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1. Introduction

In recent times, numerous successful efforts have been devoted
to explore spin systems with low dimensional magnetic interac-
tions, Many low dimensional spin systems could be suitably
described by physical models there by enabling us to capture
essential experimental manifestations [1-6]. For instance, dimer-
ized and uniform spin ¥ chain, spin ladder, frustrated spin systems
etc. are some of the well-studied models where the theoretical pre-
dictions have been verified experimentally [2,4,5]. Insights into the
physics of fow dimensional spin systems have been gained using
powerful numerical techniques like Quantum Monte Carlo (QMC)
simulations [7,8], Exact Diagonalization (ED) [9] and Transfer
Matrix Renormalization Group (TMRG) [10] technique on one
hand, whereas on the other hand, analytical methods like field-
theoretical approaches [t11] and Bethe ansatz [12] have been
employed. Successful preparation of the materials which are repre-
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sentative of different spin models, allows researchers to verify dif-
ferent thermodynamic properties predicted using the above
theoretical tools. Thus a fruitful connection has been established
between theory and experiment {1-6,13]. Low dimensional spin
systems have attracted attention of an immense number of
researchers, mainly due to the fact that the ground states of these
systems show a number of unique features. For instance, a Heisen-
berg spin chain, exhibiting an entangled ground state, contributes
to non-zero entanglement even at finite temperatures being in a
weighted thermal mixture of ground and excited states [14}. Other
novel characteristics include spin-gap excitation using far-infrared
spectroscopy [15). exotic thermal and spin transport properties at
finite temperature [16], magnetic singlet bound states using light
scattering experiments [17] etc. Thus, magnetic materials, whose
behaviors resemble the proposed theoretical models, have pro-
vided a platform for investigating these exotic features extensively.

Low dimensional quanturn spin % systems exhibit interesting
magnetic and thermal properties. A well-known Spin-Peierls com-
pound CuGeQs, which possesses a dimerized spin state below a
critical temperature T, = 14K, has shown a direct evidence for
singlet-triplet transition through inelastic neutron scattering
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experiment [18,19]. Another well studied spin % compound t-
(BEDT-TTF),Cu,(CN);, which exemplifies an organic Mott insulator
with frustrated quantum spins, have been modeled by a triangular-
lattice Heisenberg system with exchange coupling constant
J ~ 250K as corroborated by 'H NMR and static susceptibility mea-
surements [20]. TICuCls, BaCuSi;0s and Cu(NO3),-2.5D;0 are three
extensively studied dimerized quantum antiferromagnets where
quantum phase transition and Bose-Einstein condensation of mag-
nons have been experimentally observed ([21] and references
therein). SrCu,(B0O3); is another widely investigated compound
showing evidence for localized singlet-triplet excitation and it also
represents the Shastry-Sutherland model of a 2D spin-gap system
with the ground state of a dimer [22]. The class of spin 2 Heisen-
berg chain materials belonging to the family of low dimensional
systems, has fascinated many researchers in last few decades. For
example, CuSe,0s [23] and KCuGaFg [24] have demonstrated
promising experimental results and a striking match with theoret-
ical calculations. SrCuQs, another 1D isotropic antiferromagnetic
spin chain with extremely large exchange coupling constant
(~1300 K), shows spin-orbital separation as it has been reported
recently [25]. Furthermore, a thorough investigation of thermody-
namic properties for Cu(C4H4N,XNOs); and [Cu(p-Cy04)(4-
aminopyridine ),(H;0)], have established them as good realization
of spin ¥2 Heisenberg chain [26,27].

