Bundle min-Hashing

Speeded-up object retrieval

Stefan Romberg - Rainer Lienhart

Abstract We presenta feature bundling technique based on
min-Hashing. Individual local features are aggregated with
features from their spatial neighborhood into bundles. These
bundles carry more visual information than single visual
words. The recognition of logos in novel images is then per-
formed by querying a database of reference images. We fur-
ther present a WGC-constrained RANSAc and a technique that
boosts recall for object retrieval by synthesizing images from
the original query image or reference images. We demon-
strate the benefits of these techniques for both small object
retrieval and logo recognition. Our logo recognition system
clearly outperforms the current state-of-the-art with a recall
of 83 % at a precision of 99 %.

Keywords Feature bundling - Object retrieval - Min-hash -
RANSAC - Query expansion - Logo recognition

1 Introduction

In computer vision, the bag-of-visual words approach has
been very popular in the last decade. It describes an image
by multiple local features; high-dimensional descriptor vec-
tors are quantized to single numbers—the visual words. An
image is modeled as an unordered collection of word occur-
rences, commonly known as bag-of-words. The benefits of
this description are an enormous data reduction compared
to the original descriptors, a fixed-size image description,
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robustness to occlusion and viewpoint changes, and eventu-
ally simplicity and small computational complexity.

It has been observed several times that the retrieval per-
formance of bag-of-words based methods improves much
more by reducing the number of mismatching visual words
than by reducing quantization artifacts. Examples are large
vocabularies or Hamming Embedding [8]. In other words, the
precision of the visual description seems to be more impor-
tant than its recall, because low recall may be recovered by
doing a second retrieval round, i.e. by query expansion.

Inspired by this observation we present a feature bundling
technique [22] that builds on visual words. It does not
describe each visual word individually but rather aggregates
spatial neighboring visual words into feature bundles. An
efficient search technique for such bundles based on min-
hashing (mH) allows for similarity search without requiring
exact matches. Compared to individual visual words such
bundles carry more information, i.e. fewer false positives are
retrieved. Thus, the returned result set is much smaller and
cleaner. Our logo recognition framework [23] exploits this
bundle representation to retrieve approximately 100 times
fewer images than bag-of-words while having equal per-
formance in terms of mAP. This technique turns the multi-
class recognition of brand logos into simple lookups in hash
tables.

This work is an extension of our work in [22,23]. We
summarize our contributions as follows:

e We discuss and evaluate a new retrieval technique based
on feature bundles and extensively compare its perfor-
mance to existing approaches.

e A RrRaNsac variant for fast spatial re-ranking is described
that yields superior results compared to existing approac-
hes by exploiting a weak-geometric constraint to speed
up the computation.
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e We demonstrate that recall of a system targeting high
precision for object retrieval can be increased easily
by exploiting synthetically generated images with query
expansion and database augmentation.

e Eventually, the former techniques then are exploited for
scalable logo recognition and combined in a system that
significantly outperforms the current state-of-the-art.

2 Related work

We present related work suited to image and object retrieval
and also briefly highlight the related work relevant in the
context of min-Hashing.

Visual words and bundling In contrast to this work most
approaches to feature bundling are indeed post-retrieval ver-
ification steps where the internal geometry of a bundle is
used to discard false correspondences. An early approach
in this spirit exploited the number of matching neighbor-
ing features to discriminate true feature matches from ran-
dom matches [25]. Later, it was proposed to bundle mul-
tiple SIFT features that lie in the same MSER region into
a single description [26]. However, this work uses individ-
ual visual words for retrieving candidate images, the bun-
dles are only used together with a weak geometric similar-
ity criterion for post-retrieval verification. In [4], the most
informative projections that map the visual words from the
2-D space into feature histograms (termed ‘“‘spatial bag-of-
words”) are learned. A similar approach, yet more unbiased
to certain image layouts, splits the original feature histograms
by random projections into multiple smaller “mini bag-of-
features” [10]. Separate lookups and an aggregating scoring
are used to find the most similar images in an image database.
In [28], descriptive visual phrases are mined by analyzing the
local neighborhood of local feature yielding a more discrim-
inative visual description than single visual words.

Logo retrieval There has been much previous work on logo
retrieval varying from recognition of brand logos on scanned
documents to the search in real-world images. We focus
on the latter case and retrieval schemes only. In [3], cor-
respondences between SIFT descriptors of video frames and
reference image are determined in order to detect whether
a logo is present. The logo is then further localized by
estimating the center of all the matches. In [13], feature
triples are derived from a multi-scale Delaunay triangula-
tion of interest points that yields a highly distinctive sig-
nature. A similar approach bundles triples of visual words
including their spatial layout into visual signatures that
are then subsequently indexed by a cascaded index mak-
ing efficient testing of images for the presence of pairs
and triples feasible [24]. In [12], the authors propose an
adaptive RaNsac thresholding mechanism that controls the

number of false positives and show that this improves
the post-retrieval verification for many queries. In [7], the
authors combine three types of local features to capture gra-
dient distribution, shape and patch appearance and adap-
tively weight their combination during retrieval. Another
approach based on feature bundling uses a regular grid
to bundle local features that reside in the same grid cell
[11]. Similar to Partition min-Hashing [15], each grid cell
is described by a bag-of-words but the lookup for match-
ing grid-cells is done by bag-of-words retrieval followed
by a branch-and-bound object localization. In [16] fea-
ture selection is performed to determine consistent visual
words. This allows to reduce the number of visual words
used to query the inverted index with no or little loss of
accuracy.

Min-Hashing (mH) Min-Hashing is a locality-sensitive hash-
ing technique that is suitable for approximate similarity
search of sparse sets. Originally developed for detection of
duplicate text documents, it was adopted for near-duplicate
image detection and extended to the approximation of
weighted set overlap as well as histogram intersection [6].
Here, an image is modeled as a sparse set of visual word
occurrences. Min-Hashing then allows to perform a nearest-
neighbor search among all such sparse sets within an image
database. This approach is described more extensively in
Sect. 3.1.

Geometric min-Hashing (GmH) A conceptually similar
approach to ours is Geometric min-Hashing [5]. However,
its statistical preconditions for the hashing of sparse sets are
totally different to our setting. There are two major differ-
ences: (1) GmH samples several central features by min-
Hash functions from all over the image. Thus, neither all nor
even most features are guaranteed to be included in the image
description. (2) Given a central feature (randomly drawn by
a hash function) the local neighborhood of such feature is
described by a single sketch. This makes GmH very memory
efficient, but not suitable for generic image retrieval because
of low recall. Consequently, the authors use it to quickly
retrieve images from a large database in order to build initial
clusters of highly similar images. These clusters are used as
“seeds”; each of the contained image is used as query for a
traditional image search to find more cluster members that
could not be retrieved by GmH.

