
Ariadne: Managing Fine-Grained Provenance
on Data Streams

Boris Glavic
Illinois Institute of

Technology
Chicago, IL

bglavic@iit.edu

Kyumars Sheykh Esmaili
Nanyang Technological

University
Singapore

kyumarss@ntu.edu.sg

Peter M. Fischer
University of Freiburg

Germany
peter.fischer@

cs.uni-freiburg.de

Nesime Tatbul
ETH Zurich
Switzerland

tatbul@inf.ethz.ch

ABSTRACT
Managing fine-grained provenance is a critical requirement for data
stream management systems (DSMS), not only to address com-
plex applications that require diagnostic capabilities and assurance,
but also for providing advanced functionality such as revision pro-
cessing or query debugging. This paper introduces a novel ap-
proach that uses operator instrumentation, i.e., modifying the be-
havior of operators, to generate and propagate fine-grained prov-
enance through several operators of a query network. In addition
to applying this technique to compute provenance eagerly during
query execution, we also study how to decouple provenance com-
putation from query processing to reduce run-time overhead and
avoid unnecessary provenance retrieval. This includes computing a
concise superset of the provenance to allow lazily replaying a query
network and reconstruct its provenance as well as lazy retrieval
to avoid unnecessary reconstruction of provenance. We develop
stream-specific compression methods to reduce the computational
and storage overhead of provenance generation and retrieval. Ari-
adne, our provenance-aware extension of the Borealis DSMS im-
plements these techniques. Our experiments confirm that Ariadne
manages provenance with minor overhead and clearly outperforms
query rewrite, the current state-of-the-art.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query Processing

Keywords
Data Streams, Provenance, Annotation, Experiments

1. INTRODUCTION
Stream processing has recently been gaining traction in a new

class of applications that require diagnostic capabilities, assurance,
and human observation [3, 14]. In these applications, there is a
common need to provide “fine-grained provenance” information
(i.e., at the same level as in database provenance [10]), to trace an
output event back to the input events contributing to its existence.
Example. In monitoring and control of manufacturing systems,
sensors are attached along a supply chain. Sensor readings are
processed by a DSMS in order to detect critical situations such

c©Authors | ACM 2013. This is the author’s version of the work. It is
posted here for your personal use. Not for redistribution. The definitive
Version of Record was published in
DEBS’13, June 29–July 3, 2013, Arlington, Texas, USA.
https://doi.org/10.1145/2488222.2488256.

as machine overheating. These detected events are then used for
automatic corrections as well as for notifying human supervisors.
Human supervisors need to understand why and how such events
were triggered to be able to assess their relevance and react appro-
priately. Figure 1 shows a simplified example of a continuous query
that detects overheating. Two sensors feed timestamped tempera-
ture readings to the query. Each sensor stream is filtered to remove
massive outliers (i.e., temperature t above 350◦C). The stream is
aggregated by averaging the temperature over a sliding window of 3
temperature readings to further reduce the impact of sudden spikes.
These data cleaning steps are applied to each sensor stream individ-
ually. Afterwards, readings from multiple sensors are combined for
cross-validation (i.e., a union followed by a sort operator to glob-
ally order on time). The final aggregation and selection ensure that
a fire alert will only be raised if at least three different sensors show
average temperatures above 90◦C within 2 time units. In this ex-
ample, the user would want to understand which sensor readings
caused an “overheating” alarm event, i.e., determine the tuples that
belong to the fine-grained provenance of this event.
Challenges and Opportunities: Tracking provenance to explore
the reasons that led to a given query result has proven to be an
important functionality in many domains such as scientific work-
flow systems [11] and relational databases [10]. However, provid-
ing fine-grained provenance support over data streams introduces a
number of unique challenges that are not well addressed by tradi-
tional provenance management techniques:
Online and Infinite Data Arrival: Data streams can potentially
be infinite; therefore, no global view on all items is possible. As
a result, traditional methods that reconstruct provenance from the
query and input data on request are not applicable.
Ordered Data Model: In contrast to relational data, data streams
are typically modeled as ordered sequences. This ordering can be
exploited to provide optimized representations of provenance.
Window-based Processing: In DSMSs, operators like aggrega-
tion and join are typically processed by grouping tuples from a
stream into windows. Stream provenance must deal with window-
ing behavior in order to trace the outputs of such operators back to
their sources correctly and efficiently. The prevalence of aggrega-
tions leads to enormous amounts of provenance per result.
Low-latency Results: Performance requirements in most stream-
ing applications are strict; in particular low latency should be main-
tained. Provenance generation has to be efficient enough to not
violate the application’s latency constraints.
Non-determinism: Mechanisms for coping with high input rates
(e.g., load shedding [22, 24]) and certain operator definitions such
as windowing on system time result in outputs that are not deter-
mined solely by the inputs. Conventional provenance management
techniques (e.g., query rewrite [13]) and naive solutions (e.g., tak-

Soutσcount_l>1
αcount_distinct(min_l),

val(2,1,min_ti)
σavg_t>90ρ15,min_ti∪

αmin(l),min(ti),

avg(t),#(3,1)
σt<350S1 1

3

αmin(l),min(ti),

avg(t),#(3,1)
σt<350S2 2

4

5 6 7 8

Figure 1: Example Query Network

ing advantage of cheap, fast storage by dumping all inputs and in-
ferring provenance from the complete stream data) are not suffi-
cient to address all of the challenges outlined above.
Contributions and Outline: In this paper, we propose a novel
propagation-based approach for provenance generation, called op-
erator instrumentation. We use a simple definition of fine-grained
provenance that is similar to Lineage in relational databases [10].
Our approach annotates regular data tuples with their provenance
while they are being processed by a network of streaming opera-
tors. Propagation of these provenance annotations is realized by re-
placing the operators of the query network with operators that cre-
ate and propagate annotations in addition to producing regular data
tuples (we refer to this transformation as operator instrumentation).
This approach can also be used to compute the provenance of a part
of the query network by only instrumenting a subset of the opera-
tors. Previous annotation propagation approaches for fine-grained
stream provenance [12] are restricted to one-step provenance, i.e.,
annotating output tuples from an operator with their provenance
from the operator’s input. Our approach is more general and flex-
ible; provenance can also be propagated through several operators
or even a complete query network. By lifting this restriction we are
able to overcome many of the shortcomings of these approaches in-
cluding large storage overhead (tracking provenance through a path
in the query network requires storage of all streams on the path)
and expensive retrieval (queries over provenance require recursive
tracing using the single-step provenance).

We represent provenance as sets of tuple identifiers during prov-
enance generation. Querying provenance is supported by recon-
structing complete input tuples from the identifier sets using a new
operator called p-join. This is achieved by temporarily storing in-
put stream tuples for the reconstruction.1 A number of optimiza-
tions enable us to decouple provenance management from query
processing: The Replay-Lazy optimization reduces the run-time
overhead of provenance computation by propagating a concise su-
perset of the provenance and lazily replaying a query network to
reconstruct its provenance. The Lazy-Retrieval method avoids re-
constructing provenance for retrieval if parts of the provenance will
not be needed by the query. Furthermore, we devise a number of
compression schemes to reduce the computation cost. We have
implemented our approach in Ariadne, a provenance-aware DSMS
that is based on the Borealis prototype [1]. More specifically, this
paper makes the following contributions:
• We introduce a novel provenance generation technique for

DSMS based on annotating and propagating provenance in-
formation through operator instrumentation, which allows gen-
erating provenance for networks and subnetworks without the
need to materialize data at each operator.

• We propose a number of optimization techniques that allow
decoupling provenance computation from query processing
through the application of lazy generation and retrieval tech-
niques and improve performance by compression.

1This is in contrast to one-step approaches that also require the
storage of intermediate streams.

Method Applicable to Runtime
Overhead

Retrieval
Overhead

Inversion Invertible None High
Query Rewrite Deterministic High -
Operator
Instrumentation

All Low -

Figure 2: Comparison of Provenance Generation Alternatives

• We present Ariadne, the first DSMS prototype providing sup-
port for fine-grained multi-step provenance.

• We provide an experimental evaluation of the proposed tech-
niques using Ariadne. The results demonstrate that providing
fine-grained provenance via optimized operator instrumenta-
tion has minor overhead and clearly outperforms query rewrite,
the current state-of-the-art.

The rest of this paper is organized as follows: Section 2 gives
an overview of our approach for adding provenance generation and
retrieval to a DSMS. We introduce the stream, provenance, and an-
notation model underlying our approach in Section 3. Building
upon this model, we present its implementation in the Ariadne pro-
totype in Section 4. We cover optimizations of our basic approach
in Section 5. We present experimental results in Section 6, discuss
related work in Section 7, and conclude in Section 8.

2. OVERVIEW OF OUR APPROACH
We generate and propagate provenance annotations by replacing

query operators with special provenance-aware operators. Prove-
nance is modeled as a set of tuples from the input streams that are
sufficient to produce a result tuple. Output tuples are annotated
with sets of tuple identifiers representing their provenance.

