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Abstract Monitoring and analyzing TV broadcasts is an important task in the me-
dia as well as the advertising business. An important subtask is the frame-accurate
detection of recurring video sequences. Examples of recurring video sequences are
commercials, channel advertisements, channel intros, and newscast intros. Most of
these different kinds of repeating video clips can automatically be classified by fur-
ther analyzing their temporal and visual properties. In this work we introduce an
algorithm and a real-time system for recognizing recurring video sequences frame-
accurately in a highly effective and efficient manner. The algorithm does not require
any temporal pre-segmentation by shot detection and can thus, in principle, be ap-
plied to any kind of temporal signal. It is frame-accurate, meaning that it exactly
identifies with which frame a repeating sequence starts and ends. Thus, the tempo-
ral accuracy is 40 milliseconds for PAL and 33 milliseconds for NTSC videos. On
a standard PC desktop a 24-hour live-stream can be processed in about 4 hours in-
cluding the computational expensive video decoding. To achieve this efficiency the
algorithm exploits an inverted index for identifying similar frames rapidly. Gradient-
based image features are mapped to the index by means of a hash function. The
search algorithm consists of two steps: firstly searching for recurring short segments
of 1 second duration and secondly assembling these small segments into the set of
repeated video clips. In our experiments we investigate the sensitivity of the algo-
rithm concerning all system parameters and apply it to the detection of unknown
commercials within 24 and 48 hours of various TV channels. It is shown that the
method is an excellent technique for searching for unknown commercials. Currently
the system is used 24 hours a day, 7 days a week in various countries to log all com-
mercials broadcast without manual intervention.
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1 Introduction

The influence of digital media on our lives is steadily growing. Lots of data, which
were formerly presented by audio, photography, or books, is now shared as digital
videos. Information from numberless broadcast stations are available 24 hours a day,
7 days a week. These large amounts of data require effective strategies for keeping it
accessible. Thus there is an urgent need for effective search and mining algorithms
for a variety of applications. Common tasks in video retrieval range from browsing
through video collections over copy detection in the World Wide Web to finding
special types of sequences in broadcasts such as commercials or news themes.

In this chapter we will focus on the detection of recurring sequences in TV broad-
casts such as commercials, music clips, jingles, news stories, and similar content.
For performance analysis and evaluation, however, we will only concentrate on the
detection of recurring commercials as they have the advantage that we can easily and
fast create frame-accurate ground truth annotations with a video wheel; something
that is normally not easily possible for other kinds of recurring video sequences.

Regarding commercials as recurring sequences is a highly effective method to
search for them. It only needs to rely as little as possible on vague, and/or easily
alterable audio-visual characteristics such as increased audio level or cut-frequency.
Usually simple duration constraints are enough to distinguish them from other recur-
ring sequences. As shown in Sec. 4 the percentage of repeated commercials within
24 hours in our test videos is about 90%. In other words, if we can detect all recur-
ring commercial clips, we cover 90% of all broadcast advertisements per day. For
longer mining periods such as days or weeks, this fraction will increase, because
some commercials that are shown only once a day will be repeated within the next
days. The detection of unknown commercials can be used, for instance, to create an
ad database as the basis for reliable recognition of broadcast advertisements [1].

This chapter is structured as follows: After some comments on the characteris-
tics of the videos we deal with, we will introduce and discuss two types of image
features for fingerprinting our sequences in Sec. 2. In Sec. 3 we explain our search
algorithm in more detail. Experimental results are discussed in Sec. 4. We inves-
tigate the sensitivity of the algorithm concerning all system parameters and apply
it to the detection of unknown commercials within 24 and 48 hours of various TV
channels. We give survey on related work in Sec. 5 and finally a summary in Sec. 6.

2 Fingerprinting Video Streams

Video streams are temporal sequences of individual images. With proper image fea-
tures the essence of these video frames can be captured. Hence a video stream can
be considered as a temporal sequence of image features. There already exists a very
large variety of image features. For instance, they can be derived from the colors
and/or the structures in the picture. Additionally, it may be worthwhile to take tem-
poral information into consideration. After explaining in Sec. 2.1 the context in
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which we operate with our search algorithm, we introduce in Sec. 2.2 two types of
image features – a color-based and a edge-based feature. Both image features are
suitable for real-time fingerprinting [10].

2.1 Video Model

There exist different intentions for searching for repetitions in videos. Depending on
the actual goal the search methods may vary, for instance, in the requirements on the
image features or the quality and precision of the results that have to be achieved.

We will focus on the mining of repeated sequences from a single sensor such
as a specific TV capture card for building a comprehensive database from TV live-
streams. Here, we have the constraint to operate in real-time, which means that we
need image features that are fast to compute and a very fast algorithm for detect-
ing recurring sequences. Storage needs are assumed to be moderate, because the
recurring sequences in live TV streams are expected to be of moderate length.

We also want to point out that our algorithm on purpose is designed for a data
stream coming from a fixed, but arbitrary sensor such a TV capture card from a
specific vendor. As every human observes the world through the same two eyes and
has to learn everything it can see for these two eyes, our system observes everything
through the same kind of video capture cards for the same kind of signals. Any
kind of artifact created by the sensor is consistent throughout time in the input data
stream. Thus our work does not address the copy detection problem on the Internet
or across different video formats and video fidelities. This is a completely different
problem domain. Nevertheless our task is also challenging since the focus lies on
temporal precision.

As we are interested in assembling a database of all commercials broadcast dur-
ing our 24/7 monitoring, we have to detect repeated sequences in real-time not only
within the stream but also in the database that is built on-the-fly during mining. In
this setting it can be an advantage to choose image features which are less robust,
but posses a ability to reliably distinguish between different images, since it may
lead to a better overall performance as precision is more important than recall.

2.2 Image Features

In this Section we introduce two image features: the Color Patches Feature (CPF)
and the Gradient Histogram (GH). A color patches feature is derived by computing
color average values for small parts of the image. Gradient Histograms are based on
the edges in an image. Advantages and disadvantages of both types of image features
are discussed in length in [10]. In the following we will evaluate quantitative and
qualitative properties of these image features. For visualization we take two sample
video frames from two different TV channel recordings (see Fig. 1).
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(a) (b)

Fig. 1: Sample images from (a) a UK broadcast in PAL norm and (b) a US broadcast in NTSC
norm.

Color Patches Features We choose the color patches feature (CPF) as our color-
related image feature. It has been shown that it is robust and outperforms, for in-
stance, Color Coherence Vectors for the task of image matching [10]. Many variants
of CPFs are widely used and amongst others described in [17].

CPFs are derived from mean intensities within small subareas of each color chan-
nel. The whole image is divided into N×M rectangular blocks. For each block the
intensity of each color component red, green, and blue is averaged:

PC
nm =

1
∑(x1,x2)∈Inm 1 ∑

(x1,x2)∈Inm

C (x1,x2) (1)

with colors C ∈ (R,G,B) and subareas Inm, n = 1, . . . ,N and m = 1, . . . ,M.
Fig. 2 illustrates the effect of the CPF calculation. Each single-colored rectangle

represents three mean RGB intensities in the CPF vector. Thus, the size of the CPF
vector is 3×N×M.