Partition min-Hashing (PmH) In [15], a scheme is intro-
duced that divides the image into partitions. Unlike for nor-
mal min-hashing, min-Hashes and sketches are computed
for each partition independently. The search then proceeds
by determining the sketch collisions for each of the parti-
tions. This scheme is conceptually similar to a sliding win-
dow search as partitions may overlap and are processed step
by step. The authors show that PmH is significantly faster



than mH and has identical collision probabilities for sketches
as mH in the worst case, but theoretically better recall and
precision if the duplicate image region only covers a small
area.

3 Bundle min-Hashing

We build our bundling technique on min-Hashing mainly for
two reasons: (1) feature bundles can be naturally represented
as sparse sets and (2) min-Hashing does not imply a strict
ordering or a hard matching criterion. This requirement is
not met by local feature bundles. Due to image noise, view-
point and lighting changes, the individual local features, their
detection, and their quantization are unstable and vary across
images. Even among two very similar images, it is extremely
unlikely that they share identical bundles. We therefore uti-
lize the min-Hashing scheme as a robust description of local
feature bundles because it allows to search for similar (not
identical) bundles.

The proposed bundling technique is an efficient approxi-
mate search method for similar images with higher memory
requirements than pure near-duplicate search methods, but
similar to that of bag-of-words. Its performance is close to
bag-of-words, but at a much lower response ratio and much
higher precision.

3.1 Min-Hashing

Min-Hashing is a locality-sensitive hashing technique that
allows for approximate similarity search of sparse sets. It
models an image as a sparse set of visual word occurrences.
As the average number of visual words per image is much
smaller than the vocabulary size for large vocabularies, the
resulting feature histograms are sparse and are converted to
binary histograms (i.e. sets representing whether a visual
word is present at least once).

If one were able to do a linear search over all sets in a data-
base, he might define a threshold on the overlap ovr(Iy, 1)
between two such sets /1 and I>. This is equivalent to a thresh-
old on the Jaccard similarity and determines whether these
two sets are considered “identical” or matching. However,
as the linear search over a database is infeasible in practice
the min-Hashing scheme provides an efficient way to index
these sets based on this overlap criterion.

Given the set I = {vy, ..., v} of [ visual words of an
image I, the min-Hash function is defined as

mh(l) = argmin h(v;) @))
viel

where h is a hash function that maps each visual word v;

deterministically to a random value from a uniform distribu-

tion. Thus, the min-Hash m# itself is a visual word, namely
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that word that yields the minimum hash value (hence the
name min-Hash). The probability that a min-Hash function
mh will have the same value for two different sets /; and I
is equal to the set overlap:

|1y N Lo

P(mh(ll) — mh(lz)) = OUT(Il, 12) = m

(€5

Note that an individual min-Hash value not only represents
a randomly drawn word that is part of the set, but each
min-Hash also implicitly “describes” the words that are not
present and would have generated a smaller hash—because
otherwise it would have been a different min-Hash value.

The approximate search for similar sets is then performed
by finding sets that share min-Hashes. As single min-Hashes
yield true matches as well as many false positives or random
collisions, multiple min-Hashes are grouped into k-tuples,
called sketches. This aggregation increases precision drasti-
cally at the cost of recall. To improve recall, this process is
repeated n times. Thus, independently drawn min-Hashes are
grouped into n tuples of length k. The probability that two
different sets have at least one of these n sketches in common
is then given by

P(collision) = 1 — (1 — ovr (I, I»)*)" 3)

This probability depends on the set overlap. In practice the
overlap between non-near-duplicate images that still show
the same object is small. In fact, the average overlap for a
large number of partial near-duplicate images was reported
to be 0.019 in [15]. This clearly shows that for applications
which target the retrieval of partial-near-duplicates, e.g. visu-
ally similar objects rather than full-near-duplicates, the most
important part of that probability function is the behavior
close to 0.

The indexing of sets and the approximate search are per-
formed as follows: to index sets their corresponding sketches
are inserted into hash-tables (by hashing the sketches itself
into hash keys), which turn the (exact) search for a part of
the set (the sketch) into simple lookups. To retrieve the sets
similar to a query set, one simply computes the correspond-
ing sketches and searches for the sets in the database that
have one or more sketches in common with the query. A
lookup of each query sketch determines whether this sketch
is present in the hash table, which we denote as “collision”
in the following. The lookups can be done efficiently in con-
stant time as hash tables offer in amortized O(1). If there is a
query sketch of size k that collides with a sketch in the hash
table, then the similarity of their originating sets is surely >0,
because at least k of the min-Hash functions agreed. To avoid
collisions resulting from unrelated min-Hash functions, the
sketches are put into separate hash tables: the kth sketch is
inserted into the kth hash table.
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3.2 Bundle min-Hashing

The idea of our bundling technique is simple: we describe
the neighborhoods around local features by bundles which
aggregate the visual word labels of the corresponding visual
features. The bundling starts by selecting central features,
i.e. all features in an image with a sufficient number of local
features in their neighborhood. Analogous to the feature his-
togram of a full image, the small neighborhood surrounding
each central feature represents a “micro-bag-of-words”. Such
a bag-of-words vector will be extremely sparse because only
afraction of all features in the image is present in that particu-
lar neighborhood. Since the features of a bundle are spatially
close to each other, they are likely to describe the same object
or region of interest.

More specifically, given a feature x; its corresponding fea-
ture bundle b(x;) is defined as the set of spatially close fea-
tures for a given feature x;:

b(xi) = {xj|x; € N(x;)} 4)

where N (x;) is the neighborhood of feature x; which is
described at the end of this section. We further assume that
for all features x; in an image the descriptor vectors have been
quantized to the corresponding visual words v; = g(X;).
The bundle b(x;) is then represented by the corresponding
set of visual words of all features included in that bundle:

Wi(b(xi)) = {q(xj) | x; € b(x;)}. (&)

The set W; is then indexed by regular min-Hashing.

In extensive experiments we observed the following: first,
sketches of size 2 perform best compared to sketches of size 3.
Second, we found that the performance increases drastically
if the first sketch element is not determined by min-Hashing
but rather set to the visual word of the central feature itself.
That is, for each bundle the nth sketch is given as 2-tuple

(i, mhy, (Wi (b(xi)))) (6)

where v; denotes the visual word label of the central feature
and mh,, denotes the min-Hash returned by the nth min-Hash
function from the set of all visual words W; present in bundle
b(xj). The full process is illustrated in Fig. 1.

The major advantage can be seen when comparing the
collision probabilities of a single min-Hash and sketches of
size 2 (see Fig. 2). With our approach two bundles (the cen-
tral feature plus a single min-Hash) with an overlap of only
0.2 have a 50 % chance that one of 4 sketches collide. This
means, while there are multiple feature bundles that need
to be described, each with several sketches, only very few
sketches are needed per bundle to achieve a high probability
to retrieve similar sets. This keeps the memory requirements
for the indexing low. Further redundancy is added as images
that contain multiple bundles which may overlap. If some

central visual word

®

sketches

set of neighbors mi”gghing (6,@)
{ololo) (O,®)

Fig. 1 Bundle min-Hashing the neighborhood around a local feature,
the central feature (red), is described by a feature bundle. Features that
are too far away or on scales too different from that of the central feature
are ignored during the bundling (yellow). The features included in such
a bundle (blue) are represented as a set of visual word occurrences and
indexed by min-Hashing (see Sect. 3.2)

bundling

bundles do not match (collide) across images, there is the
chance that other bundles in the same images collide.

