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Magnetic properties of interacting disordered electron systems in two dimensions
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We compute the magnetic susceptibilities of interacting electrons in the presence of disorder on a two-
dimensional square lattice by means of quantum Monte Carlo simulations. Clear evidence is found that at
sufficiently low temperatures disorder can lead to an enhancement of the ferromagnetic susceptibility. We show
that it is not related to the transition from a metal to an Anderson insulator in two dimensions, but is a rather
general low-temperature property of interacting, disordered electronic systems.
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I. INTRODUCTION

The interplay of disorder and Coulomb repulsion between
electrons raises many fundamental questions not only in
solid-state physics1–4 but also in the physics of cold atoms.5–7

Electron repulsion can lead to a Mott insulator,8 a description
of which must invoke many-body physics. On the other hand,
the presence of disorder in a system of noninteracting electrons
can cause Anderson localization.4,9 The simultaneous presence
of disorder and electronic interaction is known to give rise
to subtle many-body phenomena.1–4 An important question
in the physics of interacting and disordered electrons is
the stability of magnetic order. The effect of disorder on
magnetic long-range order has been explored by various
analytical10,11 and numerical methods.12–17 A microscopic
lattice model to study these effects is the Anderson-Hubbard
model, which has been explored using quantum Monte Carlo
(QMC),12 dynamical mean-field theory (DMFT),13–15 and
Hartree-Fock calculations.16,17 One of the questions that
has received particular attention is whether the long-range
antiferromagnetic order (AFLRO), which occurs at half filling
in the clean limit, is stable when disorder is present. Increasing
disorder has generically been found to be detrimental for
AFLRO.12,15

Magnetic instabilities and the formation of local moments
have also been investigated in high mobility semiconductor
heterostructures.18 Some experiments have found the ferro-
magnetic (uniform) susceptibility to behave critically near the
metal-insulator transition (MIT),19 while other experiments
only found a strong enhancement.20,21

Analytical work has predicted critical behavior of the
ferromagnetic susceptibility as the metal-insulator transition
is approached from either side of the transition, and the
physics has been attributed to either the formation of local
moments22,23 or to the vanishing of the spin diffusion constant
either at or near the (charge) transport critical point.10,24

QMC investigations in two dimensions have also suggested
the existence of a quantum critical point (QCP) between a
metallic and an (Anderson) insulating phase when the disorder
strength is varied.25–29 Magnetic properties both near and away
from the QCP have received less attention. Denteneer et al.25

found an increase in the ferromagnetic susceptibility on both
sides of the metal-insulator transition, and this behavior was
attributed to the formation of local moments.22,23

In this paper, we report results on the magnetic prop-
erties of the Anderson-Hubbard model in two dimensions
obtained through extensive QMC simulations. We concentrate
on the ferromagnetic (FM) and the antiferromagnetic (AF)
susceptibilities. There are two main results: (i) We find that,
at sufficiently low temperatures, an increase in the disorder
increases the FM susceptibility, and (ii) the enhancement of
the FM susceptibility is related neither to the MIT, nor can it
be explained by the formation of local moments. In contrast,
increasing disorder always reduces the AF susceptibility.

II. CORRELATION FUNCTIONS FOR THE
ANDERSON-HUBBARD MODEL IN d = 2

Our investigation of interacting electrons in the presence of
disorder is based on the Anderson-Hubbard Hamiltonian on a
square lattice

H = T {εi} + U
∑

i

ni↑ni↓. (1)

Here

T {εi} = −t
∑

〈ij〉σ
c
†
iσ cjσ +

∑

iσ

(εi − μ)niσ (2)

is the single-electron part where c
†
iσ (ciσ ) are fermion creation

(annihilation) operators for site Ri and spin σ , niσ = c
†
iσ ciσ

is the operator for the local density, μ denotes the chemical
potential, and t is the hopping amplitude for electrons between
nearest-neighbor sites. The local energies εi are random
variables which are sampled uniformly from the interval
[−�/2,�/2]; hence the width � characterizes the strength of
the disorder. The interaction is taken to be repulsive (U > 0).

The model is solved numerically using determinantal
QMC (DQMC).30 The hopping integral t sets the unit of
energy (we set h̄ = kB = 1) and the simulation now contains
three independent energy scales: the disorder strength �, the
interaction strength U , and the temperature T . The average
filling n is tuned by the chemical potential μ.