(a) (b)

Fig. 2: The color patches features (CPFs) for the two sample images of Fig. 1: (a) for the UK
broadcast image and (b) for the US broadcast image.



Mining TV broadcasts 24/7 for recurring video sequences 5

Gradient Histograms An alternative to color-based features are edge-based fea-
tures. They evaluate color intensity gradients instead of absolute intensities. Edge-
based features similar to our gradient histograms are for instance investigated in
[17, 19, 26].

In our work we operate on grayscale images only and use intensity differences to
approximate the true gradients:

∂

∂x1
I (x1,x2)∼ [I (x1 +1,x2)− I (x1−1,x2)] (2)

∂

∂x2
I (x1,x2)∼ [I (x1,x2 +1)− I (x1,x2−1)] (3)

We again divide an image into N×M subareas Inm. For each subarea we generate a
gradient direction histogram of K bins by summing sum up in each bin the gradient
magnitudes of all gradients, whose directions fall into the interval of the bin:

Hk
nm =

1
∑(x1,x2)∈Inm mg (x1,x2)

∑
(x1,x2)∈Inm

Mk (x1,x2) , (4)

with the gradient magnitude mg, orientation θg, and the auxiliary variables Mk and
θk defined by

mg =
√

(I (x1 +1,x2)− I (x1−1,x2))
2 +(I (x1,x2 +1)− I (x1,x2−1))2, (5)

θg = arctan
(

I (x1,x2 +1)− I (x1,x2−1)
I (x1 +1,x2)− I (x1−1,x2)

)
. (6)

Mk =

{
mg (x1,x2) if θk ≤ θg (x1,x2) < θk+1,

0 else,
(7)

θk = (k−1)360◦/K (8)

Figure 3 illustrates GHs. Each sample image has the same partitioning as for the
CPFs in Fig. 2. A rectangular subarea is divided into K = 8 directional bins to vi-
sualize the histogram. The histogram values are encoded by the grayscale intensity:
the lighter the gray, the larger the value of that histogram bin. Thus, darker parts in
the image mark areas with little structure, whereas rectangles with only a few nearly
white segments are typical for strong straight edges (compare to Fig. 1).

Thus a gradient histogram fingerprint consists of N×M×K values Hk
nm. In our

further work we use a compressed feature vector

H k
nm = min

(
256/L ·Hk

nm,255
)

, (9)

which maps all floating point values to 1-byte integers. For N = M = K = 8 L = 0.02
is a good choice [10].
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(a) (b)

Fig. 3: The gradient histograms (GHs) of the two sample images in Fig. 1: (a) for the UK broadcast
image and (b) for the US broadcast image.

Distance Measure We measure the distance between two images I1 and I2 with the
L1-Norm of the particular feature vector

DFV (I1, I2)=

{
1

3NM ∑C∈(R,G,B) ∑
N
n=1 ∑

M
m=1

∣∣PC
nm (I1)−PC

nm (I2)
∣∣ , FV = CPF,

1
NMK ∑

N
n=1 ∑

M
m=1 ∑

K
k=1

∣∣H k
nm (I1)−H k

nm (I2)
∣∣ , FV = GH,

(10)
where FV is the place holder for the feature vector name. The distance between two
sequences S1 and S2 of length L is given by

DFV
L (S1,S2) =

1
L

L

∑
l=1

DFV (S1(l),S2(l)) . (11)

The distance measures in Eqs. 10 and 11 provide the possibility for defining the
equality of two images or image sequences, respectively. We call two images to be
equal to each other, if the feature vector distance is less than a threshold ∆ FV

I

I1 = I2 ⇔ DFV (I1, I2) < ∆
FV
I . (12)

Accordingly, we define two sequences S1 and S2 of length L1 and L2 to be equal, if
DFV

L (S1,S2) is less than a threshold ∆ FV
S and their duration difference is less than

∆L:
S1 = S2 ⇔ DFV

L (S1,S2) < ∆
FV
S ,L = min(L1,L2), |L1−L2|< ∆L. (13)

3 Searching Frame-Accurately

In this section we introduce our algorithm for frame-accurate identification of du-
plicate sequences in the fingerprints of live video streams.
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The whole algorithm is composed of nearly independent parts, which are se-
quentially processed and which in principal can be replaced by other choices. After
having fingerprinted each frame of a video we need a fast and efficient image search
method. We use an inverted index to identify similar images rapidly. and a hash
function to map an image feature vector to an one-dimensional table index. Details
of this step are explained in Sec. 3.1.

On the basis of the inverted image index we search next for short repeating se-
quences of about one second and call them clips. Candidate duplicate clip pairs are
built by looking for short sequence pairs with a required minimal percentage of
hash-value-identical frames. Details are explained in Sec. 3.2.

Clip pairs are grouped to longer target sequences according to their temporal
coherence and are aligned for proper estimation of start and end frames. This step
is explained in Sec. 3.3.

The application of filters dedicated to a search of special interest like commercial
mining is discussed in Sec. 3.4.

3.1 Inverted Index and Locality Sensitive Hashing

An inverted index is an efficient method for fast search through large databases. In
the text domain, for instance, an inverted index contains a list of all words occurring
in a text corpus. For each word, a list of all its positions in the text is provided.
Thus, a single look-up in the index is sufficient to retrieve all occurrences. No ex-
pensive sequential or tree-based search through the text corpus is required. The only
expensive step is the creation of the index. This, however, must only be done once.

A difference between image and text retrieval arises from the high-dimensional
and often continuous feature space in image representations. There are several ap-
proaches to construct inverted indices for such feature vectors. Hampapur and Bolle
(2001) used an inverted index for each component of the feature vector [18]. Shiv-
adas and Gauch (2007) mapped the complete feature vector by means of a hash
function to a single scalar value [30]. Hash functions are designed for determin-
istic but non-injective mapping a sparse representation of a large feature space to
an index space whose size is in the order of the data’s dense representation. The
mapping of different values to the same hash value is called a collision and can be
minimized by good mixing properties of the hash function. The modulo function is
often a proper choice [24].

The disadvantage of hash functions is that due to the mixing characteristics, no
distance measure can be directly deduced from the index values. Neighbored indices
do not necessarily belong to features which are close together. One possible answer
to this problem is Locality Sensitive Hashing (LSH). Here hash functions are used
for which the probability of mapping similar features to the same index is much
higher than the probability for mapping more distant features to the same index
[15, 23].
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Color Patches Features For the CPFs we evaluate the inverted index on the basis
of average image intensities CI , C ∈ (R,G,B), which can be easily obtained:

CI =
1

NM

N

∑
n=1

M

∑
m=1

PC
nm with C ∈ (R,G,B). (14)

Taking the image averages provides locality sensitivity. The distance in the reduced
feature space is always less than or equal to the original distance (see Appendix for
a prove). Small variations are handled in the second step: we take the first b bits of
each of the averaged values to generate a scalar 3b-bits integer index value:

hC (I) = CI ÷2(8−b), C ∈ (R,G,B), b ∈ {0, ...,8}, (15)

hCPF (I) = 22bhR (I)+2bhG (I)+hB (I) . (16)

In this way images with close color average intensities are grouped into the same
bins [6]. The bin size ShCPF and the index range RhCPF depend on the choice of b:

ShCPF = (28−b)3, RhCPF = (2b)3, b ∈ {0, ...,8}. (17)

Because of the limited index range RhCPF we do not need any further sample space
reduction for our index evaluation.

