DEBS’11 Grand Challenge:
Streams, Rules, or a Custom Solution?

Lynn Aders, René Buffat, Zaheer Chothia, Matthias Wetter,
Cagri Balkesen, Peter M. Fischer, Nesime Tatbul
Department of Computer Science, ETH Zurich, Switzerland

Technical Report #749
ETH Zurich, Department of Computer Science
July 2011

DEBS’11 Grand Challenge:
Streams, Rules, or a Custom Solution?

Lynn Aders, René Buffat, Zaheer Chothia, Matthias Wetter
Cagri Balkesen, Peter M. Fischer, Nesime Tatbul
Department of Computer Science, ETH Zurich, Switzerland

{laders, rbuffat, zchothia, wetterma}@student.ethz.ch
{cagri.balkesen, peter.fischer, tatbul}@inf.ethz.ch

ABSTRACT

This paper describes how we modeled and solved the DEBS’11
Grand Challenge of implementing a social network game using
event processing technology. We first present an automaton-based
model that we used to capture the game semantics. Then we sum-
marize three different approaches we investigated to implement this
automaton together with their evaluations. Finally, we provide a
discussion of our observations and lessons learned as a result of
this study.

1. INTRODUCTION

The fifth ACM International Conference on Distributed Event-
Based Systems (DEBS’11) has defined a grand challenge for im-
plementing an event processing application [1]. The application
involves Trivia Geeks Club, a game that is played within a social
network group. Players receive a periodic stream of questions and
post answers. The rules of the game define how questions should
be answered and how answers should be scored. At the heart of the
application is a complex scoring system, which not only assigns
scores simply to correct answers but also to other additional situa-
tions such as best daily score or 10 consecutive correct answers.
As such, the challenge includes a set of event producers, event
consumers, a scoring system, and a few other system functions,
which need to be implemented using event processing technology,
but without the use of a database system.

We participated in the challenge as a team of four students and
three mentors from ETH Zurich. Our approach to solving the chal-
lenge was to study three alternative ways by implementing each
and then comparing. More specifically, we implemented the game
based on a custom solution, a rule engine, and a stream process-
ing engine. All of these implementations are commonly based on
a formal, automaton-based model that we constructed, according
to our own interpretation of the high-level informal specification of
the challenge given at the web site [[1]. We have also implemented
a test case generator to validate the correctness of our implementa-
tions against this automaton-based model.

In this short paper, we describe our solution approach to the
DEBS’11 Grand Challenge and our findings. We start with our
modeling of the problem in Section 2} Then we present the three
alternative implementations in Section [3] We finally conclude in
Section [4] by discussing our observations and findings about how
the three solutions compare along several key dimensions.

2. MODELING THE PROBLEM

The problem posed for the challenge is to implement a simple
game, where users of a social network participate in answering
trivia questions throughout the day. Each question is valid for 30

seconds and the user can choose from among four given answers.
In addition, the user can annul their answer within 10 seconds or
inquire about the most-frequent answer (MFA) among all partici-
pants. There is a set of rules which determine the number of points
a user receives. Besides checking an answer for correctness, one
would also like to determine, for example, the first user to correctly
answer a question or the user with the highest daily score. The
objective of the challenge is to implement this game using event-
processing systems, where one processes a data stream on the fly,
without using a database. As an additional challenge, the process-
ing system should support late arrival of answers, with a bound of
at most two seconds.

Based on the high-level informal specification of the challenge
[[L], we first tried to formally model the problem by clarifying some
edge cases as well as issues about time handling. As a result, we
modeled the scoring rules in the form of a state machine, as de-
picted in Figure [I} This represents the interaction with one user
over a single question. State transitions are triggered by arrival of
a new event (e.g., MFA request) or after a predefined time (e.g.,
finalize an answer once no further annulments are possible). This
automaton is specific to an individual user or question. We were
able to use the output of this automaton to calculate all further
scoring rules. A second automaton is responsible for awarding a
bonus for three consecutive correct answers and a penalty in case
of ten incorrect answers in a row. However, the scoring rules for
the daily, weekly, monthly, and most appearances in the top5 bonus
need global knowledge. All of this rules can be calculated by ag-
gregate over all users: computing the best score over a given time
frame (day, week, month) requires no additional state, but rather
just accumulating the output of each automaton. The first correct
answer score can be assigned to the user with the smallest times-
tamp of a correctly answered event per question.