Bundling strategy The bundling strategy N(x;) we use is
based on the intuition that features which are spatially close
to each other are likely to describe the same object. That
is, given a central feature we bundle it with its direct spa-
tial neighbors. We require that at least two other features
are present in its neighborhood and that these must be on
a similar scale. This is in line with the observation that true
feature correspondences are often at the same scale [8]. Thus,
each feature that is closer to a given central feature x; than a
given cut-off radius ryax is included in the respective bundle
b(x;): the radius rmax is chosen relative to the scale (patch
size) of the central feature s;. The minimum and maximum
scales spmin and spax control the scale band considered for
determining the neighbors relative to the scale of the central
feature. Figure 1 shows the bundling criterion for spin, = 0.5,
Smax = 2.0 and rpax = 1.0 (red circle = radius of the central
feature itself).

These criteria eventually make the bundling process
ignore features that have no spatial neighbors in a reasonable
distance. This effectively decreases the number of bundles
below the number of local features in an image such that
fewer sketches need to be stored resulting in a smaller total
memory consumption.

Bundling implementation The features within a certain dis-
tance to a central feature are efficiently determined by orthog-
onal range search techniques like kd-trees or range trees
which allow sub-linear search.

Min-Hash functions The min-Hashes can be computed by
generating multiple random permutations on the range of all



Fig. 2 Upper row collision

sketch size: 2

247

sketch size: 3

probabilities in regular 10F U U L 10F T U L
min-Hash with sketches of size
. ~ 08 [ 1 ~08F 1
2 (left) and 3 (right). Lower row s = #sketches: 16 5
collision probabilities given the w06 — e 1 % 06 1
set ov.erlap be.:tween bundles. 304 reketches 256 S04 1
Left single min-Hash (as used by T 9o T ol i
bundle min-Hashing). Right ) #sketches: 1024 )
. 0.0 1 1 1 1 1 0.0 1 1 1 1 1
sketches of size 2 00 02 04 06 08 10 00 02 04 06 08 10
set overlap set overlap
sketch size: 1 sketch size: 2
1.0 L T T T T T ] 1.0 L T T T T T ]
08| {1 ost 1
5 5
4 06 I ——  i#sketches: 1 g 0.6 - i
E 04} — #sketches: 2 E E 04 | 1
e —  #sketches:3 o
02 02 1
— tsketches: 4
0.0 1 1 1 1 1 0.0 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
set overlap set overlap

visual words and storing them in a lookup table. Given such
permutation the hash for each visual word in a set would be
obtained by simple lookup. However, for large vocabularies
and multiple hash functions this lookup table is larger than
CPU caches and lookups get slow. Therefore, we use ran-
domizing hash functions instead of precomputed permutation
tables to compute the hashes. These hash functions return a
uniformly drawn random value deterministically determined
by the given visual word and a seed that is kept fixed. This
implementation is both substantially more memory efficient
and faster than lookup tables. There is no guarantee that all
visual words will produce different values but this approxi-
mation seems “good enough” while being much faster than
a lookup table.

Adjustable search The bundle representation by multiple
sketches has an advantageous side-effect: it facilitates a
search tunable from high precision to high recall without
post-retrieval steps or redundant indexing. Once bundles have
been indexed with k sketches per bundle, the strictness of the
search may be changed by varying the number of sketches at
query time from 1...k. As the sketch collision probability
is proportional to the set overlap, bundles that have a high
overlap with the query will be retrieved earlier than bun-
dles with smaller overlap. Thus, by varying the number of
query sketches one can adjust the strictness of the search (see
Table 1: mean precision m P and mean recall m R change with
varying #sketches). As the ith sketch was inserted into the ith
hash table, querying sketches from 1 . . . 7 will yield only bun-
dles where the corresponding sketches and hash functions in
tables 1...i agreed at least once.

3.3 Ranking and filtering

Once the images which share similar bundles with the
query are determined, they may be ranked by their simi-
larity to the query. One possibility is to compute a simi-
larity based on the number of matching bundles between
these images. However, a ranking based on the cosine simi-
larity between the full bag-of-words histogram of the query
image and the retrieved images performs significantly bet-
ter than a ranking based on the sketch collision counts,
as it is difficult to derive a good measure for image sim-
ilarity based on a few collisions only. Thus, in our exper-
iments we rank all retrieval results by the cosine similar-
ity between the bag-of-words histograms describing the full
images [25].

In other words, the retrieval by feature bundles is effec-
tively a filtering step: the bundles are used to quickly fetch
a small set of images that are very likely relevant. These
images are then ranked by the cosine similarity between bag-
of-words histograms obtained with a vocabulary of 1M words
(see Sect. 3.5.3). We also address the problem of visual word
burstiness by taking the square root of each tf-idf histogram
entry as proposed in [9]. This is important for logo recogni-
tion as logos often consist of text and text-like elements which
are known to be prone to yield repeated visual words (“visual
words bursts”). The small response ratio of the retrieval with
bundles is a major benefit: small result sets of high precision
can be processed quickly even with sophisticated re-ranking
methods. Query expansion may then be used to do a second
retrieval.
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Table 1 Comparison of bag-of-words retrieval with bundle min-Hashing

#Sketches Smin Smax Tmax Voc. mAP AvgTop4 mP mR RR o # bundles Rel. storage (%)
Bag-of-words, tf-idf-sqrt weighting 200K 0.510 2.88 0.010 0.952 0.912 2,468.1 words 100
Bag-of-words, tf-idf-sqrt weighting 500K 0.545 3.06 0.010 0.932 0.845 2,468.1 words 100
Bag-of-words, tf-idf-sqrt weighting M 0.545 3.16 0.011 0.911 0.763 2,468.1 words 100
4 0.5 2.0 1.0 200K 0.554 3.14 0.243 0.639 0.025 1,640.9 266
3 0.5 2.0 1.0 200K 0.545 3.13 0.269 0.623 0.022 1,640.9 199
2 0.5 2.0 1.0 200K 0.527 3.09 0.312 0.592 0.018 1,640.9 133
1 0.5 2.0 1.0 200K 0.478 3.04 0.401 0.520 0.012 1,640.9 66

The upper part shows the scores of three different bag-of-words retrieval runs. The lower part shows the bundle configuration that resulted in the
highest mAP for 1, 2, 3 and 4 sketches per bundle. The columns $min, Smax, 7max and V oc. denote the bundling parameters (as described in Sect. 3.2)
and the vocabulary size. The scores follow in the order of mAP, average top 4 score, mean precision, mean recall and response ratio. The column
2# bundles denotes the average number of bundles per image. The last column estimates the memory consumption and shows the number of hash

table entries (sketches) relative to the number of visual words per image

Bold values denote the best score

3.4 Influence of parameters

Several parameters affect the behavior of Bundle Min-
Hashing. In this section we describe common trade-offs.