2.1 Why Operator Instrumentation?
There are two well-known provenance generation techniques in

the literature that we considered as alternatives to operator instru-
mentation for generating DSMS provenance: (1) computing in-
verses and (2) rewriting the query network to propagate provenance
annotations using the existing operators of the DSMS. Figure 2
shows a summary of the tradeoffs. Inversion (e.g., Woodruff et
al. [27]) generates provenance by applying the inverse (in the math-
ematical sense) of an operator. For example, a join (without pro-
jection) is invertible, because the inputs can be constructed from an
output tuple. Inversion has very limited applicability to DSMSs,
because no real inverse exists for most non-trivial operators. Query
Rewrite, established in relational systems such as Perm [13], DB-
Notes [8], or Orchestra [19], generates provenance by rewriting a
query network Q into a network that generates the provenance of
Q in addition to the original network outputs. This usually requires
changes to the structure of the query network. For example, as ex-
plained in [13], a provenance-generating copy of a subnetwork has
to be added to and joined with the original subnetwork to support
aggregates. This leads to significant additional run-time overhead
and incorrect provenance for non-deterministic operators.

In summary, we believe that Operator Instrumentation is the best
approach for generating provenance in DSMSs, because it is appli-
cable to a large class of queries while maintaining low overhead in

S1 Sout

S2 n P

Instrumented
Network

Reconstruct
Provenance

Temporary
Input Storage

Figure 3: Reduced-Eager Operator Instrumentation

terms of provenance computation and retrieval. Our experimental
results in Section 6 verify our hypothesis.

2.2 The Operator Instrumentation Approach
The key idea behind our operator instrumentation approach is to

extend each operator implementation so that the operator is able
to annotate its output with provenance information based on prov-
enance annotations of its inputs. Under operator instrumentation,
provenance annotations are processed in line with the regular data.
That is, the structure of the original query network is kept as is (op-
erators are simply replaced with their instrumented counterparts).
Thus, most issues caused by non-determinism are dealt with in a
rather natural way, since the execution of the original query net-
work is traced2. Provenance can be traced for a single operator (as
supported by previous approaches [12]) or for a complete subnet-
work. Furthermore, we can trace provenance for a subnetwork by
instrumenting only operators in that subnetwork. The only draw-
back of operator instrumentation is the need to extend all operators.
However, as we will demonstrate in Section 4.2, this extension can
be implemented with reasonable effort.

With operator instrumentation, provenance can be generated ei-
ther eagerly during query execution (our default approach) or lazily
upon request. We support both types of generation, because their
performance characteristics in terms of storage, runtime, and re-
trieval overhead are different (see Figure 4). This enables the user
to trade runtime-overhead on the original query network for storage
cost and runtime-overhead when retrieving provenance
Reduced-Eager: Figure 3 shows an example how we instrument
a network for eager provenance generation. We temporarily store
the input tuples for the instrumented parts of the network (e.g., for
input streams S1 and S2, since we want provenance for the entire
query network). The tuples in the output stream of the instrumented
network carry the provenance annotations as described above, i.e.,
each output is annotated with the set of identifiers of the tuples in
its provenance. Provenance is reconstructed for retrieval from the
annotations using a new operator called p-join (n). For each out-
put tuple t, this operator retrieves all input tuples in the provenance
using the set of identifiers from the provenance annotation and out-
puts all combinations of t with a tuple from its provenance. Each of
these combinations is emitted as a single tuple to stream P. We call
this approach Reduced-Eager, because we are eagerly propagat-
ing a reduced form of provenance (the tuple identifier sets) during
query execution and lazily reconstructing provenance independent
of the execution of the original network. In comparison with us-
ing sets of full tuples as annotations, this approach pays a price for
storing and reconstructing tuples. However, because compressed
representations can be used, this cost is offset by a significant re-
duction in provenance generation cost (in terms of both runtime

2The overhead introduced by provenance generation may affect
temporal conditions (e.g., windows based on system time). How-
ever, this is not a real drawback, because such conditions are sensi-
tive to other system events in addition to overhead caused by prov-
enance generation.

Method Applicable
to

Runtime Overhead Retrieval Over-
head

Reduced-
Eager

All Full Generation (high) Reconstruct (low)

Replay-
Lazy

Deterministic Minimal Generation
(low)

Replay (high)

Figure 4: Trade-offs for Eager vs. Lazy

and latency). Since reconstruction is separate from generation, we
can often avoid reconstructing complete provenance tuples during
provenance retrieval, e.g., if the user only requests provenance for
some results (query over provenance).
Replay-Lazy: Instead of generating provenance eagerly while the
query network is running, we would like to be able to generate
provenance lazily in order to decouple provenance generation from
the execution of the query network. Since DSMSs are expected
to deal with high rates and low latency requirements, eager prov-
enance computation may incur significant runtime overhead to the
critical data processing path. Decoupling most of the provenance
computation from query processing enables us to reduce the run-
time overhead on the query network and outsource provenance gen-
eration to a separate machine and thus improve performance for
both normal query processing and provenance computation. For
deterministic networks, we can realize lazy generation by replay-
ing relevant inputs through a instrumented copy of the network. We
call this approach Replay-Lazy. Replay-Lazy has to propagate min-
imal bookkeeping information during query execution to be able to
determine which inputs are relevant and, thus, reduce the amount
of data that is stored and replayed. We record for each output tuple
the parts of the input which are needed for the replay to be executed
correctly (by annotating the tuple), which turns out to be a concise
superset (constant size) of the actual provenance. Replay-Lazy re-
duces the runtime overhead by just computing this minimal type of
provenance, but incurs a higher retrieval cost due to the replay and
is only applicable to deterministic networks.

3. PROVENANCE PROPAGATION BY OP-
ERATOR INSTRUMENTATION

Based on the stream data and query model of Borealis [1], we
now informally introduce our stream provenance model and discuss
how to instrument queries to annotate their outputs with provenance
information. A formal treatment can be found in [15].

3.1 Data and Query Model
We model a stream S =�t1, ...� as a possibly infinite sequence

of tuples. A tuple t = (T ID;a1, . . .) is an ordered list of attribute
values (here ai denotes a value) plus a tuple-identifier (TID) that
uniquely identifies the tuple within stream scope denoted as stream-
id:tuple-id. A query network is a directed acyclic graph (DAG)
in which nodes and edges represent streaming operators and in-
put/output streams respectively. Each stream operator in a query
network takes one or more streams as input, and produces one or
more streams as output. The query algebra we use here covers all
the streaming operators from [1].
Selection: A selection operator σc(S) with predicate c filters out
tuples from an input stream S that do not satisfy the predicate c.
Projection: A projection operator πA(S) with a list of projection
expressions A (e.g., attributes, function applications) projects each
input tuple from stream S on the expressions from A.
Aggregation: An aggregation operator αagg,ω (S) groups its input
S into windows using the window function ω and computes the ag-
gregation functions (agg) over each window generated by ω . For
example, the count-based window function #(c,s) groups a consec-

TID ti l t
2 : 1 1 2 89
2 : 2 2 2 102
2 : 3 3 2 105
2 : 4 4 2 106
2 : 5 5 2 105
2 : 6 6 2 108

TID ti l t
3 : 1 2 1 83
3 : 2 3 1 79
3 : 3 4 1 92
3 : 4 5 1 95
3 : 5 6 1 94

TID min ti min l avg t
5 : 1 2 1 84.6
5 : 2 3 1 85.3
5 : 3 4 1 93.6

TID min ti min l avg t
6 : 1 1 2 98.6
6 : 2 2 2 104.3
6 : 3 3 2 105.3
6 : 4 4 2 106.3

TID min ti min l avg t
7 : 1 2 1 84.6
7 : 2 3 1 85.3
7 : 3 4 1 93.6
7 : 4 1 2 98.6
7 : 5 2 2 104.3
7 : 6 3 2 105.3
7 : 7 4 2 106.3

TID min ti min l avg t
8 : 1 1 2 98.6 {7 : 4}
8 : 2 2 2 104.3 {7 : 5}
8 : 3 2 1 84.6 {7 : 1}
8 : 4 3 1 85.3 {7 : 2}
8 : 5 3 2 105.3 {7 : 6}
8 : 6 4 1 93.6 {7 : 3}
8 : 7 4 2 106.3 {7 : 7}

TID min ti min l min t
9 : 1 1 2 98.6 {7 : 4}
9 : 2 2 2 104.3 {7 : 5}
9 : 3 3 2 105.3 {7 : 6}
9 : 4 1 4 93.6 {7 : 3}
9 : 5 2 4 106.3 {7 : 7}

TID count l
10 : 1 1 {7 : 4, 7 : 5}
10 : 2 1 {7 : 5, 7 : 6}
10 : 3 2 {7 : 3, 7 : 6}
10 : 4 2 {7 : 3, 7 : 7}

