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Abstract

In this paper we developed lossless audio compression by using reversible transforms that map their
coefficients as integers to integers. Three reversible transforms, S-transform, TS-transform, and SP-
transform were implemented to decorrelate redundant signals in music samples. Golomb-Rice code
combined with the Laplacian probability density function (PDF) was used to encode the decorrelated
signal. Various audio samples excerpted from the SQAM-CD were tested by prototypical lossless com-
pression system we developed and compression results are presented with comparing with the result
obtained by using linear prediction method in our previous work. . . .

1 Introduction
Despite tremendous growth of storage capacity and transmission bandwidth of the digital world today, the
demand for higher-quality multimedia (more word size, more sample rate, and more channel) associated
with audio, image, and video continues to outpace it. Hence the importance of data compression, as a key
technology to allow efficient storage and transmission, is not likely to diminish. The general idea behind
data compression is to remove the redundancy present in the data to find more compact representation.
Two families of algorithms exist in the data compression. When the information can be exactly recovered
from the bits, the source coding or compression is called lossless; otherwise, it is lossy. To achieve higher
compression ratio, lossy algorithms remove the information that is not perceptible or transform in a way
that the compressed signal comes close to the original. In this case we allow approximate representation
of the original, instead of trying to represent the original exactly, and have only a modified version of the
original after transmission. Lossless algorithms, however, respect the integrity of the original signal. After
transmission and reconstruction an exact copy of the original signal is available.

Two main drawbacks are related with lossless audio compression. First, time varying compression ratio
of lossless compression makes difficult to allocate a fixed bandwidth to transmitting data and complicates
editing of compressed material. The second is its poor compression rate compared to the lossy case. The
lossless audio compression usually achieves a compression ratio of 2 to 3 without any loss of quality, while
lossy compression achieves a compression ratio of 8 to 40 or higher. With the higher compression ratio,
however, the lossy audio compression is very objectionable in high fidelity audio compression applications
because of unexpected artifacts introduced even by the most heavily engineered schemes using percep-
tual auditory models. It would be more critical if the audio signal undergoes multiple encoding/decoding
operations.

Most transforms result in real-valued coefficients with an infinite precision and main compression ef-
fect arises during quantization and encoding of these coefficients. Consequently the traditional transform
coding is a lossy compression method. In order to realize a lossless compression based on the transforma-
tion, we therefore need to develop a transform method that maps the coefficients as integers to integers.
The construction of a reversible transform is relatively simple. By using appropriate quantization or round-
ing, any linear transform can be modified so that it can be computed using finite-precision arithmetic with
preserving lossless invertibility. However, an efficient construction of reversible transform is by no means
a straightforward task, although the idea behind generating the transform is easily stated. For example,
due to the quantization error the resulting reversible transform is generally nonlinear and only serves to
approximate the linear transform from which it was derived. If the reversible transform fails to mimic the

1



behavior of its parent transform, desirable property of the parent transform will likely be lost and poor
results will be obtained. So the key consideration in the design process is to construct efficient reversible
transforms that successfully approximate their parent transform.

Theoretically, linear transformations and perfect reconstruction (PR) filter banks are losslessly invert-
ible but this invertibility can be guaranteed only if the transform and its inverse transform use an exact
arithmetic. It is because of the fact that output of most non-singular linear transforms consists of rational
or real numbers due to their floating point coefficients. Even when the input data consist of sequences of
integer samples (this is the case for audio, image, and video signal in digital world), the outputs no longer
consist of integers. Furthermore, finite-precision arithmetic is employed to perform the transforms, and
such arithmetic is inherently inexact due to errors introduced by system rounding. So it means that the
transforms, which are losslessly invertible in exact arithmetic, are lossy in a strict sense because of finite-
precision arithmetic of computer, for example. Furthermore, the quantization of the transform coefficients
in such compression system would likely increase the loss of information.

In this paper, we discuss the lossless audio signal compression using reversible transforms. We first re-
view the various reversible transforms that can be used for lossless audio compression, such as S-transform,
RTS transform, and S+P transform. We test the transforms in decorrelation stage of a prototypical lossless
audio compression scheme and compare the performance of the system with the linear prediction method
reported in our previous work [1].

2 Reversible subband transforms

2.1 S-Transform
A classic example of a reversible transform is the sequential transform (S-transform) proposed in [2] [3]
which has become quite popular for lossless signal compression (especially for image compression). A
sequence of random integers x[n] with length N , can be perfectly represented by the two sequences with
length N/2 defined by

lp[n] = b(x[2n] + x[2n+ 1])/2c , (2.1)
hp[n] = x[2n]− x[2n+ 1] ,

where the floor b·c represents a maximum integer not exceeding a real number x. This is so called (2× 2)1

S-transform. Several slightly different definitions of this transform exist in the literature. In fact, the S-
transform is a nonlinear approximation to a scaled version of the Haar transform. The Haar transform itself
is one of the simplest two-channel subband transforms. Transfer functions of Haar transform are defined
as following,

H(z) = (1 + z)/2 , G(z) = 1− z ,

H̃(z) = 1 + z , G̃(z) = (1− z)/2 .