Visual vocabulary The quantization of high-dimensional
descriptors to discrete visual words is a lossy quantization.
For near-duplicate retrieval and also for the retrieval of sim-
ilar objects it has been shown that large vocabularies are
beneficial despite the larger quantization error. This suggests
that for retrieval it is more important to suppress false corre-
spondences than obtaining a large number of tentative corre-
spondences.

Sketch size The number of min-Hashes that are aggregated
into k-tuples directly control the collision probability. With
a larger sketch size the collision probability of random colli-
sion not only decreases drastically but also leads to low recall.
In practice mostly sketches of size 2 and 3 are used [5,6,15]
as larger sizes have impracticable low recall and a single min-
hash just represents a single word. For Bundle min-Hashing
we use sketches of size 2 but set the first component to the
central visual words.

Number of sketches In contrast to the sketch size, increasing
the number of sketches increases the collision probability.
In other works, a few dozen up to a few thousand sketches
are used depending on the representation. In our work, we
compute multiple bundles for multiple features in the image
and therefore we want to minimize the memory needed to
store them. We observed that 2 sketches are sufficient for
reasonable performance and 3 or 4 sketches slightly improve
it further.

Locality The features that are eventually bundled into a sin-
gle description are sampled from a region which size depends
on the central features. Thus, the region size implicitly influ-

ences the number of features and therefore the “noise ratio”
when min-Hashes are computed for that region. Intuitively,
features close to each other (e.g. with overlap) are corre-
lated, while features lying far from each other may be treated
as approximately independent. In the same manner the used
interest point detector also has a major influence. Detectors
that fire on blob-like regions usually yield more distributed
interest points than a corner detector that fires on every peak
of corner-like structures.

3.5 Experiments
3.5.1 Datasets

As we focus on the retrieval of small objects we test and
optimize our approach on the FlickrLogos-32 [24] dataset.
Then, we further demonstrate its performance on the datasets
UkBench [19] and Oxford [20] as well.

FlickrLogos-32 The dataset we chose to evaluate our logo
retrieval approach is FlickrLogos-32. It consists of 32
classes of brand logos [24]. Compared to other retrieval-
centric datasets, e.g. Oxford, images of a similar class in
FlickrLogos-32 share much smaller visually similar regions:
the average object size of the 55 query images (annotated
in the ground truth) of the Oxford dataset is 38 % of the
total area of the image (median 28 %) while the average
object size in the test set of the FlickrLogos dataset is only
9 % (median 5 %). As the retrieval of the Oxford buildings
is sometimes coined “object retrieval”, the retrieval task on
the FlickrLogos dataset can be considered as “small object
retrieval”.

The dataset is split into three disjoint subsets. For each
logo class, we have 10 training images, 30 validation images,
and 30 test images—each containing at least one instance



of the respective logo. Both validation and test set further
contain 3,000 logo-free images. Our evaluation protocol is as
follows: all images in the training and validation sets (4,280
images), including those that do not contain any logo are
indexed by the respective method. The 960 images in the
test set which do show a logo (given by the ground truth)
are used as queries to find the most similar images from the
training and validation sets. The respective retrieval results
are re-ranked by the cosine similarity (see Sect. 3.3).

This logo dataset targets the evaluation of small object
retrieval and classification since it features logos that can
be considered as rigid objects with an approximately pla-
nar surface. The difficulty arises from the great variance of
object sizes, from tiny logos in the background to image-
filling views. Other challenges are perspective and eventually
multi-class recognition.

UkBench Traditionally, min-Hashing has mostly been used
for near-duplicate retrieval task. In that spirit, we also eval-
uate our approach on the UkBench dataset [19] that features
10,200 images arranged in groups of 4 images showing the
same object, scene or CD cover.

Oxford The dataset of Oxford buildings [20] is one of the
most well-known datasets for evaluating image retrieval. This
dataset contains 5,063 images of 11 buildings from Oxford as
well as various distractor images. It is known for its difficulty
to discriminate very similar building facades from each other.

3.5.2 Visual features

For our experiments we used SIFT descriptors computed
from interest points found by the Difference-of-Gaussian
(DoG) detector. For evaluation of warping (Sect. 5) as
well as our logo recognition system (Sect. 6) we used the
improved RootSIFT descriptors. In all other cases—unlike
mentioned—we used the traditional SIFT descriptors in order
to make our scores comparable to those in the literature.

We used an interest point detector that yields circular fea-
ture patches but the bundling scheme may also be used with
features from affine covariant regions. When determining
the features to be included in a bundle one simply has to take
account of the elliptic regions.

The bundling parameters we show are tuned for a par-
ticular detector (DoG) and therefore for its detection char-
acteristics. It is likely that bundling parameters need to be
specifically adapted to a certain interest point detectors as
each detector varies in the number of detections, the distri-
bution of interest points (e.g. blob-like, corner-like) and the
behavior of the non-maximum-suppression. Different detec-
tors will yield a different number of features in a predefined
neighborhood. Therefore, one has to adjust the bundling para-
meter to the sparsity of the neighborhoods depending on the
interest point detector.
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For clustering the descriptor to obtain visual words we
use approximate k-means which employs the same k-means
iterations as standard k-means but replaces the exact distance
computations by approximated ones. We use a forest of 8 ran-
domized kd-trees to index the visual word centers [18]. This
kd-forest allows to perform approximate nearest neighbor
search to find the nearest cluster for a descriptor both during
clustering as well as when quantizing descriptors to visual
words. The vocabulary and IDF weights have been computed
on the training and validation sets of FlickrLogos-32 only.

3.5.3 Evaluation

As a retrieval system should have both high precision and
high recall, we measure the retrieval performance by mean
average precision (mAP) which describes the area under the
precision—recall curve. It characterizes both aspects; a system
will only gain a high mAP if both precision and recall are
high. Here, the AP is computed as AP = vazl %(Pi +Pi_1)-
(R; — R;_1) with Ry = 0, Py = 1 where P; and R; denote
precision/recall at the ith position in the retrieved list.

The response ratio (RR) is used to measure the efficiency
of the retrieval. It describes the number of retrieved images
in relation to the database size. The higher the response ratio
the more images in the result list, which is usually post-
processed or verified by computationally expensive methods.
A low response ratio will thus increase the overall efficiency
of the search. The precision among the top-ranked images
is measured by the average top 4 score (Top4) defined as
average number of correctly retrieved images among the top 4
results. A perfect retrieval would yield a score of 4.0.

Bag-of-words First we compare the performance of various
approaches based purely on the cosine similarity between
bag-of-words on the FlickrLogos-32 dataset. Thus, we eval-
uate the retrieval performance of a plain bag-of-words search
with varying vocabularies and varying patch sizes of the
descriptors. We are especially interested in the impact of
extremely large visual vocabularies on the performance.
Thus, we vary the vocabularies from 10,000 (10K) to
4,000,000 (4M) words.