TID count l
11 : 1 2
11 : 2 2

�

↵

⇢
[

�

↵

�

↵

�

TID ti l t
1 : 1 1 1 399
1 : 2 2 1 83
1 : 3 3 1 79
1 : 4 4 1 92
1 : 5 5 1 95
1 : 6 6 1 94

TID ti l t
4 : 1 1 2 89
4 : 2 2 2 102
4 : 3 3 2 105
4 : 4 4 2 106
4 : 5 5 2 105
4 : 6 6 2 108

1

2S2

S1
Sout3

4 5

6

7

8

PG

PP

PP

PD

Figure 5: Example Query Network Evaluation with Provenance-aware Operators and Provenance Annotations

utive input tuple sequence (length c) into a window and slides by
a number of tuples s before opening the next window. The value-
based window function val(c,s,a) groups a consecutive sequence
of tuples into a window if their values in attribute a differ less than
c from the attribute value of the first tuple in the window. The slide
s determines how far to slide on a before opening the next window.
Note that value-based windows subsume the concept of time-based
windows by using a time attribute.
Join: A join operator ./c, jω (S1,S2) joins two input streams S1 and
S2 by applying the join window function jω to S1 and S2. A join
window function models the buffering behavior of stream joins.
All tuples from both input streams that are in the join’s buffer at a
point in time are grouped into the same join window. For each join
window w, the join operator outputs all pairs of tuples from S1 and
S2 that belong to w and fulfill the join condition c.
Union: A union operator ∪(S1,S2) merges tuples from two input
streams S1 and S2 into a single stream based on their arrival order.
B-Sort: A b-sort operator ρs,a(S) with slack s and an order-on at-
tribute a applies bounded-pass sort with buffer size s+1 on its in-
put, and produces an output that is approximately sorted on a.

EXAMPLE 1. Figure 5 shows an execution of the network intro-
duced in Figure 1 for a given input. For now ignore the annotations
on operators and tuples in streams 6 to 8. Both input streams (S1
and S2) have the same schema with attributes time (ti), location (l),
and temperature (t). The left-most filters drop temperature outliers.
The results of this step are grouped into windows of three tuples
using slide one. For each window we compute the minimum of time
(to assign each aggregated tuple a new time value) and location
(the location is fixed for one stream, thus, the minimum of the lo-
cation is the same as the input location), and average temperature.
The aggregated streams are merged into one stream (∪) and sorted
on time. We then filter out tuples with temperature values below the
overheating threshold and compute the number of distinct locations
over windows of two time units. Tuples with fewer than two distinct
locations are filtered out in the last step. For instance, in the exam-
ple execution shown in Figure 5, the upper left selection filters out
the outlier tuple 1:1(1,1,399). The following aggregation groups
the first three result tuples into a window and outputs the average
temperature (84.6), minimum time (2), and location (1).

3.2 Provenance Model and Annotated Streams
We use a simple provenance model that defines the provenance

of a tuple t in a stream O of a query network q as a set of tuples from

input (or intermediate) streams of the network. We use P(q, t, I) to
denote the provenance set of a tuple t from one of the streams of
network q with respect to inputs from streams in a set I. For in-
stance, if t is a tuple in stream 3 of the example network shown
in Figure 1, then P(q, t,{S1}) denotes the set of tuples from input
stream S1 that contributed to t. We omit I if we compute the prov-
enance according to the input streams of the query network.

Note that we require I to be chosen such that the paths between
streams in I and O (the stream of t) form a proper query network.
For instance, assume that t is a tuple from stream 5 in the network
shown in Figure 5. P(q, t,{1,2}) denotes the set of tuples from
streams 1 and 2 that contributed to t. P(q, t,{2}) would be unde-
fined, because only one of the inputs of the union is included. For-
mally, our work is based on a declarative definition of provenance,
which is used to determine the provenance behavior for each of the
operators. Intuitively, the provenance definition for all operators is
as follows: For Selection and Projection, the provenance of t con-
sists of the provenance of the corresponding input tuple. The same
is true for Union and BSort, since only a single tuple is contributing
to t. For example, tuple 9:1 in the network shown in Figure 5 was
generated by the selection from tuple 8:1 . Thus, the provenance
set of this tuple is {7:4}, the same as the provenance set of tuple
8:1 . For Join, the union of the provenance sets of the join partners
generating t constitutes the provenance. Finally, the provenance set
for t in the result of an Aggregation is the union of the provenance
sets for all tuples from the window used to compute t.

We use the concept of provenance sets to define streams of tuples
that are annotated with their provenance sets. For a query network
q, the provenance annotated stream (PAS) P(q,O, I) for a stream O
according to a set of streams I is a copy of stream O where each
tuple t is annotated with its corresponding provenance set P(q, t, I).
In the following, we will omit the query parameter q from prove-
nance sets and PAS if it is clear from the context.

EXAMPLE 2. Consider the PAS P(6,{5}) for the output of the
b-sort operator according to its input shown in Figure 5 (prove-
nance sets are shown to the right of the tuples). Each output t of the
b-sort is annotated with a singleton set containing the correspond-
ing tuple from the b-sort’s input, e.g., tuple 8:1 is derived from
tuple 7:4 . Now consider the PAS for the output of the last aggre-
gation in the query according to the input of the b-sort (P(8,{5})).
Each output tuple is computed using information from a window
containing two input tuples with one tuple overlap between the in-
dividual provenance sets. For example, tuple 10:2 is derived from

Algorithm 1 InstrumentNetwork Algorithm

1: procedure INSTRUMENTNETWORK(q,O, I)
2: mixed← /0
3: for all o ∈ q do . Find operators with mixed usage
4: if ∃S,S′ ∈ input(o) : S ∈ I∧S′ 6∈ I then
5: mixed← mixed∪ input(o)
6: for all S ∈ (mixed∩ I) do . Add projection wrappers
7: S←Πschema(S)(S)

8: for all o ∈ q do . Replace operators
9: if ∃S ∈ I : HASPATH(S,o)∧HASPATH(o,O) then

10: if ∃S′ ∈ input(o) : S′ ∈ I then
11: o← PG(o)
12: else
13: o← PP(o)
14: for all o ∈ q do . Drop annotations
15: if O ∈ input(o) then
16: o← PD(o)

a window of tuples with provenance {7:5} and {7:6}, and tuple
10:3 is derived from a window with provenance {7:6 ,7:3}.

3.3 Instrumenting Operators and Networks
for Annotation Propagation

We now discuss how to instrument a query network q to gener-
ate the PAS for a subset of the streams in q by replacing all or a
subset of the operators with annotating counterparts. Three types
of instrumented operators are used in this approach:
Provenance Generator (PG): The provenance generator version
PG(o) of an operator o computes the PAS for all output streams of
the operator according to its input streams. The purpose of a PG is
to generate a PAS from input streams without annotations. For each
output stream S of the operator o, PG(o) creates P(S, input(o))
where input(o) are the input streams of operator o.
Provenance Propagator (PP): This version of operator generates
the PASs for its outputs from PASs of its inputs. For simplicity,
let us explain the concept for an operator o with a single output O
and a single input PAS P(S, I). The PP version of o will output
P(O, I), i.e., the output will be annotated with provenance sets of O
according to I. Intuitively, a PP generates annotated output streams
by modifying the annotations from its input streams according to
the provenance behavior of the operator.
Provenance Dropper (PD): The provenance dropper version PD(o)
of an operator o removes annotations from the input before apply-
ing operator o. Provenance droppers are used to remove annota-
tions from streams in networks with partial provenance generation.

The PG version of selection generates an annotated output stream
where the provenance set of each output tuple t contains the corre-
sponding input tuple, and the PP version outputs the input tuples
with unmodified provenance sets (for tuples that fulfill the selection
condition). Projection, union, and b-sort behave in the same way
by creating singleton provenance sets (PG) or passing on prove-
nance sets from the input (PP). The PG operator for aggregation
annotates each output tuple t with a provenance set that consists of
all identifiers for tuples in the input window that generated t, and
the PP operator annotates each output tuple t with the union of the
provenance sets of all tuples in the window that generated t. The
PG version of join annotates each output t with a set consisting of
the two tuples that were joined to produce tuple t. The PP version
of this operator unions the provenance sets of the join partners.
Networks with Annotation Propagation: Using the PG and PP
versions of operators we have the necessary means to generate

(a) Query Network with Full Propagation

P(Sout ,{S1,S2})σ

PP

α

PP

σ

PP

ρ

PP

∪
PPσ

PP

σ

PP

α

PG

α

PG

S2

S1

(b) Annotation Propagation for Parts of the Network

Soutσ

PD

α

PP

P(8,{5})

σ

PP

ρ

PG

∪
σ

σ

α

α

S2

S1

Figure 6: Annotating Query Networks

provenance for a complete (or parts of a) query network by replac-
ing all (or some) operators with their annotating counterparts. PD
versions of operators are used to remove provenance annotations
from streams that are further processed by the network. We use
algorithm InstrumentNetwork (Algorithm 1) to instrument a net-
work q to compute a PAS P(O, I). First we normalize the network
to make sure that the inputs to every operator are either (1) only
streams from I or (2) contain no streams from I. This step is nec-
essary to avoid having operators that read from both streams in and
not in I, because the annotation propagation behaviour of these op-
erators is neither correctly modelled by their PG nor PP version.
We wrap each stream S in I that is connected to such an opera-
tor in a projection on all attributes in the schema of S. This does
not change the results of the network, but guarantees that we can
use solely PG and PP operators to generate a PAS3. The algorithm
then iterates through all operators in the query network and replaces
each operator that reads solely from streams in I (case 1) with its
PG version, and all remaining operators on paths between streams
in I and O are replaced with their PP versions. Finally, all non-
instrumented operators reading from O are replaced by their PD
version. This step is necessary to guarantee that non-instrumented
operators are not reading from annotated streams.