3. OUR SOLUTION APPROACH

In this section, we describe the three alternative approaches that
we followed to solve the DEBS’11 Challenge. The first is built
from scratch with no dependencies, the latter two are based on
Complex Event Processing (CEP) systems: Drools [2]], a rule en-
gine and Borealis [3]], a stream-processing engine.

3.1 Custom Solution

3.1.1 Overview

One avenue we pursued was to build a system from scratch with-
out use of any framework. This solution corresponds closely to
the formal model described in the previous section and was imple-
mented with Python [[7]. This choice was due to the expressiveness
of the language, which comes at the expense of run-time perfor-

now - t1 > 30 \

sendQuestion

receiveAnnulment
now-t4 < 10 &&
now-t1 <= 30

requestMFA
now-t1 <= 30

receiveAnnulment
now-t2 < 10 &&
now-t1 <= 30,

receiveAnswer
now-t1 <= 30

receiveAnswer
now-t1 <= 30

'
H receiveAnnulment
\, now-2 < 10 && now-t1 <= 30
N

requestMFA
now-t1 <= 30

RN now - t1>30

now - t1 > 30

A: Answered without MFA
B: Answered with MFA

Figure 1: State machine for assigning scores to a single user

mance.

3.1.2 Implementation

The implementation is a direct translation of the state machine
presented in Section |2} with state stored explicitly per user. There
are functions to handle each input event, which trigger the corre-
sponding state transitions. Time-based transitions are implemented
by means of callbacks, which are scheduled according to a virtual
clock driven by the stream time. Input events refer to users by their
IDs. A hash table is used to support efficient lookup of the corre-
sponding user state.

The custom solution includes several improvements over the for-
malization given previously. For example, with the state machine
in Figure[T] on receipt of an answer one would need to wait for the
annulment period to elapse before finalizing an answer. Instead,
we take an eager approach and award points immediately and only
reverse this if an annulment is received. Points are awarded to an
internal scoreboard, which is flushed at the end of each question.
This is necessary so as not to expose intermediate state. By pro-
cessing early, the event processing load is spread more evenly over
the duration of the question. A further improvement is to track the
number of consecutive correct and incorrect answers not by an au-
tomaton as previously mentioned, but rather with two integer coun-
ters, which mutually reset each other. This enables one to change
the rule itself at run time (e.g., 5 consecutive answers instead of 3).

3.1.3 Evaluation

Compared with the other solutions, this solution was easy to
build, as there were no interfaces to understand or interact with.
We had a first working version within about a week of develop-
ment. This owes partially to the use of a dynamically typed lan-
guage, which facilitates rapid prototyping. Whilst Python was a
good choice for this setting, it may not be appropriate for a project
with larger scale and several developers. Further, implementation
effort for a custom solution is highly dependent on the desired fea-
ture set. For example, support for distribution or fault tolerance are
not available and would need to be incorporated separately.

3.2 Rule-based Solution

3.2.1 Overview

As a second approach, we implemented the game using a rule

engine. A rule engine consists of a rule base, a working memory
containing facts, and an inference engine that reasons based on the
rules over the collection of facts. It determines whether the facts
in the working memory fulfill the conditions of a rule. If so, the
action part of that rule is executed.

We decided to use Drools [2] as our rule engine mainly because it
has a sophisticated concept of event processing. Drools introduces
an event as a special case of a fact that has a notion of time. Thus,
one can model rules on the occurrence or absence of events. Drools
provides a set of temporal operators which allow one to correlate
events in time. For example, one can define the constraint that an
event A has to occur between 0 and 30 minutes after another event
B. Drools also supports garbage collection of events, where events
which are no longer needed as they can no longer match any rules
are automatically detected and removed from working memory. In
our previous example, event B could be removed after 30 minutes.
Furthermore, Drools supports both time-based and size-based slid-
ing windows.