Gradient Histograms For GHs we use a three step hashing algorithm to achieve
locality sensitivity in our index. We first reduce the feature vector size:

H k =
N

∑
n=1

M

∑
m=1

H k
nm. (18)

The image related gradient distribution H k is robust to small changes as all feature
vectors are mapped to vectors with equal or less distance (see Appendix). The size
of the H k is 8+P bits, if P is the smallest integer with NM ≤ 2P.

In the second step we evaluate a first intermediate hash value for every compo-
nent H k by taking the first b bits of every single value H k:

h1 (I) =
K−1

∑
k=0

(
2b

)k
h1

k (I) , with h1
k (I) = H k÷2(8+P−b). (19)

The number of possible values Rh1 (b,K) gives the range of this first hash value

Rh1 (b,K) =
(

2b
)K

, b ∈ {0, ...,8+P}. (20)

In dependence on the values of K and b the index range Rh1 may be quite large,
because we deal with typical sizes of K = N = M = 8 [10]. Therefore we apply a
modulo function with index range Rh2 to the first hash value h1 (I)

h2 (I) = h1 (I) mod Rh2 . (21)
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We evaluate Eq. 21 in an iterative way with the Horner scheme:

h2
1 (I) = h1

1 (I) mod Rh2 , (22)

h2
k (I) =

(
2b ·h2

k−1 (I)+h1
k (I)

)
mod Rh2 for k = 2, . . . ,K,

hGH (I) = h2
K (I) . (23)

For our calculations we use an index range Rh2 = 100,003, which meets the criteria
for choosing a good table size [24].

The first two steps preserve the locality sensitivity, whereas in the third step, the
evaluation of h2, we use a classical hash function with good mixing properties.

Distance Measure The hash value representation is the basis for the similarity def-
inition. We call two Images I1 and I2 to be similar, if their hash values are equal

I1 ∼ I2 ⇔ hFV (I1) = hFV (I2), FV ∈ (CPF,GH), (24)

and we call two image sequences S and T of length LS and LT , LS ≤ LT without loss
of generality, to be similar, if a certain amount α ∈ (0,1) of images is similar

S ∼ T ⇔
LS

∑
i=1

θ (S (i)) > αLS, (25)

with

θ (S (i)) =

{
1, if ∃ j ∈ (1,LT ), S (i)∼ T ( j) ,
0, else.

(26)

Thus we distinguish between identical (Eq. 13) and similar (Eq. 24) images. A
small image feature distance (Eq. 10) describes the visual identity of two images.
For similar images there is only a certain probability that they are actually identical.

In our search algorithm we first search for similar images and clips, which can be
done very fast with the index table, and then refining our results by evaluating the
more time consuming image feature distance to identify actually duplicate clips.

Implementation There are several approaches to implement an inverted index for
live-stream applications. One possibility to handle the index search is to deal with
a dynamic index table, which is updated after processing each frame. In this case
you may execute a table search just in time. Beside the – for our application –
unnecessary additional computational overhead, an even more serious issue is that
all hashing functions are designed for a certain frame number range of video frames.
For instance, the index range Rh2 = 100,003 for the GH was chosen with a 2 hour
mining period in mind, i.e., for 180,000 hash values for PAl videos. Without causing
to many collisions the search period cannot just be increased to maybe 24 hours or
longer.

As we want to process the live-stream in real-time, while it is acceptable to ob-
tain results with a certain delay, we split the video stream into suitable pieces of
about two hours. The resulting fingerprint size of such segments fits into the system
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memory in a comfortable way. For each slice we build a separate inverted index and
store it on the hard drive. Every two hours we invoke a sequence search that takes
the latest two hours of fingerprints as the input sequence, searches through it, and
then continues through the previous two hours of fingerprints one after the other
until the period we want to search through has been processed (e.g., 24 hours).

3.2 Clip Search

A live video stream appears as an endless sequence of images without any direct
hints about embedded repeating sequences. Some information about the underlying
structure of the video stream could be gained by shot segmentation. However, in
the digital age we can find beside classical hard cuts many hardly to detect com-
plex transitions such as dissolves, wipes, and morphings. The correct detection of
all transitions would require separate reliable algorithms for each of them. To avoid
errors from cut detection and save the detection time we operate on the raw video
stream: we pick random pieces, called clips, out of the stream and search for repe-
titions of these clips. The duration of a clip may be arbitrarily chosen, but it should
be much shorter than the lengths of our target sequences to ensure that there ex-
ist clips that are completely contained within each repeated sequence. The smallest
unit to search for is a single image. However, single images are often not sufficiently
distinctive, and therefore we will settle on one-second clips.

The clip search approach is adopted from DNA sequencing. Complete DNA
strands are far too long to be sequenced in one single run. Therefore, they are bro-
ken up into much smaller pieces. This can be done in a deterministic or random way
(shotgun method). In the latter case all fragments have to be aligned after analysis.
There are a variety of sequence alignment methods known in bioinformatics [20].

We can use some pieces of information from the stream to make a proper choice
for the processed clips and only start a new clip search at an image, if we find similar
images in our inverted index. We scan a video frame by frame, calculate the hash
index of each frame and retrieve all similar frames by a look-up in the inverted
index. We reject matches, which are temporally very close to our query frame. A
minimal gap of 2000 frames is required to avoid detection within the same scene.
Furthermore we neglect frames belonging to hash indices with a very large number
of entries, i. e. we ignore non-distinctive frames such as black frames or parts of
long self-similar sequences.

Figure 4 shows two clips of 25 frames (1 second in PAL). Similar frames with
identical hash values are marked. It is possible, that there is no one-to-one mapping
between similar images, as visually similar images can be mapped to the same index.

Fig. 4 Two clips with frames
matched by hash values. �
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If we find more than 20% similar frames within clips s1 and s2, we consider
s1 ∼ s2 with α = 0.2 (Eq. 25). For all duplicate clip candidates C (s1,s2) we calculate
the distance DFV

L (s1,s2) (Eq. 11) between them. All unequal candidates (Eq. 13) are
discarded, all equal ones are further processed.

3.3 Frame-Accurate Repeated Sequences Search

The next task in our algorithm is to build the repeated sequences from the identified
clip pairs. At first we group the pairs, which are temporally coherent together. After
aligning these groups of clips we can estimate the start and end of all found repeated
sequences.

We identify clip pairs C belonging to the same recurring sequence by looking at
their times of occurrence. Two clip pairs are assumed to belong to the same recurring
video sequence, if both clips of a pair are closer than 150 frames to the correspond-
ing clips in the other clip pair. This step results in a number of sequences, which
are pair-wise identical or similar in parts. Each pair of such sequences is called a
duplicate D . Each duplicate is described by two lists S1 and S2 representing the
corresponding sequences:

D = (S1,S2) . (27)

Each list Si contains the start frame numbers of the clips building the duplicate:

Si =
(
framei

1, . . . , framei
n
)
, (28)

with n denoting the number of clips forming the duplicate. Note that frame1
i and

frame2
i are the start frame numbers of the two clips of a clip pair i. According to

our search strategy the frames in S1 and S2 are not necessarily in the same temporal
order, especially for long still scenes.