A query network instrumented to compute a PAS P(O, I) gener-
ates additional PAS as a side effect. Each PP operator in the mod-
ified network generates one or more PAS (one for each of its out-
puts) according to the subset of I its connected to. Thus, additional
PAS are generated for free by our approach. We use P(q) (called
provenance generating network or PGN) to denote a network that
generates the PAS for all output streams of network q according to
all input streams of q. Such a network is generated using a straight-
forward extension of Algorithm 1 to sets of output streams.

EXAMPLE 3. Two provenance generating versions of the exam-
ple network are shown in Figure 6 (the operator parameters are
omitted to simplify the representation). Figure 6(a) shows P(q),
i.e., the annotating version of q that generates the PAS P(Sout ,{S1,
S2}) for output stream Sout according to all input streams (S1 and
S2). The left-most filter operators in the network are only attached
to input streams and, thus, are replaced by their PG versions. All
other operators in the network are replaced by PP operators. The
query network shown in Figure 6(b) generates the PAS P(8,{5})
(An example execution was shown in Figure 5). The output stream
of the right-most aggregation is annotated with provenance sets
containing tuples of the b-sort operator’s input stream. The right-
most selection is replaced with its PD version to drop provenance
3Adding operator types to the algebra that deal with a mix of an-
notated and non-annotated streams does not pose a significant chal-
lenge. However, for simplicity we refrain from using this approach.

(a) Tuple Layout

Field n

Tuple Header:
H bytes

Payload:
P bytes

TID Field 1

Tuple:
TS = P + H bytes

T bytes

(b) Provenance Tuple Layout (First)

Tuple Header:
T bytes

Provenance Payload:
(P + H - T)/ T tuple identifiers

#TIDS TID1 TID2 TIDn-1

(c) Provenance Tuple Layout (Intermediate)

Provenance Payload:
(P + H)/ T tuple identifiers

TIDn TIDn+1 TIDn+2 TID2n-1

Figure 7: Physical Tuple Layout

annotations before applying the selection. This is necessary to pro-
duce the output stream Sout without annotations.

4. IMPLEMENTATION
In this section, we present the implementation of the Ariadne

prototype. Given the overall architecture (outlined in Section 2)
and the provenance propagation model (Section 3), three aspects
are now of particular interest: (1) Representation of provenance
annotations during the computation, (2) implementation of PG and
PP operators, and (3) storing and retrieving the input tuples for
Reduced-Eager.

4.1 Provenance Representation
The physical representation of provenance annotations and mech-

anism for passing them between operators is a crucial design deci-
sion, because it strongly influences the run-time overhead of prov-
enance generation and how we implement annotating operators.
Since these annotations consist of TID sets, they can be of vari-
able size. However, Borealis uses fixed-length tuples that consist
of a fixed length header storing information such as TID and ar-
rival time, and a payload which stores the binary data of the tuple’s
attributes values. The schema of a stream, which is not stored in
the stream tuples, is used to interpret the payload of tuples.

We considered three alternatives to pass these variable-size TID-
Sets between annotating operators: (1) Modify the queuing mech-
anism to deal with variable-length tuples, (2) propagate TID-Sets
through channels other than Borealis queues, or (3) split large TID-
Sets into fixed-length chunks which are then streamed over stan-
dard queues. We chose the third approach, as it is least intrusive
and retains the performance benefits of fixed-size tuples.

We serialize the provenance (TID-Set) for a tuple t into a list of
tuples that are emitted directly after t. Each of these tuples stores
multiple TIDs from the set. Figures 7(b) and 7(c) show the physi-
cal layout of such tuples. The first tuple (Figure 7(b) in the serial-
ization of a TID-Set has a small header (same size as a TID) that
stores the number of TIDs in the set. This header is used by down-
stream operators to determine how many provenance tuples have to
be dequeued. Given that the size of a TID in Borealis is 8 bytes
(actually sizeof (signed long)), we are saving at least an order of

magnitude of space (and tuples propagated) compared to using full
tuples. We adapted the TID assignment policy to generate globally
unique TIDs that are assigned as contiguous numbers according to
the arrival order at the input streams. If stream-based tuple lookup
becomes necessary, we could reserve several bits of a TID for stor-
ing the stream ID. This is a trivial extension of our approach and
left for future work.

4.2 Provenance Annotating Operator Modes
We extend the existing Borealis operators with new operational

modes to implement PG, PP, and PD operators. Operators in both
PG- and PP-mode need to perform three steps: (1) retrieving exist-
ing provenance-related information from the input tuples, (2) com-
pute the provenance, and (3) serialize provenance annotations along
with data tuples. These steps have a lot of commonalities: Serial-
ization (step 3) is the same for all operators. Retrieval (step 1)
differs only slightly for PG and PP modes, but is again the same
for all operators. When reading tuples from the input streams in
PG-mode, the TID of each input tuple is extracted as provenance.
In PP-mode we read the provenance sets attached by previous op-
erations. For PD we simply discard the retrieved TID set. We fac-
tored out these commonalities into a so-called provenance wrap-
per. The provenance wrapper also implements additional common
functionality such as buffering and merging of TID-Sets. Hooking
into the dequeue() and enqueue() methods of Borealis, retrieval and
serialization can be added trivially. Using the provenance wrap-
per, the operator-specific part of the provenance computation can
thus be expressed with a small amount of code. For Selection,
Projection, Union the provenance of a result tuple consists of the
provenance of a single input tuple which can be directly deter-
mined. B-Sort and Join are slightly more complicated, requiring
some lightweight bookkeeping to keep track of the contributing tu-
ples. The most complicated case is aggregation, in particular with
overlapping windows: each output tuple may depend on several in-
put tuples, and each input tuple may contribute to several output
tuples. This requires fairly elaborate state management, including
merging and sharing TID sets. Nonetheless, the amount of code
needed for aggregation was about 200 LOC, a fairly small change.

EXAMPLE 4. Figure 8 shows the provenance computation for
the annotating network from Figure 6(b). Recall that this net-
work generates P(q,8,{5}). Provenance headers are highlighted
in brown and TIDs in a provenance tuple are highlighted in red. We
use unrealistically small tuple sizes for presentation purposes. For
instance, the aggregation operator uses the provenance wrapper to
merge the TID-Sets from all tuples in a window and output them
as the TID-Set for the result tuple produced for this window. For
instance, the tuple 10:1 is generated from a window containing tu-
ples 9:1 and 9:2 . The merged TID-Set for these tuples ({7:4 ,7:5})
is appended to the output tuple queue after tuple 10:1 .

4.3 Input Storage and Retrieval
As mentioned before, we apply a Reduced-Eager approach which

requires preservation of input tuples at PG operators to be able to
reconstruct fully-fledged provenance from TID-Sets for retrieval.
We use a Borealis feature called Connection Point for input tuple
storage and introduce the p-join operator for transforming TID-Sets
into a queryable format.
Input Storage at PG operators: Connection points (CP), intro-
duced by Ryvkina et al. [23] for revision processing in Borealis,
provide temporary storage for tuples that pass though a queue. Be-
sides other strategies, CPs support a time-out based strategy for
removing old tuples from storage. We set this timeout according to
the provenance retrieval pattern of the application, which typically