The results are shown in Fig. 3. In [22] we have already
shown that IDF-weighting is always beneficial in the bag-
of-words framework, even for large vocabularies greater
than 1 million words. Thus, tf-idf weighting was used in
all cases. As found in prior works, large vocabularies show
significantly better performance. The peak is consistently at
500K/1M words. The patch size that is described by a SIFT
descriptor linearly depends on the scale and a magnification
factor m. We further test how this magnifier changes the per-
formance. The best performance is obtained with descriptors
computed with m = 3 as in Lowe’s work. In addition we
compare the performance of bag-of-words based on standard
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Fig. 4 From left to right retrieval results on FlickrLogos-32, UkBench
and the Oxford buildings dataset. The upper rows show the mAP, the
lower row the corresponding response ratio of each approach. The per-
formance of Bundle min-Hashing (BmH) is on par with bag-of-words

SIFT with that of the relatively new RootSIFT variant [2].
Clearly, the bag-of-words based on RootSIFT outperforms
the SIFT-based bag-of-words. Finally, the burstiness mea-
sure proposed in [9] where the square root is taken for each
element of the tf-idf-weighted histogram further improves
the retrieval performance (denoted as “tf-idf-sqrt”in Fig. 3)
as it down-weights repeating and thus less informative visual
words (“bursts”).

For further experiments on FlickrLogos-32, we therefore
use visual words computed from RootSIFT descriptors and
re-rank the results retrieved by feature bundles by the cosine
similarity between bag-of-words histograms with square-
rooted tf-idf weights. In order to make our results comparable
to others in the literature we use regular SIFT descriptors for
evaluating on UkBench and Oxford and omit the burstiness
measure (plain tf-idf instead). In all cases the best-performing

O10K 20K 50K 100K 200K 500K M 2M  3M

10K 20K 50K 100K 200K 500K 1M P 3M am
Vocabulary size

(BoW) and outperforms min-Hash (mH), Partition min-Hash (PmH)
and Geometric min-Hashing (GmH). Its response ratio is an order of
magnitude lower than bag-of-words and comparable to the latter

vocabulary of 1M words is used for re-ranking, disregard-
ing which vocabulary was used when building the feature
bundles.

Feature bundles We evaluate the performance of our bundling
strategy with regards to mAP and response ratio and compare
it to a retrieval with bag-of-words and tf-idf weighting, as
described, e.g. in [25].

In order to find the best bundle configurations we have
performed extensive evaluations on the parameters of the
bundle configuration. Due to limited space, we cannot show
a detailed evaluation for all parameters. Instead, we report
the best-performing bundle configuration (with respect to
mAP) in Table 1. Similar to bag-of-words the bundles profit
from large vocabularies, but the peak is at 200K-500K
words. Most important, the bundles roughly have equal per-
formance as bag-of-words, but have an order of magnitude



lower response ratio (RR) as shown in Table 1 and also in
Fig. 4.

Note that we re-rank the result lists determined by Bundle
min-Hashing by the cosine similarity as given by the bag-
of-words model. As the bundling is by definition only able
to find correspondences between images that share visual
words, the result set of the retrieval by feature bundles is a true
subset of the result set obtained with bag-of-words retrieval.
This clearly demonstrates the discriminative power of feature
bundles for efficient filtering before more expensive post-
retrieval steps are applied to the result set.

Min-Hash, Partition min-Hash, Geometric min-Hashing
We extensively compare our approach to min-Hashing
(mH) as well as Partition min-Hash (PmH) and Geometric
min-Hashing (GmH) on three different datasets. These
approaches are specifically meant for (partial) near-duplicate
image search. It may seem unfair to compare these to
approaches that have higher memory requirements for their
image description and exploit it for a more accurate retrieval.
However, this comparison shows how these methods may
perform on those datasets when used with typical para-
meters. For all experiments the sketch size was set to
2; n denotes the number of sketches. In case of Parti-
tion min-Hash 4 x 4 and 10 x 10 denote 16 and 100
overlapping partitions whereas np denotes the number of
sketches per partition. The overlap was set 50 % in all
runs. For Geometric min-Hashing we follow the setup
in [5].

As already mentioned, we re-rank each preliminary result
set of all approaches by the cosine similarity (see Sect. 3.3).
We would like to point out that min-Hash, Partition min-Hash
as well as Geometric min-Hashing significantly benefit from
this. Bundle min-Hashing benefits as well but the effect is
less pronounced.

In Fig. 4, the results for the previously selected Bun-
dle min-Hashing configuration are compared to the former
approaches and bag-of-words. For retrieval of near-duplicate
images there is little difference between most approaches.
However, for object search on Oxford and on FlickrLogos-
32 the differences are pronounced. Bag-of-words has high
scores in every settings at the cost of a huge response ratio,
i.e. asingle query still retrieves 80 %+ of the whole database.
min-Hash, Partition min-Hash and Geometric min-Hash do
not suffer from this but from low recall. In contrast to, e.g.,
Geometric min-Hashing (with high precision and low recall)
and bag-of-words (with low precision and high recall), Bun-
dle min-Hashing seems an intermediate approach combining
the best of both worlds: it has low response ratio, high pre-
cision and high mAP.

Speed We measured the wall time of a single-threaded C++
application for bundling, min-Hashing, insertion into hash
tables and all I/O operations excluding feature computa-
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tion and quantization. For instance, with the configuration
as in Table 1 and 4 sketches, indexing of the FlickrLogos-32
dataset (4,280 images) takes about 96.8 s (=23 ms per image)
while processing the 960 queries takes about 13.4s (=14 ms
per image).

Scalability We further test how the retrieval is affected once
100,000 distractor images (randomly chosen Flickr images)
are added to the database (denoted as “+4-100K” in Fig. 4). For
this scenario we used the more memory-conservative scheme
with 2 sketches per bundle that performs almost as good as
4 sketches per bundle but requires only half the hash tables.
As expected the mAP consistently drops for bag-of-words as
well as Bundle min-Hashing but the latter seems less affected
than bag-of-words and slightly outperforms it even while we
used only 2 sketches per bundle. This suggests that higher-
order descriptions are more distinctive and deteriorate slower
than first-order descriptions like bag-of-words with growing
database sizes and increasing noise.

4 Fast re-ranking: 1P-WGC-RANSAC

In order to ensure that the top retrieved images correctly
show the query object we employ a spatial verification step
on the list of retrieved images. The gold standard for this
purpose is RANsAc. Our approach is based on a variant that
uses single feature correspondences to estimate a transfor-
mation between two images [20]. The associated scale and
dominant orientation of the two local features of each cor-
respondence is used to estimate a similarity transform (4
degrees-of-freedom with translation, rotation and uniform
scaling). The major benefit is that a single correspondence
generates a hypothesis. Evaluating all these correspondences
makes this procedure deterministic, fast and robust to small
inlier ratios. The top 10 hypotheses with the highest score
determined by the symmetric transfer error and truncated
quadratic cost function [14] are kept for further refinement.
If the top hypotheses have more than 15 inliers these are then
refined by a local optimization (LO) step that estimates a
fully projective transformation via least-median-of-squares.