In the present work, we have experimentally studied detailed
magnetic and thermal properties of such an antiferromagnetic uni-
form spin %2 chain with isotropic Heisenberg interaction. The
Hamiltonian for the system in presence of applied external mag-
netic field can be written as,

H=

L

> _laafai, + plafal, + alol,)] +&uBY of (1)
i i

where 0<a<1, 0<f<1, B is the external magnetic field,
o*. 0¥, 0% are the three Pauli spin matrices, g is the Landé g factor,
1t is the Bohr Magneton and ] is the exchange coupling constant.
The summation is taken over nearest neighboring spins. The com-
pound we have studied in the present work, is Cu(NH3);S04-H;0
which could be described by isotropic Heisenberg model with
x=f=1in Eq. (1) [28,29]. Jong et al. reported the experimental
results for the present compound and described it as an exchange
coupled Heisenberg spin chain [4]. Zero field magnetic susceptibil-
ity data as a function of temperature has shown the existence of a
broad maximum around 3.5 K whereas the temperature dependent
specific heat curve has shown a peak around 3 K [4,28,29]. These
thermal and magnetic measurements have ascertained the exis-
tence of magnetic interaction along a particular direction in Cu
(NH3)4504-H20 [4,28,29]. The crystallographic structure analysis
reported by F. Mazzi has revealed the spin chain behavior in Cu
(NH3)4804-H20 [30]. In a linear chain, Cu'* ions are connected along
the ¢ axis as - Cu™*-H,0- Cu"*- H,0- while the Cu** ions of neigh-
boring chains are connected as - Cu**~-NH3;-504-NH;5- Cu**~, which
results in larger intrachain coupling strength in comparison to that
between the chains. Interaction with next nearest neighboring spins
along the chain is also negligible here.

A detailed estimation of various thermodynamic quantities
using the experimental data has been presented in the paper with
the following order. Temperature dependence of magnetic suscep-
tibility and field dependence of isothermal magnetization are mea-
sured and compared with the solution for isotropic Heisenberg
spin ¥ chain, Heat capacity data are collected both at zero mag-
netic field and externally applied field, and compared with the
Bethe ansatz solution for spin ¥ chain. Finally, zero field and field
dependent specific heat data were used to estimate internal energy
and entropy.

2. Experimental details

We have measured single crystalline Cu(NH3)sS04H>0 of
purest grade (99.999%), supplied by Sigma Aldrich. Magnetic sus-
ceptibility and magnetization measurements are performed in a
Magnetic Property Measurement System (MPMS) from Quantum
Design and Vibrating Sample Magnetometer (VSM) from Oxford.
Temperature dependence of static magnetic susceptibility is mea-
sured in a temperature range of 1.9-30 K. Subsequently, isother-
mal magnetization measurements are carried out as a function of
magnetic field at various temperatures. The field is varied from
0T to 14T and the temperature is varied from 1.9K to 10K.

The specific heat measurements are performed by standard
relaxation method in a Physical Property Measurement System
(PPMS) from Quantum Design. Zero field specific heat data are col-
lected in a temperature range of 2-10 K. Furthermore, field depen-
dent specific heat is measured in the same temperature range. The
magnetic field is varied from OT to 7T. Careful subtraction of back-
ground is performed by carrying out addenda measurement before
starting the experiments.

3. Results and discussions

Fig. 1 displays experimental magnetic susceptibility as a func-
tion of temperature. The plot shows that the susceptibility curve
has a rounded maximum at Tp,. = 3.7 K which is quite close to
the earlier reported value [28]. When the temperature is increased
beyond 3.7 K, the susceptibility gradually decreases. This is an
indicative of antiferromagnetic linear chain behavior [6]. Previ-
ously reported results have satisfactorily established an evidence
of isotropic Heisenberg interaction in Cu(NH3)4S0,4H,0 between
the neighboring spins along the chains of Cu™ ions [31,32]. Bonner
and Fisher employed the exact diagonalization technique to calcu-
late the magnetic susceptibility for antiferromagnetic spin chain
where they varied the number of spins up to 11. However, due
to the finite size effect, their result cannot satisfactorily explain
the experimental data for an infinite chain. Subsequently, by fol-
lowing the analytical approach by Bethe ansatz [12], it was possi-
ble to solve the one dimensional Heisenberg spin % model exactly
[33,34] down to sufficiently low temperature. The solution has
been efficiently applied to analyze the thermodynamic behavior
of certain spin chain materials [26,27]. Since the present system
is a representative of uniform isotropic chain model where the

g T T ~ T X ! o T X T

0 IR T L TR e
T(K)

Fig. 1. Magnetic susceptibility versus temperature for Cu(NH;),504H;0 (circles
represent the experimental data while the exact solution of the § = 1/2 Heisenberg
model using ] =6 and g = 2.056 is shown by the solid red curve).



