine the phase boundary of the second
lobe completely. As the temperature is lowered, the range of the
chemical potentials for which we did not obtain a superfluid
solution increases. For temperatures below 0.3t we did not
even obtain solutions with nonzero superfluid order parameter
around the tip of the first Mott lobe. Upon further lowering
of the temperature, the region of convergence of the method
in the superfluid phase is reduced to the values of μ near the
edges of the lobes. At this moment it is not clear whether the
absence of a solution in the superfluid phase in the z = ∞

ω/t
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A(ω) μ=0.3U, φ = 0
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FIG. 5. (Color online) Evolution of the spectral function (in
arbitrary units) across the density driven phase transition at U = 31t

and T = 2t . The bottom plot is for the normal phase, whereas the
two upper plots are for the superfluid phase. The chemical potential
is at ω = 0.

Bethe lattice for some chemical potentials at low temperatures
is a consequence of the strong-coupling approximation to the
B-DMFT, or the B-DMFT itself. This is an open question
which needs to be answered in the future. Such problems did
not occur for the other lattices investigated here.

IV. SUMMARY

We developed an analytical approximation scheme to solve
the B-DMFT equations for correlated lattice bosons in the
strong-coupling limit. The solution makes use of a linked-
cluster expansion in the hybridization function of normal
bosons around the atomic limit. Explicit results were obtained
for the Bose-Hubbard model on the cubic lattice and the
Bethe lattice with connectivity z = 6 and z = ∞, respectively.
Remarkably good agreement with numerical solutions of the
B-DMFT equations obtained with exact diagonalization,17

0 0.05 0.1 0.15 0.2
t/U

0

0.5

1

1.5

2

μ/U
T=0.3t
T=0.6t

FIG. 6. (Color online) Phase diagram μ/U vs t/U for the z = ∞
Bethe lattice at two different temperatures. At T = 0.3t it was not
possible to determine the phase boundary of the second lobe in the
region 1.26U < μ < 1.8U (see the discussion in the text).
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continuous-time quantum Monte Carlo,19 and direct lattice
QMC calculations29 was found. This agreement demonstrates
that the strong-coupling solution derived here provides a
correct description of the physics of correlated bosons. The
method is computationally inexpensive and, with a good
choice of the initial guess of the parameters, usually leads
to a fast convergence of the iteration of the self-consistency
equations. The Bethe lattice with infinite connectivity is
an exception which still requires further investigation. We
also employed the linked-cluster expansion to calculate the
momentum distribution function of normal bosons close to the
phase transition as well as the bosonic spectral function in the
normal and superfluid phase.

The approximation scheme presented in this paper can,
in principle, be systematically improved by the inclusion of
higher order terms. However, the noninteracting limit can
only be reached if terms up to infinite order are included,
e.g., by an appropriate resummation. This has been achieved

for fermions by the noncrossing approximation (NCA).43

The fundamental problem of the NCA, namely its failure to
describe the low temperature Fermi liquid regime adequately
owing to the existence of a characteristic coherence scale (the
Kondo temperature), may be absent in the case of bosons where
such a coherence scale does not exist. For that reason it should
be clarified whether it is possible to construct a renormalized
expansion for correlated bosons which is applicable for all
temperatures and interaction strengths.
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