�
PP

↵
PP

⇢
PG

...9:1 1 2 98.6

...9:2 2 2 104.3

...9:3 3 2 105.3

...9:4 1 4 93.6

...9:5 2 4 106.3

5

6

7 8
...8:1 1 2 98.6

...8:2 2 2 104.3

...8:3 2 1 84.6

...8:4 3 1 85.3

...8:5 3 2 105.3

...8:6 4 1 93.6

...8:7 4 2 106.3

#1 7:4

#1 7:5

#1 7:1

#1 7:2

#1 7:6

#1 7:3

#1 7:4

#1 7:5

#1 7:6

#1 7:3

2#1 7:7

...10:1 1

...10:2 1

...10:3 2

...10:4 2

#2 7:4 7:5

#2 7:5 7:6

#2 7:3 7:6

#2 7:3 7:7

4#1 7:7

n

...7:1 2 1 84.6

...7:2 3 1 85.3

...7:3 4 1 93.6

...7:4 1 2 98.6

...7:5 2 2 104.3

...7:6 3 2 105.3

...7:7 4 2 106.3

...10:1 1 7:4

...10:1 1 7:5

...10:2 1 7:6

...10:2 1 7:5

...10:3 2 7:3

...10:3 2 7:6

...10:4 2 7:7

...10:4 2 7:3

1 2 98.6
2 2 104.3
2 2 104.3
3 2 105.3
4 1 93.6
3 2 105.3
4 1 93.6
4 2 106.3

...10:3 2 7:3 4 1 93.6

...10:4 2 7:3 4 1 93.6

�
Reconstruct
and Query

Provenance

Temporary
Input Storage

Figure 8: Provenance-enabled Query Network with Retrieval

span several seconds to minutes. Using the provenance itself for
more directed expiration as well as utilizing write-optimized, pos-
sibly distributed storage technologies are interesting avenues for
future work. If a query network q is instrumented to compute a
PAS P(O, I), then we add a connection point to each stream in I,
i.e., the streams that are inputs of provenance generators.
P-join: Similar to the approach in [13], we have chosen to repre-
sent provenance to the consumer using the non-extended Borealis
data model. For each result tuple t with a provenance annotation set
P, we create as many duplicates of t as there are entries in P. One
tuple from the provenance is attached to each of these duplicates.
Thus, we effectively list the provenance as a sequence of regular
tuples which enables the user to express complex queries over the
relationship between data and its provenance using existing Bore-
alis operators. This functionality is implemented as a new operator
called p-join. A p-join n(S,CP) joins an annotated stream S with
a connection point CP and, thus, outputs tuples with tuples from
their provenance. P-join uses a fast hash-based look-up from a CP
(using the TID as the key) to determine the tuples to join with an
input tuple instead of using a regular join with an input stream.

EXAMPLE 5. The relevant part of the running example network
with retrieval is shown in Figure 8. Recall that this network was
instrumented to generate P(q,8,{5}). Hence, a CP (the cylinder)
is used to preserve tuples from stream 5 for provenance retrieval.
The PAS generated by the aggregation operator is used as the in-
put for a p-join with the single CP in the network. The stream
produced by the p-join can be shown to a user or be used as in-
put for further processing. Assume the user expected the system to
output less alarms and suspects that the threshold for overheating
should be raised. To test this assumption she can investigate which
alarms (output tuples) have temperature readings (input tuples) in
their provenance that are slightly above the threshold (e.g., below
100 degree). This query can be implemented by applying a filter
(avg_t < 100∧ count_l > 1) on the output of the p-join as shown
in Figure 8.

5. OPTIMIZATIONS
Reduced-Eager is a solid solution for provenance computation.

However, certain challenges in stream processing call for addi-
tional optimizations: (1) Typical DSMS workloads rely heavily on
windowed aggregation. Such workloads produce large amounts of
provenance per result. (2) Stream processing systems treat data as
transient and discard data as soon as possible to keep up with high

input data rates. Computing provenance on the fly to deal with the
transient nature of streams increases run-time and latency. We ad-
dress these challenges by developing compressed provenance rep-
resentations (to reduce the overhead) as well as lazy provenance
computation and retrieval techniques (to decouple query execution
from provenance generation).

5.1 Provenance Compression
The methods we developed for TID-set compression range be-

tween generic data compression to methods which exploit data mod-
el and operator characteristics. We mainly target aggregation and
focus on techniques that enable provenance computations at opera-
tors without having to decompress. Since each presented compres-
sion method has its sweet spot, we adaptively combine them.
Interval encoding: exploits the fact that the provenance of a win-
dow is the union of the provenance of the tuples in the window.
These tuples form contiguous sub-sequences of the input sequence.
This method encodes a TID-Set as a list of intervals spanning con-
tinuous sequences in the set. For example, consider the interval en-
coding (Figure 9(b)) for the example network shown in Figure 9(a).
The provenance of tuple 3:1 is represented as a single interval [1,4],
because the TID-Set forms a single contiguous sequence of TIDs
(1 to 4). Interval encoding is most advantageous for queries in-
volving aggregations over long sequences of contiguous TIDs, but
introduces overhead if such sequences do not occur - both the start
and end TID of an interval need to be stored.
Delta Encoding: Delta encoding utilizes the fact that windows
with small slide values overlap to a large extent. Therefore, the
TID-Set of a tuple may be encoded more efficiently by represent-
ing it as some delta to the TID-Set of one of its predecessors (by
encoding which TIDs at the start of the previous set are left out and
which TIDs are appended to the end). We repeatedly send a tu-
ple with uncompressed provenance followed by several tuples with
their provenance encoded as a delta to the last uncompressed prov-
enance that was sent. While this “restart” approach has a higher
space overhead than encoding a TID-Set as a delta to the last delta,
we can restore a TID-Set from its delta representation in a single
step without the need to apply a long chain of deltas to the last
uncompressed provenance.

EXAMPLE 6. Consider how delta encoding handles the exam-
ple from Figure 9(b). The provenance header of a delta compressed
tuple contains an additional field storing the amount of overlap
(number of TIDs) between the delta and the last complete TID-Set
that was sent. The TID-Set of the first output tuple of the aggrega-

(a) Query Network

TID a
1 : 1 2
1 : 2 3
1 : 3 4
1 : 4 5
1 : 5 10
1 : 6 1
1 : 7 2

TID a
2 : 1 2 {1 : 1}
2 : 2 3 {1 : 2}
2 : 3 4 {1 : 3}
2 : 4 5 {1 : 4}
2 : 5 1 {1 : 6}
2 : 6 2 {1 : 7}

TID sum a
3 : 1 14 {1 : 1, 1 : 2, 1 : 3, 1 : 4}
3 : 2 13 {1 : 2, 1 : 3, 1 : 4, 1 : 6}
3 : 3 12 {1 : 3, 1 : 4, 1 : 6, 1 : 7}

PG
�a<7

PP
↵sum(a),#(4,1)

(b) Compressed Provenance
Technique Data Provenance Physical Representation

No compression 3:1(14) {1,2,3,4} S 4 1 2 3 ...4

3:2(13) {2,3,4,6} S 4 2 3 4 ...6

3:3(12) {3,4,6,7} S 4 3 4 6 ...7

Interval 3:1(14) {[1,4]} I 1 1 ...4

3:2(13) {[2,4], [6,6]} I 2 2 4 6 ...6

3:3(12) {[3,4], [6,7]} I 2 3 4 6 ...7

Delta 3:1(14) 0:{1,2,3,4} D 4 0 1 ...2 3 4

3:2(13) 3:{6} D 1 3 ...6

3:3(12) 2:{6,7} D 2 2 6 ...7

Covering Interval 3:1(14) [1,4] ... 14 1 43:1

3:2(13) [2,6] ... 13 2 63:2

3:3(12) [3,7] ... 12 3 73:3

Figure 9: Compression Techniques Example

tion is sent completely. The TID-Set of tuple 3:2 (3:3) shares three
(two) TIDs with last full TID-Set (tuple 3:1). The provenance of
these tuples is encoded as deltas storing the overlap (3 respective
2) and the additional TIDs ({6} respective {6,7}).

For Delta encoding, we have to cache the last complete TID-Set
that was sent and the number of deltas applied to it. Operators in
PP-mode may have to reconstruct TID-Sets from the delta repre-
sentation. For example, an aggregation in PP-mode needs to do
so to merge the provenance for a window of tuples. In contrast,
Projection can simply pass on delta compressed provenance. The
same applies for selection except that selection may filter out a tu-
ple with a complete TID-Set leaving the following deltas orphaned.
We handle this situation by reconstructing the full TID-Set for the
first orphaned tuple and adapting the following deltas.
Dictionary Compression: If the size of a TID-Set exceeds a thresh-
old we can use dictionary compression techniques (we use LZ77)
to compress it. This type of compression can reduce the cost of
forwarding significantly for large TID-Sets at the cost of additional
processing to compress and decompress TID-Sets.
Adaptive Combination of Compression Techniques: Our proto-
type combines the presented compression techniques using a set of
heuristic rules that determine when to apply which type of com-
pression. Generally speaking, we first choose whether to use inter-
vals or a TID-Set, then apply delta-encoding on-top if the overlap
between consecutive TID-Sets is high, and finally apply dictionary
compression if the result size still exceeds a threshold.

5.2 Lazy Generation and Retrieval
We now introduce two optimizations that decouple query pro-

cessing and provenance operations to save computation cost.
Replay-Lazy: The Replay-Lazy method introduced in Section 2.2
computes provenance by replaying parts of the input through a
provenance generating network. Replay-Lazy can be advantageous
for several reasons: (1) the cost of provenance generation is only
paid if provenance is actually needed, (2) the overhead on regular

query processing is minimal, enabling provenance for time-critical
applications, and (3) provenance computation is mostly decoupled
from query execution. Thus, provenance generation can be per-
formed later or on different resources, e.g. a distributed system.