This transform is a scaled version of an orthogonal transform. Therefore, the coefficients of the S-transform
must be weighted on a per subband basis in order to approximate an orthogonal transform. The inverse
transformation of (2.1) is

x[2n] = lp[n] + b(hp[n] + 1)/2c , (2.2)
x[2n+ 1] = x[2n]− hp[n] . (2.3)

The idea behind the reversibility of the S-transform is the observation of the facts; the sum and the differ-
ence of two integers are sufficient knowledge to recover the numbers and have the same parity, i.e., they
share the same least significant bit. Therefore the division by 2 (or a shift right by 1) in Eq. (2.1) eliminates
a redundant least significant bit. Figure 2.1 shows a block diagram of the transform.

In fact, this transformation is equal to subband decomposition, except for the truncation procedure.
Therefore lp[n] and hp[n] are the lowpass and highpass components, respectively. The main idea behind

1Let the numbers of taps of the lowpass filter and that of the highpass filter be (n×m).
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Figure 2.1: Filtering structure of S-transform (Q(x) = bxc).

this representation is that, if the correlation coefficient of x[2n] and x[2n+1] is larger than 1/3, then the av-
erage variance of lp[n] and hp[n] is smaller than the variance of x[n]. In this case, hp[n] normally has small
variance, while the variance of lp[n] is approximately equal to the variance of x[n]. The main advantage of
S-transform is also that it is easy to find the truncation allowing the PR system. Moreover, there is no data
expansion, i.e., it uses use the same number of samples of the original signal. Unfortunately, the ideas on
which the S-transform is based do not generalize to transforms using more complicated relationships that
simple pairwise sums and differences. Consequently the S-transform does not provide any further insight
into how other classes of reversible transforms might be constructed.

2.2 Reversible TS-Transform
To design a symmetric short kernel filter (SSKF), Gall and Tabatabei in [4] used a factorization of a product
filter into two linear phase low-pass components. These correspond to the lowpass analysis and synthesis
filters. By using the quadrature mirror filter (QMF) properties the highpass filters are derived. In their most
important example, the following product filter is factorized

P (z) = 1
16 (1 + z−1)3(−1 + 3z−1 + 3z−2 − z−3) . (2.4)

Its two factorized versions are given in [4]

P1(z) = [14 (1 + z−1)3]× [ 14 (−1 + 3z−1 + 3z−2 − z−3)]

P2(z) = [12 (1 + z−1)3]× [ 18 (1 + z−1)(−1 + 3z−1 + 3z−2 − z−3)] . (2.5)

Using this factorization method, another version is considered in [5],

P3(z) = [12 (1 + z−1)]× [ 18 (1 + z−1)2(−1 + 3z−1 + 3z−2 − z−3)] . (2.6)

From the third version, a (2× 6) PR subband filter can be defined with following filter coefficients

h =
1√
2

(1, 1)

g =
1

8
√

2
(−1,−1, 8,−8, 1, 1) . (2.7)

This transform is called TS(two-six)-transform in the literature [6]. A reversible version (RTS) of Eq. (2.7)
is proposed in [7],

lp[n] =
⌊
x[2n] + x[2n+ 1]

2

⌋
(2.8)

hp[n] =
⌊

1
4

(
−
⌊

(x[2n] + x[2n+ 1])
2

⌋
+ 4(x[2n+ 2]− x[2n+ 3])

+
⌊

(x[2n+ 4] + x[2n+ 5])
2

⌋)⌋
(2.9)
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The expression for hp can be simplified and written with the use of lp, and the integer division by 4 can be
rounded by adding a 2 to the numerator. These result in,

lp[n] =
⌊
x[2n] + x[2n+ 1]

2

⌋
(2.10)

hp[n] = x[2n+ 2]− x[2n+ 3] +
⌊
−lp[n] + lp[n+ 2] + 2

4

⌋
(2.11)

The inverse transform of the RTS-transform is quite simple,

x[2n] = lp[n] +
⌊
s[n] + 1

2

⌋
(2.12)

x[2n+ 1] = lp[n]−
⌊
s[n]

2

⌋
(2.13)

where

s[n] = hp[n− 1]−
⌊
−lp[n− 1] + lp[n+ 1] + 2

4

⌋
(2.14)

As the case of S-transform, the lowpass signal of RTS-transform has the same range of values as the
input signal. Particularly, this property is important in a pyramid system where the lowpass signal is suc-
cessively decomposed. Note that there is no systemic error due to rounding in the integer implementation
of the transform, so all error in a lossy system can be controlled by quantization.