Figure 5 illustrates the state in our search algorithm at this point. We have identi-
fied a number of small pieces of our target sequence. However, we still miss precise
informations about the boundaries.

Fig. 5 Recurring video se-
quence with the clip pairs that
were found. Clips

S1

S2

Target Sequence

To reduce the input for the next steps it is possible to do a coarse filtering at this
stage. For instance we discard sequences, which do not meet the required minimum
number of clips. Content related filtering is discussed in Sec. 3.4.

As it can be seen in Fig. 5 both sequences S1 and S2 due to their construction
may be shifted to each other, i. e., the offsets oi with

oi = frame2
i − frame1

i i = 1, . . . ,n, (29)
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between corresponding clips are not the same for all n. Hence, we need a method
for estimating the real offset between the repetitions of the target sequence.

One simple technique is the iterative alignment during the detection of start and
end frames. We find the start and end frame of a found sequence by going backward
at the start and forward at the end frame by frame as long as the feature vector dis-
tance between the two associated frames is smaller than a threshold. If the image
distance signals different frames, we have recognized the end or the start, respec-
tively. For sequence alignment we do not stop this procedure, once we have found
different frames, but continue the search with a modified offset derived from the
original offset by adding a relative offset. We set initially this relative offset to +1
frame. If the distance between two frames under this modified offset is smaller than
our threshold, we test the next two frames with the same modified offset until we
find different frames again. In the case that the current relative offset has not resulted
in frame equality, we try the same relative offset in the opposite direction (i.e., we
us the negative offset), and after that we increment the relative offset by one. When
a maximal allowed relative offset is reached, the procedure stops and the last found
identical frames are rated as start and end, respectively.

We can accelerate this operation by estimating at first the most likely offset o0
from all offsets oi. If F(oi) is the distribution function of the start frame differences
of all clip pairs of a sequence candidate, we take the most frequent offset as the first
guess for the alignment of both sequences, i.e.,

F (o0)≥ F (oi) ∀i ∈ (1,n). (30)

After aligning the duplicate sequences with this offset o0, we can determine the
start and end frame with the method described above. At this time, we have frame-
accurately determined two occurrences of the same sequence; we know their be-
ginnig and temporal length. To validate results, we can at this stage evaluate the
feature-based distance function for the complete sequence and discard eventually
false matches.

In a last step we compare the pairwise matched sequences against those from
the other duplicates to group frequently occurring sequences together. All detected
repeated sequences are compared with the database and added if novel.

3.4 Content-Related Filtering

As already mentioned in Sec. 3.3 we can control the result by filtering the clips found
in dependence on the content we search for. Typically not all kinds of recurring se-
quences are of interest all times. Special kinds of sequences such as commercials can
be retrieved by taking their characteristic properties into account and eliminating all
non-complying sequences. A useful property is sequence length. For instance, you
may distinguish between channel logos (just a few seconds long), commercials (10
to 60 seconds long), and music videos (several minutes long). At this step you may
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include all features you know are characteristic for the kind of repeating sequences
you are looking for. For ads this can be a higher cut rate, black frames, increased
audio volume, and others attributes as discussed by Lienhart et al. in [25].

As we want as much as possible to be independent of properties that can be
changed by the advertising industry, we restrict our commercial filter to sequence
length.

4 Experimental Results

In our experiments we investigate the sensitivity of the algorithm concerning the
most relevant system parameters. We test the algorithm by detecting commercials
in 24 and 48 hours, respectively, of two manually labeled TV channels. Furthermore
we explore the choice of our image features and compare the performance of CPFs
against GHs. At last we apply the system to a variety of TV channels with quite
different characteristics of advertisement representation.

4.1 Parameters and Numbers of Relevance

For our quantitative experiments we use two 48-hour long video sequences recorded
from two different British television channels: Chart TV (a music channel) and Sky
Sports News (a sports channel). Both videos are downscaled to half PAL resolution
(360×288 pixels) at 25 frames per second. For these two test videos we determined
the locations of all occurring commercials manually as our reference truth.

Although our proposed search algorithm mines video streams for all kinds of
recurring video sequences, of which commercials are just one example, we focus
in our experimental evaluation on the detection of repeating commercials for the
following practical reason: It is quite easy and fast to determine manually and un-
ambiguously all recurring commercials in a test video.

Commonly performance of search algorithms is measured by recall and preci-
sion: recall R measures the percentage of detected relevant sequences, while preci-
sion P reports the percentage of relevant sequences in the search result:

R =
number of found relevant sequences

number of all relevant sequences
, (31)

P =
number of found relevant sequences

number of all found sequences
. (32)

Depending on the particular motive of the search, it makes sense to specify
slightly modified performance values. Recall and precision from Eqs. 31 and 32 de-
scribe the algorithm’s performance concerning all repeated sequences in the video
stream. As mentioned above we will concentrate on the detection of commercials.
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We will use the superscript C to indicate this fact. In particular, we will consider
the following values, which are either of more theoretical or more practical interest.
The most important values for theoretical discussion are RC

M and PC
M , which stand

for the detection of Multiple occurring commercials, because these values describe
the quality of the algorithm. Of more practical interest are the values RC

MD and PC
MD.

This pair specifies the detection of Multiple Different occurring commercials. Here,
we count, if a recurring commercial is detected. It is unimportant whether all rep-
etitions are found. These values are of interest, if we want to build a database of
commercials. Here it is sufficient to detect one repetition. Last, but not least, RC

and PC stands for the detection of all commercials, and RC
D and PC

D for all Different
commercials. The last four values include commercials which are not repeated and
thus cannot detected by the algorithm. They give the possibility to estimate, how
successful a repeated sequence search is regarding commercial detection.

It is important to note that our precision values do not correctly reflect the perfor-
mance of the algorithm. The result list of the search for repeating video sequences
will (absolutely correctly) contain plenty of repeated sequences, which are not com-
mercials. Therefore, the reported precision values concerning repeating commer-
cials are quite low, since every recurring sequence that is not a commercial will
count as a false alarm. We will try to mitigate this issue by applying a pre-filter to
the raw result list that discards all repeating video sequences whose durations divert
from the characteristic durations of commercials. In practice, it is our observation
that the true precision values of our system are very close to 1 for repeating video
sequences. We hardly remember having ever seen a false alarm for repeating video
sequences.

A commercial spot is found, if the start and end frame differ no more than 5
frames from the exact position. This tolerance is introduced since a commercial
spot is sometimes slightly shortened at the boundaries resulting in repetitions of the
same spot with slightly different durations. Additionally, commercials are some-
times separated by monochromatic, mostly black frames, which are, if present at
the boundaries of all repetitions, strongly spoken part of the repeated sequence, too,
but not of the commercial manually marked in the basic truth.

For both 48-hours sequences we manually labeled all commercials occurring
within the first 24 hours. In addition, we also labeled the second half of the Chart TV
video sequence. This gives us the possibility to estimate the benefit of a 48-hours
over a 24-hours search.