Replay-Lazy is only applicable to query networks consisting of
deterministic and monotone operators. Furthermore there is one
critical concept required to make replay feasible: With no addi-
tional information, the whole input of the query network (i.e., stream
prefix up to this point) has to be replayed through a PGN until the
output of interest is produced. This can be avoided if we can com-
putate which parts have to replayed while executing the query. We
can prove that for all monotone and deterministic operators, replay-
ing all tuples from the interval spanned by the smallest and largest
TID in the provenance of an output tuple (we refer to them as the
covering interval of a TID-Set) is sufficient. The proof of this prop-
erty requires induction over the structure of a query network. We
sketch the base case here. Consider a consecutive subsequence S
of an operator’s output stream where the operator reads from the
inputs of the network. We have to show that replaying all tuples
in the covering interval of S produces S. For example, Selection
and projection generate a single output from a single input tuple
solely based on the values of this tuple. Thus, applying them on
the covering interval for S will produce S. For aggregation we need
to guarantee that we open and close windows at the same positions
when replaying the covering interval. With regarding to opening,
the semantics of Borealis windows yield a opening at the begin-
ning of the stream. Since we take the original window opening as
the start of the covering interval, we get exactly the same (first)
window opening. For closing, the arguments are analogous. By in-
ductively applying these arguments we can show that replaying the
covering interval for a result is sufficient to reproduce this result.

Replay-Lazy in Ariadne is based on these observations. The net-
work is instrumented in the same way as for Reduced-Eager, ex-
cept that we annotate each tuple with its covering interval. Given
that these intervals require constant storage space, we can piggy-
back them on data tuples instead of sending the possibly unbounded
TID set in additional tuples. This significantly reduces the amount
of data to be propagated, reducing the processing cost on the tu-
ple queues. Furthermore, covering intervals can be generated very
efficiently during operator execution. The most complex case is ag-
gregation where we compute the covering interval for a result tuple
as the minimum and maximum TID values in the covering intervals
for the tuples in the window.

In order to access the tuples belonging to a covering interval,
we introduce a new join operator: A c-join ⊗(S,CP) between a
stream S and a connection point CP processes each tuple t from S
by fetching all tuples included in the covering interval of t from the
connection point and emitting these tuples. These tuples are then
fed into a copy of the query network that is instrumented for prove-
nance generation. Since this computation does not handle covering
intervals one-by-one, but in a streaming fashion, we will encounter
some issues with overlapping covering intervals and gaps between
covering intervals. The input to a window operator is not neces-
sarily a consecutive subsequence of the input, but a concatenation
of subsequences that may have overlap or gaps. Thus, the opera-
tor may produce different windows when run over a concatenation
of covering intervals. We address this problem by (1) replaying
the overlapping parts of covering intervals only once and (2) forc-
ing operators to drop state if there is a gap between consecutive
intervals. The c-join operator sends a control tuple after the last tu-
ple from each covering interval. This control tuple instructs down-
stream operators to drop their internal state (e.g., open windows)
and flush their buffers (b-sort).

�

�
PG

↵
PP

↵
CP

�
CG

S1 Sout

Provenance
Generating

Network
Filter Provenance
and Fetch Tuples

from Input

Covering
Interval

Generating
Network

⌦

⇡
PD

P

Figure 10: Example for a Replay-Lazy Network

EXAMPLE 7. Consider the covering intervals shown in Figure
9(b). The TID-Set for tuple 3:1 is covered by the interval [1,4].
This covering interval is stored in two additional fields at the end
of the data tuple 3:1 . For this tuple the covering interval is the
same as the interval encoding of the TID-Set. In general, this is
obviously not the case. For example, the covering interval for tuple
3:2 contains TID 5 that is not in the provenance of 3:2 . Figure 10
shows how to instrument the query network from Figure 9(a) for
Replay-Lazy. The operators in the original part of the network are
set to produce covering intervals (we refer to the covering inter-
val version of PG and PP-mode as CG and CP-mode). The output
of this part of the network is then routed through a selection to
filter out parts of the provenance according to the user’s prefer-
ences. Afterwards, we use a c-join to fetch all tuples with TIDs of
the covering interval from the connection point and route these tu-
ples through a provenance generating copy of the query network to
produce provenance for tuples of interest.

Lazy Retrieval: Our provenance generation approaches (both re-
duced-eager and replay-lazy) reduce the runtime cost of prove-
nance generation by shifting computational cost to tuple recon-
struction when retrieving provenance. If interactive retrieval is
used, we only need to reconstruct provenance for tuples when ex-
plicitly requested. If the reconstruction result is further processed
by a query network (queries over provenance information), we have
the opportunity to avoid the cost of reconstruction through a p-join
operator if we can determine that parts of the provenance are not
needed to answer the retrieval part of the query. To this end we try
to push selections that are applied during retrieval of provenance
through the reconstruction (p-join) if the selection condition does
not access attributes from the provenance, i.e., we use the following
algebraic equivalence:4 σc(SnCP)≡ σc(S)nCP.

6. EXPERIMENTS
The goal of our experimental evaluation is to investigate the over-

head of provenance management with Ariadne, compare with com-
peting approaches (Rewrite), investigate the impact of varying the
provenance generation and retrieval methods (eager vs lazy), and
study the effectiveness of the optimizations proposed in Section 5.

Figure 11 shows the query network (called Basic network) used
in most experiments in its original (a), rewritten (b) and instru-
mented (c) version. Details of the rewrite can be found in [15].
The Replay-Lazy version closely resembles Figure 10. This query
covers the most critical operator for provenance management (ag-
gregation) and is simple enough to study individual cost drivers.
In experiments that focus on the cost of provenance generation,
we leave out parts of these networks that implement retrieval (the
dashed boxes).
4For conjunctive selection conditions, we can split the condition
and push conjuncts that only reference attributes from schema(S)
through the p-join.

(a) Basic

ασ σ

(b) Basic - Rewrite

σ
α

σ

(c) Basic - Instrumentation

α
PP

σ
PG PP

σ �σ

Figure 11: Experiment Queries

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

N
o
 P

ro
v
e
n
a
n
c
e

In
s
tru

m
e
n
ta

tio
n

R
e
p
la

y
-L

a
z
y

R
e
w

rite

N
o
 P

ro
v
e
n
a
n
c
e

In
s
tru

m
e
n
ta

tio
n

R
e
p
la

y
-L

a
z
y

R
e
w

rite

N
o
 P

ro
v
e
n
a
n
c
e

In
s
tru

m
e
n
ta

tio
n

R
e
p
la

y
-L

a
z
y

R
e
w

rite

N
o
 P

ro
v
e
n
a
n
c
e

In
s
tru

m
e
n
ta

tio
n

R
e
p
la

y
-L

a
z
y

R
e
w

rite

N
o
 P

ro
v
e
n
a
n
c
e

In
s
tru

m
e
n
ta

tio
n

R
e
p
la

y
-L

a
z
y

R
e
w

rite

N
o
 P

ro
v
e
n
a
n
c
e

In
s
tru

m
e
n
ta

tio
n

R
e
p
la

y
-L

a
z
y

R
e
w

rite

C
o
m

p
le

ti
o
n
 T

im
e
 (

s
e
c
)

Window Size

No Provenance

Instrumentation (Generation)

Instrumentation (Retrieval)

Replay-Lazy (Covering Interval)

Replay-Lazy (Retrieval)

Rewrite

1008060402010

Figure 12: End to End - Varying Amount of Provenance

Setup and Methodology: Since the overhead of unused prove-
nance code turned out to be negligible, we used Ariadne also for
experiments without provenance generation. All experiments were
run on a system with four Intel Xeon L5520 2.26 Ghz quad-core
CPUs, 24GB RAM, running Ubuntu Linux 10.04 64 bit. Both the
client (load generator) and the server are placed on the same ma-
chine. The input data consists of tuples with a small number of
numeric columns (in total around 40 bytes), to make the overhead
of provenance more visible. The values of these columns are uni-
formly distributed. All input data is generated beforehand. Each
experiment was repeated 10 times to minimize the impact of ran-
dom effects. We show the standard deviation where possible in
the graphs. Our study focuses on the time overhead introduced by
adding provenance management to continuous queries, as this is the
most discriminative factor between competing approaches. We are
interested in two cost measures: (1) computational cost, which we
determine by sending a large input batch of 100K tuples over the
network at maximum load and measuring the Completion Time; (2)
Tuple Latency determined by running the network with sufficient
available computational capacity.