neighboring spins of the constituent Cu** ions being arranged in a
periodic fashion along one particular direction, we compare the
exact result for susceptibility derived by Bethe ansatz technique
for infinite spin % chain with the experimental data. We have ana-
lyzed the data in the temperature range of 1.9-30K as shown in
Fig. 1. The best match was found for exchange coupling constant
J=6K and Landé g factor g=2.056. The theoretical curve (solid
red line) appears to be consistent with the experimental data (open
circles).

Isothermal magnetization data are recorded at low temperature
regime where the antiferromagnetic correlations survive persis-
tently. The magnetization curves taken at 1.9K, 25K and 34K
(which are above the antiferromagnetic ordering temperature
0.37 K [32]) are plotted in Fig. 2 with magnetic field varying from
OT to 14T along the horizontal axis. It can be seen that the magne-
tization curve at lowest temperature (1.9 K) almost reaches its sat-
uration value at 14T. ALPS (Algorithms and Libraries for Physics
Simulations) provide simulation codes for various strongly corre-
lated quantum mechanical models [35]. Based on the “stochastic
series expansion in the directed loop representation” method
[36], QMC technique is employed (using code from ALPS) to simu-
late isothermal magnetization curves for N = 100 spin 4 sites. This
analysis is performed for all the three above mentioned experi-
mental isotherms. The simulated curves are plotted in the same
graph with the experimental ones. It is evident from the graph that
the experimental curves are in well agreement with the corre-
sponding simulated ones (assuming | = 6.8 K). A small mismatch
can be observed between the simulation and experiment both at
low and high magnetic field values. This discrepancy can happen
due to the fact that the spin chain compound may contain param-
agnetic spins due the boundary effect of the spin chains and other
magnetic impurities which also contribute to the magnetization
curve, whereas the simulation represents an exact solution for a
spin ¥ chain with 100 sites. Subsequently, all the experimental
magnetization isotherms (from 1.9 K to 10 K) are used to generate
a 3D plot with magnetization, magnetic field and temperature
along the three axes. The plot is shown in Fig. 3. This plot more
explicitly depicts the variation of magnetization with field and
temperature,

Experimental specific heat data for Cu(NH3)4S04-H,0O single
crystals measured in absence of external magnetic field in a tem-
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Fig. 2. Experimental magnetization vs. magnetic field data at different temperature
values {symbols represent data taken at temperatures shown in the legend) along
with the corresponding QMC (Quantum Monte Carlo) results derived using the
Hamiltonian for a chain consisting of 100 spins.
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Fig. 3. Surface plot with magnetization, magnetic field and temperature along the
three axes.

perature range of 2-10 K is shown in Fig. 4 (open circles). The most
prominent feature in the data that can be observed is the appear-
ance of a broad maximum at T, = 3 K which matches well with
previous results [28,29]. Upon enhancement of temperature, the
specific heat decreases. However, when the temperature is
increased further, an upturn in the specific heat curve is observed
which happens solely due to the lattice contribution which will be
clear from the ensuing analysis. The temperature dependence of
specific heat can be represented by the following relation,

C(T) = Cu(T) + T (2)