Table 1 reports key numbers about our test video sequences using the convention
that superscript C indicates that all numbers refer to commercials only: NC specifies
the overall number of occurring commercials in the test videos. For each test video
NC can be split into the number of ads NC

M which are repeated within the overall
video sequence and NC

S which are not repeating (subscript S stands for single occur-
rence). In other words: NC = NC

M +NC
S . The overall number of different commercials

is denoted by NC
D, of which only NC

MD are repeated in the overall video sequence.
Thus, the following relation holds: NC

D = NC
MD +ND

S . Thus, the subscript D signifies
that a recurring video sequence is counted only once.
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Table 1: Ground truth of our test videos: NC - number of all occurring commercials, NC
M - number

of all repeatedly occurring commercials, NC
S - number of all singly occurring commercials, NC

D -
number of different commercials, NC

MD - number of repeatedly occurring different commercials,
tC - time covered by all occurring commercials, tC

M - time covered by all repeatedly occurring
commercials, and tC

S - time covered by all singly occurring commercials.

Chart TV 24h Chart TV 48h Sky Sports News 24h

NC 486 997 737
NC

M 428 928 650
NC

S 58 69 87
NC

D 164 212 245
NC

MD 106 143 158

NC
M/NC 88.1% 93.1% 88.2%

NC
MD/NC

D 64.6% 67.5% 64.5%

tC / video length 13.2% 13.5% 20.0%
tC
M / video length 11.6% 12.5% 17.4%

tC
S / video length 1.6% 1.0% 2.6%

As we can see from Table 1, around two thirds of all broadcast commercials
appear more than once a day, covering around 88% airtime of all occurring spots.
Additionally, the time fraction, which is allocated to TV ads, is shown. In Chart TV
about 13% of airtime is devoted to commercials, whereas it is 20% in Sky Sports
News. Only between 1% and 3% of the overall airtime is devoted to non-repeating
spots. These are the sequences that cannot be found by even a perfect search algo-
rithm for repeating commercials.
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Fig. 6: Duration distribution of TV commercials.

Figure 6 depicts the duration distribution of all occurring spots. In Chart TV all
commercials – with a few exceptions – are multiples of 10 seconds, whereas in
Sky Sports News we find a greater variance in spot durations with a tendency to
shorter spots. This distribution encourages the idea of duration filtering to improve
the results concerning commercials.
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Most of our test cases concerning system parameters use GHs as image features
with N = M = K = 8. We build-up the inverted index based on hashing as explained
in Sec. 3.1.

Content Related Filtering Our first experiment concerns the last step in our search
algorithm - the content related filtering. As discussed above, our proposed algorithm
mines videos for all kinds of recurring video sequences, of which commercials are
just one example. While recall is not affected by focusing on commercials, it ren-
ders the precision value useless. We apply a “commercial filter” to the raw result
list in order to give the precision values a meaning: With what precision can TV
commercials be found with a repeating video clip search algorithm.
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Fig. 7: Content related filter methods.

Figure 7 shows recall and precision in dependence on the filter method. We com-
pare the unfiltered output with a simple length filter, which discards very short and
very long sequences, and a more sophisticated filter, which focuses on typical dura-
tions of TV commercials. The simple duration filter keeps all repeating sequences
with a length between 60 and 2005 frames. The more sophistic filter keeps all re-
peating sequences with durations representing multiples of 125 frames or 5 seconds
(with a tolerance of ± 5 frames). Additionally, we include sequences of 75 and 175
frames length. These values are derived from the duration distribution in Fig. 6.

As shown in Fig. 7 the “typical length filter” improves the precision significantly
compared to the unfiltered case. There is only a minor decrease in recall due to a
small amount of commercials with non-typical durations (Fig. 6). In the following
experiments we will always filter the raw result lists with the “typical length filter”,
i.e., with the “multiples of 5s filter”.

Alignment Method We evaluate the two alignment methods introduced in Sec. 3:
(1) The frame-by-frame iteratively estimated offset (SIMPLE) and (2) its variant
where the initial offset is the most frequent offset (see Eq. 30) occurring between
the clip pairs of a duplicate (OFFSET).

As we can see in Fig. 8 performance values for both methods show only small
differences with a slight advantage of the OFFSET method . We tested both methods
for several maximum relative offset values, at which the algorithm stops. It can be
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Fig. 8: Performance of the two alignment methods for (a) Chart TV and (b) Sky Sports News:
SIMPLE - offset estimation by iteratively varying start and end frames, OFFSET - the offset is
initialized with the most frequent start difference between corresponding clips before SIMPLE is
applied. Recall, precision, and execution times for repeated sequence search are plotted against the
maximum allowed offset.

seen that the performance only degrades for maximum relative offset values of two
or less frames. We can reason that our clip pairs in most cases are already aligned
up to two frames. However the impact of the maximum allowed offset on execution
time is quite small, so we can try larger values to improve the results further.

All subsequent experiments are carried out with the OFFSET alignment method
of frame offset and variable start and end frame detection with a maximum relative
offset of 20 frames.

Clip Length The following three test cases concern clip search. At first we inves-
tigate the impact of the length of the short segments. Figure 9 shows the recall and
precision values for both test videos as well as the execution times for clip search
and the whole sequence identification. Execution times are only depicted for the
Chart TV video in order to report the order of magnitude, since it is the same for
both videos.

We can recognize that by and large recall decreases with an increase in the length
of the clips, whereas the precision increases. In principal, the shorter the duration
of the clips, the better the alignment that can be achieved due to the finer granu-
larity of the samples. The disadvantage of shorter durations is the higher hit rate
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Fig. 9: Performance and execution times in dependence on the duration of the clips.

in non-commercial recurring sequences, which in turn affects precision negatively
and leads to an increase in execution times. Especially the time for identifying long
repeated sequences is significantly higher for short clips. The increase is mostly
caused by the chosen alignment method, with other methods the difference was not
that high [11]. This behavior indicates a worse alignment for clips of half a second
(1̃2 frames in PAL), the smallest length of clips we have investigated.

All in all a clip length between 25 and 50 frames (corresponds to 1 to 2 second-
segments) seems to be an appropriate choice. In our further work we use clips of 25
frames in length.

Minimum Fraction of Matched Frames In this section we discuss the parameter
α which determines when two clips are regarded as similar (Eq. 25).
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Fig. 10: Performance and execution times in dependence on the minimum required fraction of
matched frames.

Fig. 10 plots performance values and execution times against different thresh-
old values α for clip similarity. It is not surprising that recall decreases for higher
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thresholds, because more segments are missed. Nevertheless, there is a range for
smaller threshold values with little impact. The precision values reveal no signifi-
cant dependence on the test parameter, being stable over a wide range.

Lower threshold values lead to a higher number of falsely detected clips. Most of
them are discarded by the image feature based distance measure. Therefore, there
is mainly an influence on evaluation time. The more visual distances must be com-
puted, the longer the execution times. This is clearly revealed in Figure 10 by the
rapid decline in execution time for clip search for match ratios larger than or equal
to 20%.

As we find the range between 20% and 30% quite stable regarding performance
as well as execution time, we choose a threshold of 20% (i.e., α = 0.2 ) of matched
frames for the further investigations.