6.1 Fundamental Tradeoffs
In the first set of experiments, we study the computational over-

head of managing provenance (split into generation and retrieval)
using the Basic query with Maximum Load. We show results for
our reduced-eager and replay-lazy approaches without provenance
compression (called Single from now on), and compare them with
the cost of the network with No Provenance as well as Rewrite.
End to End Cost: The first experiment (shown in Figure 12) com-
pares the end-to-end cost when changing the amount of provenance

Method Number of Aggregations
1 2 3 4

No Provenance 3.1 3.9 4.8 5.7

Instr. Generation 3.9 7.4 14.7 48.6
Retrieval 3.0 12.9 103.0 2047.0

Replay-Lazy Cov. Inter. 3.1 4.4 5.2 6.3
Retrieval 5.2 14.7 91.1 2224.0

Rewrite 7.2 625.0 crash crash
Figure 13: Varying Aggregations: Completion Time (Sec)

that is being produced per result tuple. This is achieved by chang-
ing the window size (WS) of the aggregation operator from 10 to
100 tuples (while keeping a constant slide SL = 1 and selectiv-
ity 25% for the first selection in the network). Provenance is re-
trieved for all result tuples. The results demonstrate that the gen-
eral overhead of provenance management is moderate for all meth-
ods: an order of magnitude more provenance tuples than data tu-
ples (WS=10) roughly doubles the cost, two orders of magnitude
(WS=100) lead to an increase by a factor 5 (Instrumentation) to
12 (Rewrite). Analyzing the individual methods, we see that the
cost of Instrumentation is strongly influenced by Retrieval: around
40% at WS=10, and around 65% at WS=100. This cost is rough-
ly linear to the amount of provenance produced. The overhead
of provenance generation through Instrumentation is between 20%
(WS=10) and 113% (WS=100). Using Replay-Lazy the overhead
on the original query network (generation of covering intervals)
is further reduced to 3% (WS=10) and 16% (WS=100), respec-
tively. The price to pay for this reduction is the additional cost of
provenance Replay, where the cost is similar to the combination of
Instrumentation Generation and Retrieval, as this method is now
applied on all covering intervals to compute the actual provenance.
Even for this benign workload, Rewrite shows much worse scaling
than Instrumentation with full Retrieval: while roughly on par for
WS=10, it requires twice as much time for WS=100.
Nested Aggregations: We now increase the number of aggrega-
tions to exponentially increase the amount of provenance per result
tuple. We start off with the Basic network (WS=10 and SL=1) and
gradually add more aggregation operators. The increase of cost for
Instrumentation is (slightly) sublinear in the provenance size. Most
of the overhead can be attributed to retrieval, while provenance
generation increases moderately due to the TID-Set representation.
The overhead of generating Covering Intervals for Replay-Lazy is
around 10% over the baseline (NoProvenance), while the effort
spent for replaying shows the same behavior as the total cost of In-
strumentation. Finally, the results (Figure 13) indicate that Rewrite
does not scale in the number of aggregations as demonstrated by an
increase in overhead in comparison to instrumentation from 20%
(one aggregation) to 3300% (two aggregations). At three aggrega-
tions, the execution exhausts the available memory.

6.2 Cost of Provenance Generation
We now focus on window-based aggregation, since it is not used

in traditional, non-streaming workloads and produces large amounts
of provenance. In addition to the methods shown before, we en-
able the adaptive compression technique (denoted as Optimized).
Furthermore, we will no longer consider the Rewrite method (its
drawbacks are obvious) and Retrieval cost (as it is linear with re-
spect to the provenance size). We study the impact of Window Size
(provenance amount per result), Window Overlap (commonality in
provenance) and Prefilter Selectivity (TID contiguity). These ex-
periments use the Basic network.

Window Size: Figure 14(a) shows Completion Time for varying
WS from 50 to 2000. A front filter selectivity of 25% ensures
that there are very few contiguous TID sequences, limiting the po-
tential of Interval Compression. As expected, completion time is
higher for larger window sizes, but compression mitigates this ef-
fect: While the completion time overhead for Single increases from
70% to 530%, compression reduces it to 50% and 140%, respec-
tively. Covering Intervals further reduces it to 14% and 70%. The
cost savings are even more pronounced for queue sizes and mem-
ory consumption, where the overhead is reduced to a small, almost
constant factor. For space reasons we omit these graphs.
Window Slide: Reducing the overlap between windows (increas-
ing SL from 1 to 100, WS=100) decreases the overall cost, since far
fewer result tuples need to be generated (Figure 14(b)). The loga-
rithmic decline can be explained by the fact that the low load makes
the impact of provenance generation negligible for slides bigger
than 10. Large slide values result in small overlap between open
windows. Hence, they demonstrate the worst-case scenario for the
adaptive compression, because maintaining the complex data struc-
tures of these techniques does not pay off anymore. Yet, compres-
sion performs only slightly worse than the Single approach.
TID Contiguity Besides the specific window parameters such as
WS or SL, the performance for window-based aggregates is also
influenced by upstream operators affecting the distribution of TID
values. We investigate these factors by varying the selectivity of the
first selection operator in the Basic network between 5% and 100%
(Figure 14(c)). Without TID compression, the Completion Time is
linear to selectivity, because the number of generated output tuples
also grows linearly and generation is not affected by TID distribu-
tion. Interval compression used by Optimized becomes more effi-
cient when increasing selectivity as more and more contiguous TID
ranges are created. We therefore see no further increase in cost for
selectivities over 75%.

6.3 Influence of Network Load on Latency
In reality, a query network is rarely run at maximum load. Thus,

performance metrics such as Latency play an important role. We
run the Basic network (Generation and Retrieval, WS=100, SL=1,
S=25%) and vary the load by changing the size of the batches being
sent from the client between 10 and 100 tuples while keeping the
frequency of sending batches fixed. Smaller batches are avoided,
because they result in very unpredictable performance. For sizes
larger than 100 the slowest method (Single) would not be able to
always process input instantly. As shown in Figure 15, provenance
generation does indeed increase the latency, but this increase is very
moderate and stays at the same ratio over an increasing load. Sin-
gle results in about 75% additional latency, Optimized reduces this
overhead to around 60%, while Covering Intervals is the cheapest
with around 20% overhead.

6.4 Complex Query Networks
We now investigate whether our understanding of the cost of in-

dividual operators translates to real-life query networks using the
complete running example introduced in Figure 1. We use this net-
work (called Complex) to study how our approach translates to
a more complex query network with multiple paths and a broad
selection of operators. This query does not lend itself easily to
straightforward optimizations (limited TID contiguity) and stresses
intermediate operators with large amounts of provenance. We vary
the amount of provenance created by the network by varying the
window size for the aggregations applied before the union operator
(“front” windows). As Figure 16 shows, the overhead of Reduced-
Eager instrumentation without compression (Single) is higher than

(a) Window Size (SL = 1, S = 25%)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

50 100 200 500 1000 2000

C
o
m

p
le

ti
o
n
 T

im
e
 (

s
e
c
)

Window Size

No Provenance

Single

Optimized

Covering Interval

(b) Window Slide (WS=100, S = 25%)

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 5 10 20 50 70 90 100

C
o
m

p
le

ti
o
n
 T

im
e
 (

s
e
c
)

Window Slide

No Provenance

Single

Optimized

Covering Interval

(c) TID Contiguity (WS=100, SL = 1)

 0

 5

 10

 15

 20

 25

5 10 25 50 75 90 95 100

C
o
m

p
le

ti
o
n
 T

im
e
 (

s
e
c
)

Selectivity (%)

No Provenance

Single

Optimized

Covering Interval

Figure 14: Impact on Completion Time

 0

 1

 2

 3

 4

 5

 6

 7

10 25 50 75 100

L
a
te

n
c
y
 (

m
s
)

Batch Size

No Provenance

Single

Optimized

Covering Intervals

Figure 15: Latency For Varying Load

 0

 20

 40

 60

 80

 100

 120

 140

2 5 10 20 40 60 80 100

C
o
m

p
le

ti
o
n
 T

im
e
 (

s
e
c
)

Front Window Size

No Provenance

Single

Optimized

Covering Interval

Figure 16: Complex Network

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25

0.05 0.10 0.25 0.50 0.75 1 2 5 10 25 50 100

C
o
m

p
le

ti
o
n
 T

im
e
 /

 C
o
m

p
le

ti
o
n
 T

im
e
 w

it
h
o
u
t
P

ro
v
e
n
a
n
c
e

Retrieval Frequency (%)

Instrumentation with Retrieval (Optimized)

Replay-Lazy with Retrieval (Optimized)

Figure 17: Varying Retrieval Frequency

in previous experiments. The Optimized method (adaptive com-
pression) shows its benefits: while more expensive for very small
WS values (100% overhead at WS=2), it becomes more effective
for larger window sizes. Covering Intervals is again very effec-
tive with 40% overhead independent of the increase in provenance.
Memory measurements support these observations, since the ad-
ditional provenance does not increase the cost significantly when
using compression or covering intervals.