3.2.2 Implementation

For implementing the challenge, we made use of two compo-
nents of Drools: (i) Expert, which provides pattern matching over
Java objects via the RETE algorithm [35]], and (ii) Fusion, which
adds stream processing functionality. First of all, we defined the
rule base that contains the description of the game rules. Then, we
wrote a small number of Java classes to receive the events from
the source, insert them into the rule engine, and model the events
and facts themselves. For example, we have a class User and a
class UserMap to represent a collection of Users. Both are ac-
cessed as facts in the working memory. The User object includes
fields to save states like the actual score or the number of questions
that were answered correctly in a sequence. Using methods of the
UserMap class one can for example calculate the user with the
best daily score. These methods can be invoked via rules that are
triggered by temporal constraints (cron jobs).

1 rule "correct answer"

2> when

3 $u: User(userld == $userld)

4 $q: Question(

5 $questionld: questionld ,

6 $correctAnswer:correctAnswer)
7 from entry—point "EventStream"
8 $a : Answer(

9 $userld:userld,

10 $answer:answer ,

1 questionld == $questionld ,

12 answer == $correctAnswer ,

13 this after[0s,30s] $q)

14 from entry—point "EventStream"

15 not (AnswerAnnulment (

16 this after[0s,10s] $a,

17 questionld == $questionld ,

18 userld == $userld)

19 from entry—point "EventStream")
20 then

21 entryPoints [" ScoreStream "]. insert (
2 new UpdateScore ($userld, $questionld));
23 modify ($u) {

24 reportCorrectAnswer ($questionld);
25 resetIncorrectAnswersCount () ;

26 }

27 end

Listing 1: Rule for "correct answer"

In Drools, rules are declaratively expressed in the form of two
clauses: (i) when clause contains the constraints that determine

when and if a rule matches, and (ii) then clause defines the ac-
tion to execute when the rule fires. As an example, Listing[T[shows
the rule that checks if an answer is correct. In the example, spe-
cific types and variables are bound via pattern matching. Further-
more, time relations are utilized to enforce that the answer is valid
(i.e., it is within the 30 second question time frame) (see line 13)
and it has not been annulled (see line 16). In the then clause,
we first create a new event to distribute points for the correct an-
swer (UpdateScore), and then we mutate the user fact via the
modi fy statement, which allows Drools to reason again over other
rules involving the user, which may now be applicable.

In total, we wrote 19 rules, of which 10 correspond almost one-
to-one with the rules given in the challenge specification; 3 addi-
tional rules help implement the logic to handle annulments; and
the remaining 6 are used to handle the MFA requests, to output
the score updates, or to explicitly retract events out of the working
memory.

3.2.3 Evaluation

The Drools framework provides several tools to ease develop-
ment: temporal reasoning, pattern matching, and automatic life
time management of events. Overall, we have the experience that
rules are an elegant manner to express business logic. They are
well-encapsulated and easy to read. A further advantage of Drools
is that data is decoupled from the relevant logic, which allows one
to easily adapt to changing rules.

Unfortunately, not everything behaved as expected. Regarding
automatic memory management, we observed that, for example,
answer events were retained in memory beyond the duration of a
question, which led to exhaustion of heap memory. An attempt to
resolve this problem by explicitly specifying lifetimes for events
was not successful. The final workaround was to introduce a new
rule that explicitly kills an event object after a certain time pe-
riod. We also found reasoning about performance of rule match-
ing constructs to be challenging, given that a single construct may
express complex logic. Furthermore, we were unable to find a pro-
filer which could be applied to the rules. Lastly, we were not able
to make use of time frame windows due to performance reasons,
instead of which we used pure Java code as Drools allows using
custom Java code in combination with the rule engine.

3.3 Stream-based Solution

3.3.1 Overview

As a third alternative, we implemented the challenge using a
stream processing engine (SPE). In contrast to database systems

where queries are executed over stored data, in SPEs, data is streamed

through stored queries.

We decided to use Borealis [3] as our streaming engine, not only
because it is open-source and supports distributed operation, but
also some of us already had previous experience with Borealis. Bo-
realis is a tuple-driven SPE [4], which supports distribution over
multiple machines by allowing the division into so-called process-
ing nodes. Each such node processes a set of streams, each of which
is an append-only sequence of tuples consisting of a well-defined
set of attributes. On each node, a set of operators processes one
or more streams and routes the results to further nodes. An opera-
tor can be stateless, meaning that it performs operations on single
tuples without keeping any information from one tuple to the next
(e.g., filter, map, union in Borealis). Operators can also be stateful,
meaning that each execution acts over a well-defined set of tuples
called a “window’ (e.g., aggregate, join in Borealis). Furthermore,
the user has the possibility to add custom operators to the Borealis

default operator set by implementing a given set of functions.