Maximum Number of Entries in Hash Table This test case concerns the search
for similar frames in the inverted index. As explained in Sec. 3.1 we find similar
frames by looking up the list of frame numbers with the same hash value in the
inverted index table. In practice, however, all hash values those frame number list
exceeds an upper limit of entries must be disregarded. A very large number of entries
can either be caused by too many collisions of the hash function or result from
unspecific (generic) images such as black frames. Thus, this knockout criterion is
introduced to keep evaluation times low for video streams with long self-similar or
unspecific image sequences.
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Fig. 11: Performance and execution times in dependence on the upper limit of entries per index in
the hash table. All values refer to 2 hour slices.

As revealed in Figure 11, the influence of this parameter is as expected: Recall
can be increased, if we expand our image lists, but simultaneously precision de-
creases slightly. However, we find this parameter to be most relevant for execution
time. In fact, we introduced this limit after watching a tennis match that dramat-
ically slowed down the whole system. The parameter keeps execution time nearly
constant, even if there are long periods of very similar images in the stream. Keeping
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in mind that commercials are short and in general of dynamic content, this parameter
is not a restriction.

According to our tests a maximum number of 100 entries per hash value in order
to take corresponding frames into account is a good choice for our test configuration
of 2 hour slices, i. e. per 180,000 frames. Clearly, this value highly depends on the
chosen image features, the applied hash function as well as the duration of the video
that is mined.

Minimum Length of Duplicates This test case applies to the identification of re-
peated sequences only. Requiring a minimum sequences duration Si when form-
ing a duplicate D is one possible mechanism for coarse filtering as described in
Sec. 3.4. In fact we require a minimum count n of clips as well as a minimum length
(framei

n− framei
1) before creating a duplicate as a possible candidate for a repeated

clip. In this way very short and sporadic similar clips can be discarded.
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Fig. 12: Performance and execution times in dependence on the minimum length of sequence
duplicates.

In Figure 12 performance values and execution times for different required se-
quence lengths are shown. During these experiments we scaled the required mini-
mum number n of clip proportionally.

The recall of Chart TV is nearly constant until the minimum required length
exceeds the smallest occurring commercials with a length of 125 frames (see Fig. 6).
The precision is lower for small values, but keeps nearly constant for lengths greater
than 80 frames. For TV content with such clear commercial characteristics as shown
by Chart TV this filter is a good choice for reducing false matches. For Sky Sports
News the situation is more complicated. There are many short ads of 75 frames only
as well as more recurring non-commercial clips with typical ad durations than in
Chart TV. Thus, we find that recall is negatively influenced by increased duration
thresholds, whereas the precision can be enhanced significantly. The execution times
for clip search is not influenced, because the filter is applied afterwards; the time for
identifying repeated sequences is nearly independent, too. For video content like
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Chart TV a minimum length of 100 frames is an appropriate value, whereas in Sky
Sports News this threshold discards the very short commercials.

4.2 Detection Performance

After our sensitivity analysis in the various parameters we finally summarize the
performance of our system in detecting unknown commercials by means of their
repetitions over one day. Additionally, we discuss the improvements that can be
achieved by searching for repeated clips throughout two broadcast days. We use
the parameters, which led to the best results during our tests: we set the clip length
to 25 frames, require 20% of matched frames between two clips to be considered
similar, take only frames into account which belong to hash values with less than
100 entries, and require a minimum length of a 100 frames for sequences assembled
from clips. We initialized the frame-by-frame search for the estimation of start and
end frames with the most frequent offset from the clip pair set of the duplicate, and
filter the result list of repeated clips by the ’multiple of 5s’ filter that accounts for
the typical ad durations.

Table 2: Recall, precision and execution times for our test videos: RC
M and PC

M - recall and preci-
sion of all repeatedly occurring commercials, RC

MD and PC
MD - recall and precision of repeatedly

occurring different commercials, RC - recall of all occurring commercials, RC
D - recall of different

commercials.
Chart TV 24h Chart TV 48h Sky Sports News 24h

RC
M 94.4% 95.8% 74.0%

RC
MD 93.4% 93.7% 79.1%

RC 83.1% 89.2% 65.3%
RC

D 63.4% 67.5% 51.4%

PC
M 81.0% 78.6% 82.5%

PC
MD 82.0% 70.9% 80.6%

Search Time Clips [s] 260 1362 207
Search Time Rep. Seq. [s] 33 491 32

Table 2 lists the different performance values discussed above for our two 24
hours test videos as well as for the 48 hours search through Chart TV.

Concentrating on the performance of finding repeated sequences recall values
RC

M and RC
MD are of interest. RC

M is the rate for detecting all recurring commercials,
while RC

MD concerns all recurring different commercials. The relationship between
both values depends on the number of repetitions of each spot. The detection rate
for Chart TV is – independent of the video length – better than for Sky Sports News.
The main reasons are already discussed above and are mainly due to the occurrence
of shorter commercials in Sky Sports News.
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With regard to a commercial detection system RC and RC
D are of further interest.

RC captures the recall with respect to the detection of all occurring commercials
NC and RC

D to all occurring different commercials NC
D. Repetition is not required for

these recall values. Due to the high rate of repeated commercials (see Table 1), val-
ues are strongly correlated to RC

M and RC
MD, resulting in a reasonable recall concern-

ing all commercials for Chart TV. Results for Sky Sports News could be enhanced
by channel specific parameter settings.

The precision value PC
M relates to all detected repeating video sequences, while

PC
MD focus on repeated different sequences. Again, the relation between both values

depends on the number of repetitions of detected commercials and detected non-
commercial sequences. If commercials are more often repeated, PC

M is higher. Note
that precision drops for a longer search time due to finding more repeated non-
commercial sequences and a higher probability for coalescing two commercials to
one if both commercials are repeated in the same temporal order.

Run times in Tab. 2 belong to search runs through 24 and 48 hours videos, re-
spectively. Here, the search time does not scale linearly, because we compare nT
2 hours slices with each other, resulting in nT (nT + 1)/2 operations. Therefore, in
our live detection system the search is carried out each 2 hours, and execution time
scales linearly with the number of past slices we search through, because in this case
only the actual slice is compared with those of the past resulting in nT operations.

4.3 Color Patches Features and Gradient Histograms

All experiments in the previous two sections have been carried out with Gradient
Histograms as image feature. In this section we investigate the influence of the cho-
sen image feature on the overall performance. Thus we compare the results with
GHs against the results with CPFs.

Figure 13 shows the precision and recall values for both of our test videos for
both image features: CPFs and GHs. Performance is plotted against the number
of significant bits b used in the locality sensitive hashing step. Both image features
perform in a similar way. Searching for clips with GHs is up to 30% faster than using
CPFs. This is probably due to the better mixing characteristics of the gradient-based
features. Color features are usually more clustered in feature space [10].

4.4 Mining Different TV Channels

This section is dedicated to the practical operation of our system. We apply the sys-
tem to a variety of broadcast stations from different countries with different content,
different ad presentation styles as well as different amounts of advertisements. For
every video analyzed we build a database of repeating sequences and label all en-
tries Ñ in the database manually as commercials or non-commercials. According to
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Fig. 13: Performance values for test videos (a) Chart TV and (b) Sky Sports News plotted against
the number of significant bits b used for quantization in the computation of the inverted index.

these values we can evaluate the precision of our automatic mining for commercials.
However, it is almost not possible to predict the recall from the maximum expected
amount of advertisements, because the real fraction may vary from station to station
(see Tab. 1), and is influenced by the time of day, the day of week, or even single
events. Note, that the precision P̃C may differ from the true value reported in Tab. 2,
because it may happen here that due to a recognition error a sequence is added twice
as different sequences to the database.