6.5 Varying Retrieval Frequency
Many real-world scenarios do not need provenance for the entire

result stream. We therefore study the effect of retrieval frequency
(as a simple form of partial provenance retrieval) on the trade-off
between Reduced-Eager and Replay-Lazy. Using the Nested Ag-
gregation network with four aggregations (WS=10 and SL=3) and
2 million input tuples we vary the rate of retrieval from 0.05% to
100% (by inserting an additional selection before reconstruction).
The results are shown in Figure 17 (overhead w.r.t. completion
time of No Provenance). For low retrieval frequencies (less than
1%) the cost of retrieval is insignificant. Reduced-Eager gener-
ates provenance for all outputs and, thus, the overall cost is domi-
nated by provenance generation. Computing covering intervals for
Replay-Lazy results in a relative overhead of about 13% over the
completion time for No Provenance (which is constant in the re-
trieval frequency). Replay-Lazy has to compute only few replay
requests at low retrieval rates, but in turn pays a higher overhead
for higher retrieval rates. Replay-Lazy is the better choice for the
given workload if the retrieval frequency is 10% or less.

6.6 Summary
Our experiments demonstrate the feasibility of fine-grained end-

to-end provenance in data stream systems and the benefits of our
approach. Operator Instrumentation clearly outperforms Rewrite,
since provenance generation is more efficient. Furthermore, Re-

duced-Eager allows us to separate generation and retrieval. Replay-
Lazy based on covering intervals further reduces the overhead on
the "normal" query network and enables us to scale-out. The opti-
mizations for provenance compression are effective in both small-
scale, synthetic as well as large-scale, real-life workloads.

7. RELATED WORK
Our work is related to previous work on provenance management

in workflow systems, databases, and stream processing systems.
Workflow Systems. Workflow provenance approaches that handle
tasks as black-boxes where all outputs of a task are considered to
depend on all of its inputs are not suitable for managing stream
provenance [11]. More recently, finer-grained workflow prove-
nance models have been proposed (e.g., allowing explicit decla-
rations of data dependencies [6] or applying database provenance
models to Pig Latin workflows [5]). These systems only support
non-stream processing models. Furthermore, for stream prove-
nance, data dependencies can be inferred from the well-defined op-
erator semantics, without explicit declarations. Ariadne’s compres-
sion techniques resemble efficient provenance storage and retrieval
techniques in workflow systems (e.g., subsequence compression
technique [6] or node factorization [9]). However, due to the tran-
sient and incremental nature of streaming settings, we use compres-
sion mainly for optimizing provenance generation. Furthermore, it
is more critical for our techniques to be efficient in terms of mem-
ory usage and encoding/decoding overhead, since compression at
an operator may also affect the load on its downstream operators
(e.g., it may be necessary to decompress provenance).
Database Systems. There are several different notions of database
provenance [10] supported by different systems (e.g., Trio [7], DB-
Notes [8], Perm [13]). Like the lineage provenance semantics in
relational databases [10], Ariadne represents the provenance of an
output tuple as a set of input tuples that contributed to its gener-

ation. In principle, our Reduced-Eager operator instrumentation
techniques can be extended to support more informative prove-
nance models similar to database provenance models such as prov-
enance polynomials [16] and graph-based models [2]. A major ad-
vantage of some of these models is that they are invariant under
query equivalence. However, it is unclear what equivalences hold
for streaming operators. Given the fundamental differences in the
data and query models for streams, investigating whether these ex-
isting provenance models or minimization techniques [4, 21] can
be adapted to stream provenance is promising future work.
Stream Processing Systems. There is only a handful of related
work on managing stream provenance. Vijayakumar et al. have
proposed coarse-grained provenance collection techniques for low-
overhead scientific stream processing [25, 26]. Wang et al. have
proposed a rule-based provenance model for sensor streams, where
the rules have to be manually defined for each operation [20]. More
recently, Huq et al. have proposed to achieve fine-grained stream
provenance by augmenting coarse-grained provenance with time-
stamp-based data versioning, focusing specifically on query result
reproducibility at reduced provenance metadata storage cost [17]
using provenance inference techniques [18]. In this work, prov-
enance generation is based on inversion, as opposed to Ariadne’s
propagation-based approach. In contrast to Ariadne, the approach
is only applicable to a small class of streaming operators and does
not always guarantee correct provenance.

A common use case for stream provenance data is query debug-
ging. Microsoft CEP server [3] exposes the state of the system
through snapshots (containing runtime statistics) and streams of
manageability events (e.g., query start, a query failure, stream over-
flow, etc.). This information can be used to track coarse-grained
provenance. The visual debugger proposed in [12] supports fine-
grained provenance computation based on identifier annotation and
operator instrumentation. Our approach is more general in that we
support multi-step provenance, can decouple provenance computa-
tion from regular query processing, and compress provenance. We
expose provenance as regular stream data and, thus, queries over
provenance can be expressed using standard streaming operators.

8. CONCLUSIONS
In this paper, we present Ariadne, a prototype system address-

ing the challenges of computing fine-grained provenance for data
stream processing. Reduced-Eager operator instrumentation pro-
vides a novel method to compute provenance for an infinite stream
of data that adds only a moderate amount of latency and com-
putational cost and correctly handles non-deterministic operators.
Replay-Lazy and Lazy-Retrieval provide additional optimizations
to decouple provenance computation from stream processing, fur-
ther reducing the impact on critical paths and saving cost when
provenance is not needed. Query networks can also be partially
instrumented, catering for use cases like stream debugging that do
not always need end-to-end provenance. The effectiveness of our
techniques is successfully validated in the experimental evaluation
over various performance parameters and workloads.

Interesting avenues for future work include: (i) studying prove-
nance retrieval patterns to exploit additional knowledge for storage
decisions and in optimizing computations, (ii) investigating dis-
tributed architectures and integration of our system with scalable
distributed storage, and (iii) extending our provenance semantics
to model the inherent order of streams.

9. REFERENCES
[1] D. Abadi et al. The Design of the Borealis Stream Processing

Engine. In CIDR, 2005.

[2] U. Acar et al. A Graph Model of Data and Workflow
Provenance. In USENIX TaPP Workshop, 2010.

[3] M. H. Ali et al. Microsoft CEP Server and Online Behavioral
Targeting (Demonstration). In VLDB, 2009.

[4] Y. Amsterdamer et al. On Provenance Minimization. In
PODS, 2011.

[5] Y. Amsterdamer et al. Putting Lipstick on Pig: Enabling
Database-style Workflow Provenance. PVLDB, 5(4), 2011.

[6] M. K. Anand et al. Efficient Provenance Storage over Nested
Data Collections. In EDBT, 2009.

[7] O. Benjelloun et al. ULDBs: Databases with Uncertainty and
Lineage. In VLDB, 2006.

[8] D. Bhagwat et al. An Annotation Management System for
Relational Databases. VLDB Journal, 14(4), 2005.

[9] A. Chapman et al. Efficient Provenance Storage. In
SIGMOD, 2008.

[10] J. Cheney et al. Provenance in Databases: Why, How, and
Where. Foundations and Trends in Databases, 1(4), 2009.

[11] S. B. Davidson et al. Provenance in Scientific Workflow
Systems. IEEE Data Engineering Bulletin, 32(4), 2007.

[12] W. De Pauw et al. Visual debugging for stream processing
applications. In Proceedings of the International Conference
on Runtime Verification, 2010.

[13] B. Glavic and G. Alonso. Perm: Processing Provenance and
Data on the same Data Model through Query Rewriting. In
ICDE, 2009.

[14] B. Glavic et al. The Case for Fine-Grained Stream
Provenance. In BTW DSEP Workshop, 2011.

[15] B. Glavic et al. Ariadne: Managing fine-grained provenance
on data streams. Technical Report 771, ETH Zurich, 2012.

[16] T. J. Green et al. Provenance Semirings. In PODS, 2007.
[17] M. Huq et al. Facilitating Fine-grained Data Provenance

using Temporal Data Model. In VLDB DMSN Workshop,
2010.

[18] M. Huq et al. Adaptive Inference of Fine-grained Data
Provenance to Achieve High Accuracy at Lower Storage
Costs. In e-Science, 2011.

[19] Z. G. Ives et al. The ORCHESTRA Collaborative Data
Sharing System. ACM SIGMOD Record, 37(2), 2008.

[20] A. Misra et al. Advances and Challenges for Scalable
Provenance in Stream Processing Systems. In IPAW
Workshop, 2008.

[21] D. Olteanu and J. Závodný. On Factorisation of Provenance
Polynomials. In USENIX TaPP Workshop, 2011.

[22] F. Reiss et al. Data Triage: An adaptive Architecture for
Load Shedding in TelegraphCQ. In ICDE, 2005.

[23] E. Ryvkina et al. Revision Processing in a Stream Processing
Engine: A High-Level Design. In ICDE, 2006.

[24] N. Tatbul et al. Load Shedding in a Data Stream Manager. In
VLDB, 2003.

[25] N. Vijayakumar and B. Plale. Towards Low Overhead
Provenance Tracking in Near Real-time Stream Filtering. In
IPAW Workshop, 2006.

[26] N. Vijayakumar and B. Plale. Tracking Stream Provenance in
Complex Event Processing Systems for Workflow-Driven
Computing. In VLDB EDA-PS Workshop, 2007.

[27] A. Woodruff and M. Stonebraker. Supporting Fine-grained
Data Lineage in a Database Visualization Environment. In
ICDE, 1997.