3.3.2 Implementation

In our implementation, we were able to easily use several fea-
tures of Borealis. Defining the query network of operators that im-
plements the game rules and scoring is done through an XML file
in a pretty straightforward way. The handling of the input streams
and how the tuples are delivered across operators is done internally.
Predefined functions can be adapted to read and parse the input
from a file as well as writing the output to the console or to a file.
The windows for the stateful operators can be based on the number
of tuples or on a time period. Beyond the existing operators, the
possibility of implementing custom operators allows to fulfill the
tasks for which the provided functionality is not sufficient.

Figure2]illustrates our query network that implements the game.
We created a custom operator (Local_score) to process all rules
requiring knowledge about only one user. The rules for FirstWho-
Answered and ComputeMostFrequentAnswer are also im-
plemented as separate custom operators. Finally, a fourth custom
operator (Global_score) processes all rules requiring only the
daily sum of each user. With these four custom operators, we were
able to implement the main functionality of the system according
to our detailed specification. One additional custom operator was
needed in order to allow a change in the number of received points
for a certain bonus and another to pre-process the data to manage
out of order tuples. This design enables us to distribute the query
network with ease. Also, all operators save resources by only for-
warding the information needed at a later stage. For instance, only
the daily sum of each user has to be sent out to the global operator.

In addition to the custom operators, we have also added two
mechanisms into Borealis for ensuring low-latency results. First,
in a distributed setup with several operators processing individual
users, it is not guaranteed that all operators receive tuples on each
question. To avoid possibly high latencies due to window timeouts,
we introduced punctuations into Borealis [6]], which signal to the
operators that the current question has finished. This allows the op-
erators to timeout all pending users. Second, we also introduced
a synchronization stream that forwards how many users are active
per day to the operator processing the global rules. The global op-
erator lacks this information without the synchronization stream,
because it has only local knowledge and can therefore only timeout
if tuples from the next day arrive (which would introduce a latency
of 24 hours for global rules into our system).

3.3.3 Evaluation

As described above, to implement the challenge, we created 4
custom operators concerning the various logical rules, and 2 for
simplifying the processing of out-of-order tuples and for consider-
ing a change in the number of points for a bonus. The amount of
code we had to write compares to the amount for the custom solu-
tion. The time to implement the logic is also comparable, except
the overhead to understand how Borealis works. The benefit of us-
ing Borealis is that we can use features like distribution and fault
tolerance nearly for free in our system. Extending our system can
be done by simply adding new operators to our network. As long
as no further custom operators are required, this can be done rather
easily by extending the XML file defining the query network.

As a tuple-driven SPE [4], Borealis does not use timers to close
windows. A window will only be closed if a tuple of the next win-
dow arrives. As latency is important, this has become a major lim-
itation and we had find a workaround based on punctuations and
synchronization.

We can not give strong statements about performance because of

time, event, id, ¢++xeeseeseresssnesnssnnensnn e | SOOI L

ControlEvents
qid, aid ¢

" uid, time, ruleid, ScoreEvents
Spiit > Local_score —
uid N - = ruleid=

: {C.OMFA,

W,10C,3W,

10CNIGHT}

uid, time, score.

\4

Lookup

uid, score

time, event, uid, qid, aid,

uid, time, score. uid, time, score|

QuestionEvents

time, event,
UserEvents e uid, qid, aid
— e, e Debs_filter —

Compute mfa | AnsiwerEvents ControlEvents ——»| Lookup

i Onenode uid, time, score 4
e crmm ruleid = {DAILY, TOP5, WEEKLY, MONTH} | uid, time, ruleid
QuestionEvents

time, event, uid, qid, aid _ uid, time, ruleid uid, time, score uid, time, score
First P

{FIRST)

uid, time, score

Lookup Global_score

uid, time, score

ControlEvents

QuestionEvents

QuestionEvents —b_—p QuestionForUserEvents

Figure 2: Borealis query network

and rules are implicitly linked via events. This allows one to
retain a modular structure and incrementally build an applica-
tion. In principle, the same applies to a stream-engine, where
one would simply re-wire the query network, as long as no cus-
tom operators are required.