Table 3: Commercial detection performance of our system for different broadcast stations. Given
are the durations of the videos we mine, the number ÑC of commercials found, the number Ñ of
all repeated clips found, the precision P̃C = ÑC/Ñ, the number ÑC

±0 of all frame-accurately found
commercials, and the number ÑC

±5 of commercials found if a maximum error of ±5 frames at the
start and/or end position is tolerated.

TV station Video length [h] ÑC Ñ P̃C [%] ÑC
±0 ÑC

±5

ARD 60 10 49 20.4 2 8
RTL A 13 31 34 91.2 1 30
RTL B 11 12 16 75.0 0 12
RTL C 13 25 35 71.4 1 24

Chart Show TV 51 102 130 78.5 96 6
MTV 48 67 138 48.6 59 8
MTV with mask 48 70 115 60.9 58 12
Sky Sports News A 48 166 221 82.6 156 10
Sky Sports News B 63 178 315 56.5 147 31

Gemini 48 25 79 31.6 20 5

CBS 5 A 4 15 18 83.3 4 11
CBS 5 B 12 32 45 71.1 9 23
ESPN 10 21 27 77.8 1 20
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Table 3 lists the experimental results for various broadcast stations. We tested the
algorithm on TV channels, which contain only a small amount of commercials such
as the German public broadcaster ARD, as well as on private broadcast channels
like Sky Sports News (UK) or RTL (Germany), which devote about 20% of their
broadcast time to commercials (see Tab. 1). Note that 20% is the limit in the EU for
private broadcast channels due to a directive of the European Union [2], allowing a
maximum of 12 minutes of advertisement per hour.

The regulations for public broadcast in Germany are even stricter. Averaged over
the year only 20 minutes per day of commercials are allowed to be broadcast, but not
more than 25 minutes per day (see [3]). These rules make commercials a rare event
in our ARD video stream. Consequently, we only detected 10 distinct commercials
within 2.5 days at a low precision of about 20%. Among the falsely detected clips
are a number of channel previews with durations typical for commercials. The re-
maining false detections are mainly caused by repeated news stories. For the three
relatively short searches in RTL we achieve a good precision of 70–90%.

MTV (UK) is not only a music channel like Chart Show TV (Chart TV), but also
broadcasts shows and TV series, especially for young people, with a large amount
of commercials. Here, we can improve the low precision of less than 50% by using a
spatial mask, which neglects the first two rows of the 8×8 subareas. By this means
we can significantly reduce false detections, which have been caused by overlaying
the music clip title in the upper part of the video frames. Because these overlays may
vary across repetitions of a music clip, clips are not detected as a whole. Detected
subsequences may unfortunately have the typical durations of commercial.

Sky Sports News A corresponds to our test video. Sky Sports News B is a differ-
ent recording of the same channel. This time precision is much lower as our algo-
rithm fails probably due to repeatedly broadcast sports events from NTSC footage
that is not repeated frame identical. This results in the detection of sequences with
arbitrarily beginning and ending. The lack of robustness in this specific case is a
disadvantage of our algorithm.

Gemini is an Indian TV channel. Here, we guess a precision of about 30%. How-
ever, for non-natives it has been difficult to rate the results: what are commercials
and what not? For the same reason we could not analyze the problems of our algo-
rithm.

CBS 5 and ESPN are US broadcast stations. They differ from the other stations
by their TV norm NTSC instead of PAL. Nevertheless, we get comparable precision
values. Most false alarms result from previews and channel advertisements, which
are presented commercial-like. We include the relatively short recording named
CBS 5 A into our experiments, because we know the ground truth of this video.
We can determine the recall to be 78.9%.

In Tab. 3 we added information about the accuracy of the detected sequences.
Usually, 80% and more of the detected commercials have been detected frame-
accurate, except for the German and US stations. Here, the separating black frames
are detected as parts of the repeated sequences. we identify dissolves and fade-ins
and outs between commercials in the US TV as the source of problems.
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5 Related Work

Analyzing TV broadcasts comprises several tasks such as the recognition of copies
of known video clips, the identification of certain events, or the detection of video
sequences of interest. In most cases all approaches are related to each other. So, you
may first detect sequences of interest and then search for copies. Or you first identify
all repeating sequences and than extract a particular subset. Commercial detection is
one well-studied topic of how all of these approaches can be applied to TV streams.
Other topics are, for example, news tracking or monitoring of sports events.

In the following we will give an overview of the approaches for commercial de-
tection and cast the detection of repeated sequences in the context of video retrieval.

If we do not have a database of commercials at hand, a feature-based detection
approach is needed. A first step is to identify commercial blocks based on the spe-
cial characteristics of commercials as well as their presentation by the TV stations.
In [25] Lienhart et al. (1997) derived typical ad properties such as their restricted
lengths, their high dynamic content, which can be measured by an increased cut-
rate, and the occurrence of still images at the end of spots presenting company re-
lated information, which are typically accompanied by the appearance of a certain
amount of text. Additionally, they extracted characteristic features of commercial
blocks, which include the separation of single commercials by black frames and an
increased audio volume. The particular laws of a country may add more proper-
ties such as the requirement of intro/outro sequences which clearly separate adver-
tisements from program content and the disappearance of the channel logo during
commercial breaks.

This approach of identifying commercial blocks has been refined by other in-
vestigators. Dimitrova et al. (2002) [9] and Agnihotri et al. (2003) [4] extracted
commercial triggers from low-level MPEG decoding. At this level they could derive
information about the occurrence of black and unicolored frames, hard cuts, and
changes from and to letterbox formats. In [4] a genetic algorithm is used to exploit
the various analyzed features. Glasberg et al. (2006) [16] combined the appearance
of black frames, the disappearance of station logo, shot duration, and cut rate in
a decision tree to reliable recognize commercials, whereas Albiol et al. (2004) [5]
limit characteristic features to logo disappearance and shot duration (cut rate). In
[8] Chen et al. (2005) focused on the separation of commercials from news content.
Therefore, they combined cut frequency with a caption detector due to fewer cap-
tions in commercials than in newscasts. Furthermore, they implemented a speech-
music discriminator by combining typical audio-visual characteristics. Duan et al.
(2006) implemented a complete system consisting of commercial boundary detec-
tion, commercial classification and commercial identification [12]. In the first step
they seek for commercials using shot detection and audio scene change together
with the detection of black frames, silence and still images at the end of commercial
clips, which they mark as frames with product information. Especially from these
frames they extract keywords by means of OCR for the classification step and get
information about commercial content to identify the product line. For identifying
clips they use image features like ordinal representations and histograms of them.
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There are several disadvantages of methods recognizing commercial blocks
based on their characteristic features. A certain amount of commercials are atyp-
ical. They have, for example, only a few cuts or even no cuts at all. They can appear
like news stories, movies or cartoons. Also laws vary between countries and in time,
which makes e.g. the logo disappearance during ad breaks not universally applica-
ble. Besides the separation by black frames we can find hard cuts or dissolves be-
tween consecutive commercials. Advertisements must not be part of a commercial
block at all, but can be broadcast as a single spot. This implies the need for a more
universal algorithm.