To extract the magnetic behavior, we focus on on the real-
space equal-time spin-spin correlation function,31 defined as

C(r) = 〈Sz(Ri + r)Sz(Ri)〉, (3)
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FIG. 1. (Color online) (a) Inverse AF susceptibility and
(b) inverse ferromagnetic susceptibility computed for a 10 × 10
square lattice at quarter filling (n = 0.5) for U = 0. The susceptibility
data is averaged over ten disorder realizations for the highest
temperatures (T = 1.0,0.5,0.333,0.25), 80 disorder realizations for
intermediate temperatures (T = 0.2,0.167), 100 disorder realizations
for low temperatures (T = 0.125,0.1), and 120 disorder realizations
for the lowest temperature (T = 0.0833). Inset: Square of the local
magnetic moment vs T from the same datasets. The horizontal line
is the local moment squared (= 0.375) when � = 0.

where Sz(Ri) = ni↑ − ni↓. C(r) measures the extent to which
the z component of a spin on site Ri is correlated to the z
component of another spin at a distance r. Although we have
used the operator Sz in Eq. (3) to define C(r), we explicitly
confirmed that our calculations have the full SU(2) invariance
of the problem.

From C(r), we define the spin structure factor S(q) as the
Fourier transform:

S(q) =
∑

r
eiq·rC(r). (4)

The q-dependent susceptibility is obtained from χ (q) =
βS(q).25 The wave vectors q = (0,0) yield the FM sus-
ceptibility χF , and q = (π,π ) yield the AF susceptibility
χAF, respectively. The lattice spacing a is assumed to be
unity. All plots shown are for a 10 × 10 square lattice.
We have confirmed that the conclusions are unchanged for
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FIG. 2. (Color online) Inverse of the AF susceptibility for the
parameter sets (a) U = 2, n = 0.3 and (b) U = 3, n = 0.5. The
number of disorder realizations is the same as in Fig. 1. Similar
behavior is observed for all other parameter sets investigated.

computations on 8 × 8 and 12 × 12 square lattices by explicit
simulations.

There are two sources of statistical error in this analysis:
One is due to the QMC simulations, and the other arises
from disorder averaging. For all parameter sets studied here,
the intrinsic QMC error for any given disorder realization is
much smaller than the error arising from different disorder
realizations.

III. RESULTS

We start with the noninteracting system. In Figs. 1(a)
and 1(b) we show the dependence of the inverse AF and
inverse FM susceptibilities, respectively, on T for U = 0 and
various disorder strengths. Without interaction, an increase in
disorder always reduces both the AF and FM susceptibilities.
Namely, increasing disorder creates more fluctuations in the
site-energy landscape and, since U = 0, two electrons of
opposite spins will tend to occupy the lowest-energy sites,
thereby reducing the effective local moment and destroying
magnetism. The inset plots the square of the local moment
as a function of temperature, defined as 〈m2

z,i〉 = C(r = 0) =
〈ni〉 − 2〈ni↑ni↓〉.
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FIG. 3. (Color online) Inverse of the ferromagnetic susceptibility
for the parameter sets (a) U = 2, n = 0.3 and (b) U = 3, n = 0.5.
At sufficiently low T [T less than ∼0.3 in (a)] χF increases with
increasing disorder strength.

Now we include the interaction U . In Fig. 2, we plot the
inverse AF susceptibility for two different (U,n) parameter
sets. In all cases, 1/χAF decreases linearly with decreasing
T . It is clearly seen that the plot for every value of � can
be extrapolated to zero at T = 0, which signifies that there
will be no AF ordering. This behavior is expected for the
Anderson-Hubbard model far away from half filling (n = 1).
Furthermore, the AF susceptibility decreases monotonically
as the disorder strength is increased.