2.3 S+P Transform
S+P transform (S-transform + prediction) is a reversible transform that maps integers to integers and is
parameterized by two sets of filter coefficients, initially proposed by Said and Perlman [8]. This transform
is a further refinement of the S-transform where the S-transformed highpass output hpo is replaced by the
difference between the hpo[n] and the estimate ĥp[n] obtained using the prediction;

lp[n] = b 12 (x[2n] + x[2n+ 1])c (2.15)

hp[n] = hpo[n]− bĥp[n] + 1/2c (2.16)
(2.17)

where

hpo[n] = x[2n]− x[2n− 1] (2.18)

ĥp[n] =
L1∑

i=L0

αi∆lp[n+ i]−
H∑

j=1

βj hpo[n+ j] , (2.19)

where ∆lp[n] = lp[n− 1]− lp[n]. The use of ∆lp[n] instead of lp[n] allows to have zero-mean estimation
terms, and thus there is no need to subtract the mean from x[n]. Note that the index i can be negative
because lp[n] is not replaced by a prediction error. The optimal predictor coefficients α and β can be
found by solving the Yule-Walker equations. The inverse transform uses lp[n] and hp[n] to reconstruct the
original input signal x[n] as given by

x[2n] = lp[n] + b 12 (hpo[n] + 1)c (2.20)
x[2n+ 1] = x[2n]− hpo[n] , (2.21)

where
hpo[n] = hp[n] + bĥp[n] + 1

2c , (2.22)

and ĥp[n] is as given above.
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Type α−1 α0 α1 β1

A 0 1/4 1/4 0
B 0 2/8 3/8 2/8
C -1/16 4/16 8/16 6/16

Table 1: S+P transform predictor coefficients

In Table 12, three sets of predictor coefficients are listed that have been suggested in [9]. The predictor A
in the table has the smallest computational complexity and yields a reversible version of the TS-transform.
In the degenerate case where all of the predictor coefficients are zero (αi = βi = 0), the S-transform is
obtained. The filtering structure for the S+P transform is shown in Figure 2.2, where A(z), B(z), QT (x),

Figure 2.2: Structure of S+P transform. (a) Forward transform, (b) Inverse transform

and Q(x) are defined as

A(z) = (1 + z−1)
L1∑

i=L0

αiz
−1, B(z) =

H∑
j=1

βjz
−j , (2.23)

Q(x) = bxc, QT (x) = bx+ 1
2c . (2.24)

Note that the first part of the forward transform structure and last part of the inverse transform structure
are nothing more than the S-transform. If we disregard the effects of the truncation in the S+P transform,
we have a linear subband transform that corresponds to a QMF bank having analysis filters with transfer
functions,

H(z) = 1
2 (1 + z),

G(z) = − 1
2 (1 + z)A(z2) + (1− z)[1 +B(z2)] (2.25)

So the S+P transform does not directly approximate an orthogonal or near-orthogonal transform. By
weighting the transform coefficients associated with each subband by an appropriate constant, a near-
orthogonal transform can be obtained. To handle finite-length signal, it should be assumed that the signal

2In image compression applications, the predictor B is the best suited for natural images and the predictor C is for very smooth
medical images.
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is defined for n = 0, 1, 2, . . . , N − 1 where N is even. This assumption is required so that the input signal
is split into two polyphase components. If the signal is not of even length, the simple solution is to pad the
signal by one sample. The S+P transform is typically applied in a pyramid fashion such that the lowpass
signal is successively decomposed. In this case, we have a reversible wavelet transform.

3 Experiment

3.1 Test audio material
Nine audio materials are chosen for our experiment; six from SQAM-CD [10]3 and two from published
music CDs (see Table 2). All materials are sampled at 44.1kHz, 16 bits step size, and stereo channel (except
for speech).

Nr. Length Description
1 1:11 SQAM Track 8, Violin, Arpeggio and Melodious Phrase
2 0:46 SQAM Track 13, Flute, Arpeggio and Melodious Phrase
3 0:21 SQAM Track 53, Female Speech, German (Mono)
4 1:32 SQAM Track 60, Piano, Schubert
5 1:22 SQAM Track 67, Wind Ensemble, Mozart
6 0:33 SQAM Track 69, ABBA, Pop
7 0:21 SQAM Track 70, Eddie Rabbitt, Country
8 0:29 Def Leppard “Adrenalize”, Track 1 “Let’s get rocked”,

Bludgeon Riffola Ltd, Metal Rock
9 0:29 Stan Getz “The Artistry of Stan Getz”, Track 10 “Litha”,

Polygram Records, Soft Jazz

Table 2: Description of test audio materials

3.2 Design of lossless compression system
We tested the three reversible transforms, S-transform, TS-transform, and S+P transform, by integrating
them into decorrelation stage of a prototype audio compression system developed in our previous work [1]
(Fig. 3.1).