Here C,, is the magnetic specific heat and the lattice contribu-
tion is determined by the coefficient . We have used the Bethe
ansatz result for specific heat [33] for the case of isotropic Heisen-
berg chain model to analyze the magnetic part of the experimental
specific heat data. Experimental values of Cy(T) have been
extracted by subtracting the lattice part from C(T) and plotted with
temperature in Fig. 4 (open squares). Subsequently, the numerical
data calculated by Bethe ansatz technique was compared with the
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Fig. 4. Total (magnetic and lattice component) and magnetic (see legend) specific
heat data for Cu(NH3)450,4-H,0. Solid curves are the respective calculated curves as
shown in the legend and explained in the main text.
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experimental magnetic specific heat in the same plot. The best
match was obtained for J=6 K and f=0.00218 JMol 'K “ The
obtained value of | is consistent with the previous analysis on mag-
netic susceptibility data and the estimated value of fi is close to the
reported value [28]. The total specific heat data C(T) is also com-
pared with the corresponding theoretical curve which was esti-
mated by using J=6K and f=0.00218] Mol 'K in Eq. (2)
(shown by the solid blue line). The Debye model explained that
the specific heat of a lattice originates due to the optical phonons
at low temperature and varies with temperature as Cpepye = pT3.
This can be derived from the equation [37]

T % xe

Here #p is the Debye temperature. In low temperature regime, f§
has a simple mathematical relationship with the Debye tempera-
ture Op.

B = 127 NKy/50;, (4)

Estimation of Debye temperature was performed by substitut-
ing f#=0.00218 in the above equation. We obtained 0 =96.27 K
for the present compound. The notable characteristic of the specific
heat curve is the broad peak around 3 K which arises due to the
intrinsic contribution from the many-level energy spectrum of
the Heisenberg spin chain [37]. At very low temperature, the ther-
mal energy is not sufficient to excite the system to the higher
energy states, yielding a very low value of specific heat. However,
with increase in temperature, the probability of excitation to the
higher energy states increases and the specific heat starts rising.
When the rate of absorption of thermal energy reaches its peak
value, specific heat curve shows a maximum which happens
around 3 K. Upon further increasing the temperature, the specific
heat drops down to lower value as the energy levels become pop-
ulated equally and no differential change in the internal energy
occurs.

Fig. 5 displays experimental specific heat C(T) data from 2 K to
10K in presence of magnetic field up to 7T. Upon increasing the
field, the broad maximum at 3 K is suppressed towards lower tem-
perature and completely disappears around 5T. This behavior is
quite similar to the experimental results obtained in the case of
other uniform spin chain materials [26,27]. Bonner and Fisher
numerically estimated specific heat for isotropic Heisenberg case
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Fig. 5. Experimental specific heat data for Cu(NH1),S04 H,0 as a function of
temperature at different fields.

where the number of the spins was varied from 2 to 11 [38]. Later,
A. Kliimper investigated the thermodynamics of infinite spin %
Heisenberg chain and calculated specific heat as a function of tem-
perature at different applied magnetic field values [39]. They
observed that with increasing field the maxima in the C(T) vs. T
curves shifts towards lower temperature regime accompanied by
a reduction in height which supports our experimental data. In
order to analyze the field dependent specific heat data, we have
employed the numerical C(T) vs. T datasets (at different applied
fields) derived by A Kliimper using the Bethe ansatz [39]. The
experimental data and the exact solution (the theoretically gener-
ated curves have been scaled by assuming ] = 6 K) for 1T, 3T and 5T
are plotted in the same graph. One can conclude that the experi-
ment and theory are quite consistent with one another (Fig. 6).
Measured specific heat vs. temperature datasets at constant fields
were used to create the 3D plot shown in Fig. 7.

Next, fundamental thermodynamic quantities, namely, internal
energy and entropy are quantified for Cu(NH3)4S04-H20 from the
experimental specific heat data. In general, the internal energy at
some particular temperature T is related to the specific heat by
the following equation

T
U(T) = U + f C(T)a‘T’ (5)
2K

with Uz being the internal energy at 2 K. Numerical integration is
carried out on the specific heat data in the temperature range of 2-
10 K and the above mentioned integral equation is used to quantify
experimental internal energy for the present compound. The analy-
sis is performed for each field dependent magnetic specific heat
datasets. In order to determine Uy, the theoretical treatment of
A. Kliimper is followed [39,40]. We have used | = 6 K obtained from
earlier analyses. Thus, the theoretical values of internal energy Uz
at the particular fields corresponding to the experimental Cy,(T) vs.
T datasets are substituted in the integral equations (5) to evaluate
temperature dependent internal energy datasets [U(T) vs. T | at dif-
ferent fixed fields. Both the theoretical and the experimental ener-
gies are scaled in the unit of Kelvin. Evaluated U(T) vs. T datasets
are plotted in Fig. 8. A surface plot has been created using the
U(T) vs. T datasets for different fields (Fig. 9).