This is not surprising since AFLRO will be hindered by
randomness. Namely, electrons inevitably find it difficult to
hop (and thus gain kinetic energy) when the energies on two
neighboring sites are very different. Ferromagnetism, on the
other hand, stems from the need to avoid strong Coulomb
repulsion locally. In Fig. 3, we plot 1/χF vs T for the
same parameter sets as in Fig. 2. At high temperatures χF

decreases with increasing disorder strength. However, at low
temperatures, the opposite behavior is seen to occur. We
point out the difference between Fig. 3 and the noninteracting
case in Fig. 1(b). Thus it is clear that the enhancement of
χF with increasing disorder at low temperatures takes place
only in the simultaneous presence of interaction and disorder.
Also, this behavior is ubiquitous in all parameter sets we
have investigated. Even at weak coupling (e.g., U = 1), the
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FIG. 4. (Color online) Ferromagnetic susceptibility as a function
of disorder strength from high (bottom) to low (top) temperatures for
U = 2, n = 0.3.

ferromagnetic susceptibility rises with increasing disorder at
lower temperatures.

To investigate if the enhancement of the ferromagnetic
susceptibility is related to the metal-insulator transition in
d = 2, we plot χF in Fig. 4 against the disorder strength for
U = 2, n = 0.3. For these parameters, the d = 2 Anderson-
Hubbard model shows a metal-(Anderson) insulator quantum
phase transition at �c = 7.8.29 It is clear from Fig. 4 that χF

does not show any enhancement close to the MIT. This holds
for all parameter sets we have investigated.

In Fig. 5 we plot the average squared moment versus
temperature for different values of the disorder strength for
U = 2, n = 0.3. As the disorder strength is increased, the
magnetic moment is seen to decrease at all temperatures.
Thus the enhancement of the ferromagnetic susceptibility
at low temperatures cannot be explained by an increase in
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FIG. 5. (Color online) Square of the average moment vs temper-
ature for different disorder strengths for U = 2, n = 0.3. The number
of disorder realizations is the same as Fig. 1. The magnetic moment
continues to monotonically decrease as disorder is increased for all
T . The temperature values where we observe a sudden change in
the slope of 〈m2

z〉 for all disorder strengths correspond closely to
the temperature values which demarcate high- and low-temperature
regimes in Fig. 3(a).
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FIG. 6. (Color online) The charge susceptibility χc vs T for
different disorder strengths for U = 2, n = 0.3. The number of
disorder realizations is the same as Fig. 1. Note that χc is related
to the compressibility κ through κ = χc/〈n〉2. Since 〈n〉 is held
constant for all temperatures and disorder strengths, κ and χc are
proportional.

the number of magnetic moments with disorder. We also
emphasize that the low-temperature increase in χF is different
from the Stoner criterion for ferromagnetism UN (EF ) > 1,
where N (EF ) is the electron density of states at the Fermi
level. Since increasing disorder (at fixed U ) inevitably leads to
loss of spectral density at the Fermi level, the Stoner criterion
predicts that ferromagnetic tendencies are acted against by
increasing disorder.

In Fig. 6, we plot the charge susceptibility χc = ∂〈n〉/∂μ

vs T for different disorder strengths for U = 2, n = 0.3. The
charge susceptibility decreases monotonically with increasing
disorder strength for all temperatures investigated. Since the
charge susceptibility is expected to be proportional to the
density of states at the Fermi level (at fixed interaction strength
and electron density), we infer that N (EF ) is decreasing
with disorder. The charge susceptibility does not show any

discernible change in behavior with disorder at high or low
temperatures, as in the case of the dc conductivity σdc,29 but in
contrast with χF and 〈m2

z〉, thus implying that at low tempera-
tures the charge and spin sectors display different behavior in
the simultaneous presence of disorder and interaction.

IV. DISCUSSION

In conclusion, our results show that in a strongly correlated
system at low enough temperatures, an increase in random-
ness can increase the tendency toward ferromagnetism. This
tendency toward ferromagnetism is present for all interaction
strengths we have investigated, although, as expected, a
stronger interaction increases the ferromagnetic susceptibility.
We have shown that this enhancement in ferromagnetic
susceptibility is not due to (i) the formation of local moments
and (ii) the Stoner instability. It is a ubiquitous low-temperature
phenomenon in the simultaneous presence of disorder and
interaction. In particular, this is not related to the phase
transition between the metallic and Anderson-insulating phase.
Rather, the enhancement is seen in both the metallic and
insulating phases. We have also established that at low
temperatures, the response of the spin sector to an increase
in the disorder strength is markedly different to that of the
charge sector. Similar effects are also seen in calculations using
DMFT.32 Therefore, Anderson localization cannot explain
these effects since it is absent in d = ∞ where DMFT is exact.
The details of the DMFT calculations will be addressed in a
future publication.
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