Figure 3.1: Block diagram of lossless audio compression system.

3SQAM(Sound Quality Assessment Material), European Broadcasting Union
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Materials S SPB TS LP-IIR1 Gzip

Nr. 1 9.122 8.92 8.91 8.69 12.05
violin, solo (1.743) (1.79) (1.78) (1.84)

Nr. 2 7.54 7.49 7.67 7.52 11.04
flute, solo (2.12) (2.14) (2.09) (2.13)

Nr. 3 7.32 7.30 7.35 7.42 8.62
speech, fem. (2.19) (2.19) (2.18) (2.16)

Nr. 4 5.95 5.82 5.96 5.81 10.43
piano, solo (2.69) (2.75) (2.68) (2.75)

Nr. 5 7.50 7.36 7.46 7.43 12.79
classic, orch. (2.13) (2.17) (2.14) (2.15)

Nr. 6 8.35 8.29 8.97 8.32 11.76
pop, abba (1.92) (1.93) (1.78) (1.92)

Nr. 7 7.42 7.53 7.61 7.55 9.65
country (2.16) (2.12) (2.10) (2.12)

Nr. 8 12.44 12.49 12.59 12.47 14.86
rock, metal (1.29) (1.28) (1.27) (1.28)

Nr. 9 9.54 9.39 9.47 9.44 13.93
jazz, soft (1.68) (1.70) (1.69) (1.69)

8.35 8.29 8.44 8.29 11.68Average
(1.92) (1.93) (1.90) (1.93)

1 Results by using IIR linear prediction in the previous work [1]

Table 3: Test compression results with compressed bit rate (bits/sample)2 and compression ratio
(original/compressed)3

For the entropy coding following the decorrelation stage in the compression system, we used Golomb-
Rice code with fixed parameter k. The estimation of an optimal parameter k is linearly related to the
variance of signal. The Golomb-Rice code provides a good approximation to the distribution of the pre-
diction residual samples, because it is optimized for a block of signals having a Laplacian-like probability
density (double-sided exponential distribution). For S+P transform we used single level decomposition
with the coefficients of the type B in the Table 1, i.e.

α0 =
2
8
, α1 =

3
8
, β1 =

2
8

ĥp[n] =
1
8
{2(∆lp[n] + ∆lp[n+ 1]− hpo[n+ 1]) + ∆lp[n+ 1]} (3.1)

3.3 Results
Table 3 shows the compression results in bit rates. It turned out that there is no single reversible trans-
form that provides superior compression performance for all types of audio materials. Furthermore the
effectiveness of the transform depends strongly on the content of audio signals to be compressed. For the
smooth audio signals such as speech, classic, and soft pop music, the SPB was most efficient decorrela-
tion method, while S-transform, which requires lowest computational complexity, performs best for audio
signals with large dynamic range and relatively stronger treble energy such as rock and metal music. The
compression result from the IIR linear prediction developed in the previous work [1] is also showed in the
table. Overall it turned out that SPB transform performs as good as the IIR linear prediction for all audio
signals. Particularly, for single instrument music samples, the IIR prediction seems to be the best choice
and the SPB-transform for the others.
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4 Conclusion and future work
For lossless audio compression we tested three reversible transforms, S-transform, SPB-transform, and TS-
transform to decorrelate redundant signals in music samples. Regardless of which decorrelation method
used, simple linear prediction or complex reversible transform, the compression result presented in this
work is not sufficient to object to the generally accepted opinion that compression ratio of 3 to 4 would
be the limit of lossless audio compression. However, there are still some issues that could help overcome
the limitation in lossless transform coding. For example, parametric signal segmentation could improve
the performance of decorrelation. Since signal content of a music sample is quasi-periodic with repeat-
ing rhythm and harmonic progress, one can consider an adaptive block-length estimation according to the
rhythmic/beat period, in order to exploit cross-correlation between these blocks. The performance of the
SPB-transform, which showed best compression performance (especially for dynamic music samples) in
our experiment, can be further improved. In the experiment we implemented just single level decom-
position using the transform with a common set of coefficients. This can be extended by employing a
multilevel decomposition scheme based on low-passed signal parts. In this case, the order of coefficients
should be optimized depending on the number of decomposition level. Since such scheme approaches to a
wavelet-like decomposition, it might easily be adapted to the type of music samples.
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