While RaNsac is in general considered as slow and costly
this is not entirely true. In fact we found that most of the
time was spent for projective re-estimation. Moreover, while
this refinement improves the visual quality of the estimated
transformation it has little effect on the induced ranking. To
illustrate this, Fig. 5 shows the top 10 hypotheses without
projective re-estimation. The similarity of these hypotheses
indicates that for re-ranking the re-estimation maybe omitted.
Thus, we propose a new variant 1p-wGC-RANSAC without
subsequent LO step that is faster than a non-w Gc-constrained
rRANSAC and much faster than a variant estimating a fully
projective transformation between images.
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Fig. 5 Three examples of spatial re-ranking with 1p-wGc-RANSAC.
The top 10 hypotheses are projected as colored rectangles into the
images. Top an easy case; the top 10 hypotheses are almost identical
and hard to distinguish. Middle a more challenging case. There is more
variation but still the top 10 hypotheses are quite similar. Bottom a diffi-
cult case. The hypotheses show bigger variance, most likely because of
the somewhat degenerate point correspondences at the lower left corner
of the matched image regions

For 1p-wGc-rRansac, a weak geometric consistency
(WGC) constraint is imposed. Only correspondences from
features with orientations and scales that are consistent with
the estimated transformation may be scored as inliers. We
found that this constraint has little impact on the quality of
the re-ranking. The re-ranking is neither significantly better
nor worse. However, it acts as a filter that can be employed
before the inliers are determined. If a feature correspondence
violates the WGC constraint it is directly treated as outlier.
Thus, the error function within the RaNsac framework is
speeded up as there is no need to compute the perspective

mapping for these false correspondences. Here, we use the
following constraint: scale change must be in [0.5, 2.0] and
angles must differ less than 30°.

We compare our approach to that of Philbin et al. [20]
and Arandjelovic et al. [2] on the Oxford5SK dataset [20]
following the common test protocol: the top 1,000 retrieval
results per query are re-ranked with an early stop if 20
images in a row could not be verified successfully. Images
are scored by the sum of the IDF weights of all inlier
words and verified images are placed above unverified images
in the result list. The results are shown in Table 2. Here,
“SP” and “RaNsac” denote that spatial re-ranking was per-
formed.

One can see that our implementation (using DoG-SIFT,
magnifier of 9) yields slightly higher (1M words) or even
significantly higher scores (100K words) than that of Philbin
et al. [20] (using Hessian-affine SIFT). Quite surprisingly,
the performance after re-ranking with the smaller vocabu-
lary of 100K words is close to the one with 1M words. This
demonstrates that the proposed scheme is able to deal with
a small vocabulary, its less discriminative correspondences
and small inlier ratios.

Similar on the FlickrL.ogos-32 dataset (see Table 3): the
spatial verification of the top 200 images further improves the
result as well. For both datasets the projective re-estimation
does not improve the performance. It further refines the
homography but is not able to discard additional false pos-
itives. Most likely a simple 4-dof geometric constraint for
re-ranking is sufficient to filter out false positives. This
underlines that re-ranking does not require to estimate fully
affine/projective homographies and due to its speed 1P-
WGC-RANSAC is beneficial for spatial verification.

To measure the time we performed all experiments on the
same machine using 1 thread for execution of our C++ pro-
gram and measured the wall time as median over 10 runs.
In summary the WGC-constrained 1-point RANSAC without
LO is about 30 % faster than without the WGC constraint,
has slightly better performance for small vocabularies and
is much faster than with LO refinement. Its throughput is
extremely high (e.g. see % in Table 2: re-ranked 5,813 images
~ 440 images/s ~ 2.3 ms per image, single-threaded, includ-
ing I/0) making it suitable for real-time applications.

5 Warping

While current local features are by design scale invariant and
also somewhat robust to changes in lighting and image noise,
it is well known that local features such as SIFT are particu-
larly susceptible to changes in perspective. With increasing
vocabulary size this effect gets more severe: descriptors com-
puted from image patches that are actually identical but seen
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Table 2 Comparison of spatial

re-ranking results for the Method Voc mAP Time (5)

Oxford3K dataset following Philbin et al. [20], bow 100K 0.535 -

the protocol in [20] L
Philbin et al. [20], bow + SP 100K 0.597 —
Bow, tf-idf, SIFT 100K 0.571 -
1P-RANSAC, incl. LO 100K 0.678 160
1P-RANSAC, NO LO 100K 0.680 72
1P-WGC-RANSAC, incl. LO 100K 0.693 115
1P-WGC-RANSAC, NO LO 100K 0.692 53
Philbin et al. [20], bow M 0.618 -
Philbin et al. [20], bow + SP M 0.645 —
Arandjelovic et al. [2] SIFT, bow M 0.636 —
Arandjelovic et al. [2] SIFT, bow + SP 1M 0.672 —
Bow, tf-idf, SIFT M 0.647 —
1P-RANSAC, incl. LO M 0.712 54
1P-RANSAC, NO LO M 0.711 15
1P-WGC-RANSAC, incl. Lo M 0.704 50
1P-WGC-RANSAC, NO LO M 0.703 12
Arandjelovic et al. [2] RootSIFT, bow M 0.683 —
Arandjelovic et al. [2] RootSIFT, bow + SP 1M 0.720 —
Bow, tf-idf, RootSIFT M 0.675 -
1p-RANSAC, incl. LO 1M 0.728 92
1P-RANSAC, NO LO 1M 0.729 17
1P-WGC-RANSAC, incl. LO 1M 0.723 55
1P-WGC-RANSAC, NO LO % 1M 0.723 13

Table 3 FlickrLogos-32: spatial re-ranking results

Method Voc. mAP Time (s)
Bow, tf-idf-sqrt 100K 0.448 -
1p-RANSAC, incl. LO 100K 0.513 953
1P-RANSAC, NO LO 100K 0.513 387
1pP-wGC-RANSAC, incl. LO 100K 0.510 731
1P-WGC-RANSAC, NO LO 100K 0.510 325
Bow, tf-idf-sqrt IM 0.545 -
1P-RANSAC, incl. LO 1M 0.565 510
1P-RANSAC, NO LO 1M 0.565 153
1p-wGC-RANSAC, incl. LO 1M 0.568 447
1P-WGC-RANSAC, NO LO 1M 0.568 111

from a different perspective are quantized to different—and
therefore unrelated—visual words.

There exist several partial solutions to this problem. The
most popular is query expansion (QE) where the top-ranked
retrieved images are exploited to augment the original query.
The augmented query is then re-issued in order to retrieve

images that have not been found in the first round. Con-
sequently, query expansion fails—and causes the results
to be worse than without—if the top-retrieved images are
false positives. This may happen if the query is actually
challenging or only few true positives are contained in the
database.