the complexity of the system and our limited time to evaluate it.
However, we observed that the performance of Borealis highly de-
pends on the right choice of values for various tunable parameters.
For example, in our measurements, we observed that a batch size
which is too small results in a performance drop by more than a

factor of 2. e Extensibility: One powerful mechanism, which is available

with both Borealis and Drools, is the ability to extend the pro-
vided model. This takes the form of user-defined operators in
Borealis and the ability to use Java in Drools. These allow
one to express logic which may otherwise be cumbersome or
to tailor for performance. In both cases, we made use of this
feature. A custom solution gives flexibility, but one does not
benefit much from an underlying platform.

4. DISCUSSION

In this work, we examined three different ways to implement
the DEBS’11 challenge. Whilst our solutions are not highly opti-
mized, we have learned advantages and disadvantages of each ap-
proach. To evaluate the correctness of our implementations, we
created a test case generator, which implements our formalization
of the challenge. All of our implementations managed to give the
same results as generated. In what follows, we compare these so-
lutions along several criteria.

e Architecture: One problem we encountered with Borealis is
that the operators have only local knowledge. In Drools, it
was no problem to propagate the information that a day is over
through the system. In the Borealis-based approach, we had to

e Implementation effort: The custom solution was quite straight- introduce punctuations and synchronization streams.

forward, since it follows directly from the formal model created

in advance and one does not have to fight with external APIs.

Since the other two approaches are based on existing frame-

works, an initial effort to setup and familiarize with the plat-

form is to be done. Conceptually for Drools, it is reasonably
easy to express the rules of the game. However, integration
took time and effort since not everything behaved as described

in the documentations. Configuration/tweaking required vari- 5

ous functions which weren’t well documented. il

As a final note, despite having modeled the problem together,
whilst we worked individually on each solution our interpretation
of unclear aspects diverged. For example, we each had differing
opinions on how timestamps should represent out-of-order events.
This could have been alleviated with a semi-formal specification,
which would leave less room for interpretation.

REFERENCES

DEBS 2011 Grand Challenge.
http://debschallenge.event-processing.org/.

JBoss Drools - The Business Logic integration Platform.
http://www. jboss.org/drools/l

[3] D.J. Abadi, Y. Ahmad, M. Balazinska, M. Cherniack, J. hyon Hwang,

e Performance: Based on our limited testing, all the solutions
were within the same order of magnitude in terms of overall run (2]
time. This may be partially attributed to our limited experience

with each platform. One advantage is that the custom solution
is a single-tier system, allowing one to optimize at will across
layer boundaries as well as tweaking both data flow and mem-
ory layout. With both the rule- and stream-based approaches,
however, one expresses what to compute and not how, allow-
ing one to benefit from platform improvements. For example,
with Drools, one can easily enable multi-threaded rule match-
ing, without extensive modifications. The stream-based solu-
tion operates internally with several streams, which need to be
synchronized. High latency in one operator is a bad scenario as
its effects would propagate throughout the whole network.

e Maintainability: We were quite impressed by the model given
by a rule-engine, in which state and logic are well-separated

[4]

(5]
(6]

(71

W. Lindner, A. S. Maskey, E. Rasin, E. Ryvkina, N. Tatbul, Y. Xing,
and S. Zdonik. The design of the borealis stream processing engine. In
CIDR, pages 277-289, 2005.

I. Botan, R. Derakhshan, N. Dindar, L. Haas, R. J. Miller, and

N. Tatbul. SECRET: A Model for Analysis of the Execution
Semantics of Stream Processing Systems. In International Conference
on Very Large Data Bases (VLDB’10), Singapore, September 2010.
C. L. Forgy. Rete: A fast algorithm for the many pattern/many object
pattern match problem. Artificial Intelligence, 19(1):17 — 37, 1982.

P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploiting
Punctuation Semantics in Continuous Data Streams. IEEE
Transactions on Knowledge and Data Engineering, 15(3), 2003.

G. van Rossum. Python tutorial. Report CS-R9526, Apr. 1995.

http://debschallenge.event-processing.org/
http://www.jboss.org/drools/