Detecting known commercials avoids the limitations of the feature-based ap-
proach. Therefore, a lot of frameworks follows this idea. Lienhart et al. (1997) pro-
posed an algorithm which makes use of approximate substring matching for com-
paring the video input with sequences from a database [25]. Fingerprints based on
color coherence vector [27] of all known commercials are stored in the database. Al-
ternatives for fingerprinting as well as the detection and comparison methods have
been proposed. Sánchez and Binefa (1999), for example, reduced the fingerprint
storage by only storing image features for key frames [29]. Each key frame repre-
sents a single shot. They reduce the dimension of the fingerprint further by applying
Principle Component Analysis (PCA) to the color histograms feature vectors.

Not only image features, but also temporal information from video stream can
be taken into account. Hoad and Zobel (2003) [21] improved their very compact
signature from [22], which only contains the duration of shots of a given video
sequence, to make it applicable to video clips containing only a few cuts. They
investigate features, which describe the differences between consecutive frames,
such as color shift, the distance between color histograms, and centroids, which
correspond to the motion vectors of the darkest and the lightest part of the pictures.

As a fast alternative for comparing two sequences, the use of inverted indexes
and hash tables has been investigated by Shivadas and Gauch (2007) in [30]. They
implemented a real-time commercial recognition system on the basis of color mo-
ments with frame-level hashing. The use of hash tables provides constant access to
large databases. Inverted indexes have been introduced to image retrieval by Squire
et al. (1999) [31].

For building a database for commercial recognition the detection of repeated
sequences is an appropriate technique. Pua et al. (2004) introduced a real-time re-
peated video sequence identification system [28]. They extract color moments fea-
tures for all frames. Additionally they execute a temporal segmentation to get the
shot length to which an image belongs. Based on this temporal segmentation they
look for repeated shots by counting similar images, which are fast identified by
a hash table look-up. Gauch and Shivadas (2005) extend this approach to a com-
mercial detection system by adding a classifier, which labels repeated sequences
as commercials or non-commercials [14]. At this step they investigate the already
mentioned typical properties such as black frames or high cut rate.

Duygulu et al. (2004) only operate on the shot level by extracting key frames after
temporal segmentation [13]. They carry out a search for similar images concerning
a combination of color and edge based features together with a face detector. In their
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second approach they merge audio and color features. With a proper combination
of both strategies they can improve their performance values. Together with Can
he developed in 2007 a system for near duplicate sequence detection, which are
not real copies, but can vary in illumination or view points [7]. These aspects are
more related to news tracking, and require image features, which are robust to such
variations, such as SIFT features [26] and HSV statistics. They construct a tree for
finding sequences within the lists of similar key frames.

In contrast to the previous approaches Yuan et al. (2007) provide an algorithm
without shot detection for finding repetitive clips [32]. They chop the video stream
into small overlapping segments and extract visual signatures for these small seg-
ments by averaging image color histograms and combining ordinal measures of all
frames into a histogram for the video segment. They build continuous paths for
finding repeated sequences through the lists of similar video segments.

6 Conclusion

We introduced an algorithm for detecting repeated sequences in TV streams. The
algorithm is designed to operate in real-time on live streams. The main intention of
our framework is the creation of databases of recurring sequences. For later use of
such databases it is necessary to determine beginning and end of such sequences
frame-accurately, in contrast to other applications, which, for instance, only count
the number of repetitions. We applied the system to commercial detection as a pos-
sible field of application.

Our algorithm works well for broadcast station with only little amount of adver-
tisements as well as for stations heavy loaded with commercials. It is applicable to
both PAL and NTSC broadcasts. Our experiments showed that it is sometimes nec-
essary to adjust the system to channel characteristics to improve the performance of
repeated sequence detection in general and commercial detection based on simple
duration filters in specific. For channels making heavy use of overlay information
such as MTV or some sports casts, blocking out the spatial areas, which are of-
ten used to show overlay text, from the image feature computation improves the
detection performance significantly. In other cases we had to deal with constantly
appearing black frames for commercial separation. There was only one situation our
algorithm could not handle: the non-frame accurate repetition of sequences. Our al-
gorithm could not robustly detect these repetitions, since no provisions have been
taken for this specific scenario.

In our tests we investigated two different image features: color-based Color
Patches Features (CPFs) and edge-based Gradient Histograms (GHs). For our test
videos both feature types performed in a similar way. Color patches are faster to
evaluate and need a smaller amount of storage, but they are less discriminative and
may cause problems for ill-conditioned video streams [10].
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We can finally conclude that we developed an algorithm for reliable real-time
detection of recurring sequences, which is successfully applied to broadcast stations
from all over the world.
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Appendix

The reduction of the feature vectors’ dimensionality by summation over subsets or
all components, respectively, preserves the relation of distances in the sense that
images, which are close together in the feature space, are also close together in the
reduced space. In the following we proof that the distance according to the L1-norm
in the reduced dimension is always equal to or less than the original distance.

Let a = (a1, . . . ,an) and b = (b1, . . . ,bn) be two n-dimensional feature vectors
with the L1-distance

d(a,b) =
n

∑
i=1
|ai−bi| , (33)

and A = (A1, . . . ,Ak) and B = (B1, . . . ,Bk), k < n, the corresponding feature vectors
in the k-dimensional reduced space with each of their components being a sum of a
subset of the components of the feature vectors a and b, respectively, i.e.,

Ai =
ni

∑
j=mi

a j, Bi =
ni

∑
j=mi

b j, (34)

where without loss of generality

m1 = 1, mi ≤ ni ∀i, mi+1 = ni +1 ∀i, nk = n.

Then, the L1-distance D(A, B) is always less than or equal to d(a,b), because

D(A,B) =
k

∑
i=1
|Ai−Bi| (35)

=
k

∑
i=1

∣∣∣∣∣ ni

∑
j=mi

a j −
ni

∑
j=mi

b j

∣∣∣∣∣ (36)

=
k

∑
i=1

∣∣∣∣∣ ni

∑
j=mi

(a j −b j)

∣∣∣∣∣ (37)

≤
k

∑
i=1

ni

∑
j=mi

∣∣a j −b j
∣∣ (38)
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≤
n

∑
i=1
|ai−bi| (39)

≤ d(a,b). (40)

References

1. Half minute media, www.halfminute.com
2. Council directive 89/552/eec of 3 october 1989 on the coordination of certain provisions laid

down by law, regulation or administrative action in member states concerning the pursuit of
television broadcasting activities (1989)

3. Staatsvertag für Rundfunk- und Telemedien (Rundfunkstaatsvertrag – RStV –) (2008)
4. Agnihotri, L., Dimitrova, N., McGee, T., Jeannin, S., Schaffer, D., Nesvadba, J.: Evolvable

visual commercial detetctor. In: Proceedings of the 2003 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’03). IEEE Computer Society, Madison,
Wisconsin (2003)
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