We propose a different method to overcome this problem,
especially suited for small objects where it is crucial to find
the few true matching visual words. It is a purely data-driven
approach that synthesizes new images from existing images
by applying transformations to the image itself, a process
often called “warping”. There are different ways to exploit
image warping:

1. Synthetic query expansion (SynQE) Multiple versions of
the query image may be synthesized simulating the query
as it may be seen under different conditions and perspec-
tives. Each image is then treated as an individual query;
their corresponding result lists are then merged into a
single list. This method is illustrated in the upper half of
Fig. 6.
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Fig. 6 Top synthetic query

expansion. Bottom synthetic SynQE warped
database versions /4
augmentation [

query image

multiple

SynAUG

2. Synthetic database augmentation (SynAUG) The data-
base is augmented by adding new generated images syn-
thesized from each original database image. This is espe-
cially useful if it is desired that a query containing certain
predefined objects—such as logos—should find the true
results with high probability from a limited set of man-
ually managed reference images. This is shown in the
lower half of Fig. 6.

3. SynQFE + SynAUG The combination of (1) and (2). This
can be seen as counterpart to ASIFT [27] working with
discrete visual words and an inverted index or another
database instead of comparing raw descriptors between
two images.

We choose the following simple transformations to syn-
thesize new images: Sy (@), Sy(a), Sy(a)R(45°)S,(a) and
Sy (@)R(—45°) S, («). Sy () denotes the matrix for scaling
by factor « in x-direction, Sy (a) analog in y-direction and
R(45°) denotes the matrix for rotation by 45°. The last two
transformations are opposed shearings along x direction.!
The inverse transformations of the former four are added as
well, resulting in a total of eight transformations.
Intuitively, the synthesizing of images creates variations
from a single image. The more variation is captured within
the index the more likely the retrieval of an arbitrary query
will succeed. To illustrate the effect of such warping on an

! The two shearings along y-direction are equivalent.

image

queries database

original
image
2
image % warped
database T versions

Fig. 7 Visualization of the patches described by visual words com-
puted from warped images back-projected into the original image. The
original patch is shown as black circle. Left o = 0.7, right =" = 1.43.
Images to scale

individual local feature the used transformations are visual-
ized in Fig. 7. The original patch described by a local fea-
ture is shown as black circle. Once images are warped with
a scaling factor of « < 1 the image is effectively down-
scaled such that the actual described image region is larger
than the original patch. Similar, if the images are up-scaled
(¢ > 1) the actual described image patch is smaller than
the region described by the original local feature. The ellip-
tic shape depends on the transformation and while obtained
differently remind of affine covariant regions as obtained by
Hessian-affine or Harris-affine feature detectors [17]. In fact,
our technique effectively simulates a global affine transfor-
mation applied to the whole image while affine covariant
detectors estimate an affine transformation per local feature.

In practice, the following issue needs to be addressed:
we observed artifacts when computing local features from



Fig. 8 Left local feature
patches (orange circles) with
their associated orientation
(green line) as extracted from
warped images. The detector
often fires on the boundaries and
introduces artifacts (marked
red). Right features retained
after eliminating those too close
to the boundary (green contour)
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warped images. The feature detector often fires close to
or directly on the boundaries of transformed images. Even
while detections on edge-like structures are suppressed dur-
ing feature detection, due to image noise these still occur on
those boundaries. Moreover, placing the transformed images
within an empty background (black) implicitly yields local
contrast extrema between the image corners and that back-
ground. Examples of the resulting artifacts are visualized in
Fig. 8.

To the best of our knowledge there is no clear way to avoid
this issue directly during interest point detection. Thus, we
discard features closer to the boundary of the transformed
image than half of their radius in a separate step. Obviously,
images that have been scaled in x- or y-direction only do not
need post-processing.

For our synthetic query expansion and database augmen-
tation scheme it is important and for the combination of both
itis mandatory to discard such detections. The corresponding
visual words do not carry useful information as they mostly
describe black background. As a consequence, these lead to
spurious false visual word correspondences between unre-
lated images which in turn deteriorate the retrieval. Once
these detections are discarded the retrieval with features from
warped images behaves as one would expect.

For SynQE multiple queries are issued to the index yield-
ing multiple separate result lists. These are merged subse-
quently: images contained in multiple result lists get the max-
imum of each individual cosine similarity score as proposed
in [1]. Similar for SynAUG: once a synthetic image is found

it votes with its score for the original image and the maximum
of all votes is taken as final similarity measure.

We test these techniques with a bag-of-words retrieval as
described in Sect. 3.5.3 (RootSIFT, tf-idf-sqrt) and vocabu-
laries of 1M, 2M and 3M words. The scaling parameter o
is varied from 0.95 to 0.5 to test which group of transfor-
mations works best for simulating the perspective change in
practice.

The corresponding results on the FlickrLogos dataset are
shown in Fig. 9. Both SynQE and SynAUG improve the
retrieval performance with a maximum at « = 0.7/0.8.
The combination of both, i.e. SynQE + SynAUG slightly
increases the performance further. An even larger visual
vocabulary of 2M words increases the performance dramat-
ically over its baseline (11.6 %) but somewhat surprisingly
only slightly above those of the vocabulary with 1M words.

The results on the Oxford5K dataset are shown in Fig. 10.
Here, SynQE and SynAUG also improve retrieval per-
formance though less pronounced. Consistently, SynAUG
performs slightly better than SynQE. The performance
of the vocabularies with 2M and 3M words increases
dramatically over their baselines (bag-of-words without
SynQE/SynAUG). While these do not perform better than
the 1M vocabularies the most interesting behavior is that
the performance of all vocabularies and methods seems to
be “saturated” at around a mAP of 0.73. In other words,
the actual choice of the vocabulary size has reduced impact.
Thus, larger vocabularies that scale better to large image data-
bases can be used with little loss of mAP. To summarize, the
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Fig. 10 Oxford5K impact of
synthetic query expansion and
database augmentation on
bag-of-word retrieval
performance
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results on both datasets underline that discrete visual descrip-
tions benefit from synthetic image generation—especially for
small object retrieval such as logos.

6 Logo recognition

Now that we have discussed visual features, vocabularies,
feature bundling, re-ranking and synthetic query expansion;
we present our final logo recognition system:

Indexing The logo classes that our system should be able
to detect are described by a set of images showing these
logos in various poses. We refer to this set as reference set
and use the images within the training and validation sets
of the FlickrLogos-32 dataset for this purpose. Feature bun-
dles are computed for each image in the reference set and
inserted into the hash table associated with the information to
which class a reference image belongs. Optionally, SynAUG
is applied: artificially generated transformed versions of the
original images are used to augment the reference set. In the
following we refer to the transformation group with @ = 0.7
when referring to SynQE and SynAUG.