Fundamental thermodynamic relations imply that the entropy
increment of a system could be simply calculated from specific

heat using the relation AS(T) = Sx + f;,({(‘(T‘)/T’JdT'. Here Sy is
the entropy at 2 K. Hence, we substituted the experimental mag-
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Fig. 6. Comparison of experimental specific heat data with corresponding Bethe
ansatz results for magnetic fields of 17T, 3T and 5T.
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Fig. 7. Three dimensional plot depicting the variation of experimental specific heat
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Fig. 8. Variation of experimental internal energy with temperature for different
applied magnetic fields (as shown in the legend).
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Fig. 9. Three dimensional variation of internal energy with magnetic field and
temperature along the other two axes.
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netic specific heat data in the above equation and integrated
numerically to estimate the entropy increment. The above treat-
ment was performed for all C(T) vs. T datasets obtained at fixed
fields and these results are shown in Fig. 10. The integration con-
stant (entropy for S=1/2 Heisenberg spin chain at T=2K) has
been determined theoretically [39,40] and incorporated in the
integration. The figure shows that the zero field magnetic entropy
saturates at the value of 0.688 which is quite close to the theoret-
ically predicted value of In(2) = 0.693. This observation also sup-
ports the fact that the phonon contribution has been efficiently
subtracted from the experimental specific heat data. We then used
the entropy vs. temperature datasets at different fields to generate
a surface plot shown in Fig. 11. The plot explicitly depicts the
behavior of entropy with change in temperature and field. The
entropy increases with increase in temperature for all field values
as it is expected for antiferromagnetic correlations or ordering is
destroyed with increase in temperature. At high temperature
(~10K), where the antiferromagnetic correlations are minimum,
the entropy decreases upon increasing the field because of field
dependent alignment of the paramagnetic spins.

4. Conclusion

The present work exemplifies an investigation of thermody-
namics of a Heisenberg spin %2 chain material where an intimate
detail about the system has been captured. In summary, we have
performed a study of thermal and magnetic properties of Cu
(NH3)4S04-H,0 which can be described by an ideal spin ¥ chain
with isotropic Heisenberg interaction. Temperature dependent
susceptibility and specific heat data have been compared with
the results calculated using the Bethe ansatz technique. The exper-
imental data are in excellent agreement with the calculation using
an exchange coupling constant | = 6 K. This consistency indicates
that the material displays spin chain behavior in the temperature
regime down to 2 K. Field dependent magnetization curves are
generated numerically using QMC technique at the Heisenberg
extreme. Numerically simulated curves are in agreement with
the experimental ones. Temperature dependent specific heat data
at various applied fields are also compatible with the exact results
for infinite Heisenberg spin chain. Furthermore, numerical integra-
tion is performed on the experimental specific heat data to obtain
the variation of internal energy and entropy with temperature at
different fields.
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Fig. 10. Temperature dependence of entropy obtained from the experimental
specific heat data taken at different fields (as shown in the legend).
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Fig. 11. Three dimensional plot of entropy with magnetic field and temperature,

These spin chain systems can have fruitful applications in quan-
tum communications. Bose has described that an entangled spin
chain can be used as an appropriate channel for transmitting a
quantum state over a short distance [41]. It has been suggested
that the above scheme can be efficiently implemented for one-
dimensional Heisenberg chain compounds with nearest neighbor-
ing interaction where a quantum state can be transferred with an
improved fidelity compared to the classical one [41]. Successful
implementation of the above protocol can play a significant role
in designing a feasible quantum computer. Moreover, the possibil-
ity of having entangled spins in solid state crystals has an advan-
tage over the optical systems as the crystals can be efficiently
integrated with existing Si-based technology or other quantum
devices [42].
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