Testing Animage is being tested for the presence of any of the
logo classes by computing feature bundles and performing
lookups in the hash table to determine the reference images
that share the same bundles. The retrieved list of images is
then re-ranked as described in Sect. 3.3. Optionally, SynQE
may be applied: multiple transformed versions of the original
query image are used to query the database multiple times
or the database as described in Sect. 5. Afterwards the fast
spatial re-ranking with 1p-wGc-RaNsAc without projective
refinement (see Sect. 4) is applied to the retrieved list. Finally
an image is classified by a k-nn classifier: a logo of the class
c is considered to be present if the majority of the top k
retrieved images is of class c. In our experiments we chose
k=>5.

Experimental setup We follow the evaluation protocol as
in [24]: training and validation sets including non-logo
images are indexed by the respective method. The whole

Table 4 FlickrLogos-32: logo recognition results

Method Precision Recall
Romberg et al. [24] 0.98 0.61
Revaud et al. [21] >0.98 0.73
Bag-of-words, 100K 0.988 0.674
Bag-of-words, IM 0.991 0.784
Bag-of-words, 1M, SP 0.996 0.813
Bag-of-words, 1M, SP + SynQE 0.994 0.826
Bag-of-words, 1M, SP + SynAUG 0.996 0.825
BmH, 200K, collision count 0.688 0.411
BmH, 200K, CosSim 0.987 0.791
BmH, 1M, collision count 0.888 0.627
BmH, 1M, CosSim 0.991 0.803
BmH, 1M, CosSim + SP 0.996 0.818
BmH, 1M, SP only 0.996 0.809
BmH, 1M, CosSim + SP + SynQE 0.999 0.832
BmH, 1M, CosSim + SP + SynAUG 0.996 0.829

Bold values denote the best score

test set including logo and logo-free images (3,960 images)
is then used to compute the classification scores.

Results Table 4 shows the obtained results for various
approaches. Revaud et al. [21] use a bag-of-words-based
approach coupled with learned weights that down-weight
visual words that appear across different classes. It can
be seen that a bag-of-words-based search as described in
Sect. 3.5.3 followed by 5-nn majority classification already
outperforms this more elaborate approach significantly. In
fact, our approach using bag-of-words to retrieve the logos
and performing a majority vote among the top 5 retrieved
images already outperforms the best results reported in the
literature so far.

Bundle min-Hashing also outperforms the former scores
out of the box. The difference between a ranking based on
sketch collision counts (“collision count”) and a ranking
based on cosine similarity (“CosSim’) makes clear that the
result lists obtained by BmH must be re-ranked to ensure



Fig. 11 True positives per class
for the best performing system
from Table 4 (BmH, 1M,
CosSim + SP + SynQE)

True Positives

Fig. 12 Logo detection by searching for similar bundles via Bundle
min-hashing. Left local features (blue circles) of an image showing the
Shell logo. Middle the bundles where Bundle min-Hashing (without
SynQE, SynAUG or spatial re-ranking) found similar bundles associ-
ated with a certain class (color-coded) in the index. A few false positives
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are found in the background. Right the heat map shows the bundle hits
visualized with a multi-scale multi-bandwidth Kernel density estima-
tion incorporating both the scale of the bundles as well as the respective
number of collisions. Due to the latter the false positive detections have
negligible impact

Fig. 13 Examples of detections by Bundle min-Hashing for logos of the brands “Starbucks”, “Coca-Cola” and “HP”

that the top-most images are indeed the most similar ones.
We compared BmH with 200K words (highest mAP for
BmH only, see Table 1) with a larger vocabulary of 1M
words (slightly lower mAP). The preferable vocabulary of
IM words not only slightly improves the results but also
reduces the complexity of the system as it eliminates the need
for two different vocabularies for bundling and re-ranking.
Moreover, the response ratio of this system is 100 times
smaller (RR = 0.0096 for BmH with 1M words) than that
of bag-of-words. Finally, it can be seen that both SynQE
and SynAUG consistently improve the classification perfor-
mance for both bag-of-words and Bundle min-Hashing. For
completeness, the true positives per class for our best system

are further shown in Fig. 11. In addition, we demonstrate
how Bundle min-Hashing accurately localizes the logos in
Figs. 12 and 13.

Failure cases While Bundle min-Hashing works remarkably
well for a wide range of object types and object sizes, it
is by definition dependent on the performance of local fea-
tures. Thus, the chance of capturing the visual appearance
of an object by aggregating multiple features decreases with
decreasing number of detected features on the object. This
is especially true for low-contrast or low-structured objects
(e.g. the apple logo) where only a few local features are
detected at best.
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Table S Impact of index

pruning: mAP on FlickrLogos Sketches Original Index pruning

for BmH configurations as m=2 m=73

shown in Table 1 when sketches

occurring less than m times are mAP Keys mAP Keys mAP Keys

removed from hash tables
4 0.554 20,311,553 0.558 749,303 0.559 147,382
3 0.545 15,234,817 0.549 561,755 0.549 110,143
2 0.527 10,156,293 0.529 374,437 0.528 73,609

Keys denotes the total number of 0478 5,078,358 0475 187,228 0471 36,577

sketches stored in hash tables

A further issue in practice is the non-distinctiveness of
local features on image content such as text characters. Text
usually generates many non-informative visual words yield-
ing spurious matches and random collisions in the hash table.
An example for this issue can be seen in the right-most image
of Fig. 13. While Bundle min-Hashing is much less affected
than, e.g., a regular bag-of-words voting scheme it is still not
completely unimpaired giving raise to future improvements.

7 Index pruning

When analyzing the key-value distributions of the hash tables
in our index we found that there were only ~1.04 values
stored per sketch on average. In other words, most of the
sketches were generated only once. As the hash table lookup
assumes that similar images share similar bundles and there-
fore sketches, we can further assume that if a sketch was gen-
erated only once from all images in the training + validation
set, it will likely not have an impact when unknown images
are tested for the presence of logos. Consequently, we remove
those entries from our index resulting in roughly 30 times less
items stored within the index.

The mAP after removing keys from the hash table that
have less than m bundles is shown in Table 5. The results
are rather surprising: the performance slightly improves even
though the hash table then contains approximately 30 (m =
2) or 140 times (m = 3) fewer entries. Note that the number
of remaining keys is even smaller than the visual vocabulary
itself. Thus, the Bundle min-Hashing seems to serve as fea-
ture (pre-)selection technique; the features are then selected
by their occurrence frequency. Effectively this scheme is a
lossy yet highly effective index compression.

8 Conclusion

In this work, we described a robust feature bundling tech-
nique suitable for object retrieval and evaluated on several
datasets. A logo recognition system based on finding local
feature bundles in a database of reference images in combi-

nation with the new 1p-wGc-rRaNsac variant for extremely
fast re-ranking as well as synthetic query expansion and
synthetic database augmentation significantly outperforms
existing approaches. The results from index pruning give
raise for future optimizations for scalability and memory
consumption.
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