
582

Learning to Reassemble Shredded Documents
Fabian Richter, Christian X. Ries, Nicolas Cebron, and Rainer Lienhart

Abstract�In this paper, we address the problem of automat-
ically assembling shredded documents. We propose a two-step
algorithmic framework. First, we digitize each fragment of a given
document and extract shape- and content-based local features.
Based on these multimodal features, we identify pairs of corre-
sponding points on all pairs of fragments using an SVM classier.
Each pair is considered a point of attachment for aligning the re-
spective fragments. In order to restore the layout of the document,
we create a document graph in which nodes represent fragments
and edges correspond to alignments. We assign weights to the
edges by evaluating the alignments using a set of inter-fragment
constraints which take into account shape- and content-based
information. Finally, we use an iterative algorithm that chooses
the edge having the highest weight during each iteration. How-
ever, since selecting edges corresponds to combining groups of
fragments and thus provides new evidence, we reevaluate the
edge weights after each iteration. We quantitatively evaluate the
effectiveness of our approach by conducting experiments on a
novel dataset. It comprises a total of 120 pages taken from two
magazines which have been shredded and annotatedmanually.We
thus provide the means for a quantitative evaluation of assembly
algorithms which, to the best of our knowledge, has not been done
before.

Index Terms�Annotated dataset, document assembly, graph al-
gorithm, supervised learning.

I. INTRODUCTION

I N this work we propose an algorithmic framework for the
automatic assembly of shredded documents. The problem

of having to reconstruct shredded documents is often faced by
historians and forensic investigators. For example, when the
Historical Archive of the City of Colognewas destroyed in 2009
as the ground beneath it collapsed, a large amount of valuable
historical documents got severely damaged. Still, some of those
documents might be reconstructable.
Another example is the currently ongoing work on reassem-

bling documents related to the Stasi which was the secret police
of the GDR. Shortly before the end of the Socialist regime of
the GDR in 1989 members of the Stasi destroyed millions of
documents containing evidence about their activities. Many of
those les were simply shredded by hand and thus can be re-
assembled.

Manuscript received September 26, 2011; revised February 23, 2012; ac-
cepted August 23, 2012. Date of publication December 19, 2012; date of cur-
rent version March 13, 2013. The associate editor coordinating the review of
this manuscript and approving it for publication was Xian-Sheng Hua.
The authors are with the Multimedia Computing and Computer Vi-

sion Lab, University of Augsburg, D-86159 Augsburg, Germany (e-mail:
richter@informatik.uni-augsburg.de; ries@informatik.uni-augsburg.de;
cebron@informatik.uni-augsburg.de; lienhart@informatik.uni-augsburg.de).
Color versions of one or more of the gures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identier 10.1109/TMM.2012.2235415

Fig. 1. Examples for intermediate results of the assembly algorithm after 6
(left) and 12 (center) iterations, respectively. The document is entirely recon-
structed (right) after 15 iterations. The page depicted here has been manually
shredded into 16 pieces.

However, reconstructing such documents manually is a dif-
cult and tedious task due to the large number of possible permu-
tations of fragment arrangements. Therefore, a system capable
of assembling shredded documents automatically is of great use.
The major challenge introduced by the reassembling task, how-
ever, also applies to automatic systems�the number of poten-
tial fragment arrangements is huge.
In theory we have to exhaustively search among all possible

fragment permutations which renders a naive reassembly in-
tractable. Besides, in contrast to the closely related problems
of solving traditional jigsaw puzzles or edge-matching puzzles,
manually shredded document fragments may assume almost ar-
bitrary shapes. At rst glance this might seem to facilitate the
task by introducing additional edge shape information. How-
ever, it also signicantly increases the number of possible frag-
ment alignments and rotational fragment angles. It is also not
straightforward to exploit edge shape information.
Thus, one of the main challenges we focus on is the efcient

reduction of the number of potential fragment matches while
preserving a sufcient number of correct matches. Another im-
portant issue that must be addressed is devising an algorithm
capable of reliably aligning matching groups of fragments.
We tackle these problems by devising a framework consisting

of two stages: We rst use a SVM classier to identify loca-
tions on fragment pairs which might belong together using both,
shape- and content-based local features. In the second stage we
iteratively align groups of fragments until the document has
been restored. Thereby we construct a spanning tree which is
less complex than an exhaustive search. Figs. 1 and 2 give ex-
amples of intermediate results of our iterative algorithm.
We evaluate our system on a novel, fully annotated dataset

which is publicly available for download on our website.1 We
also introduce a geometric quality measure for reassembled
pages. This provides the means to evaluate how much an
assembly result deviates from the intact document.

1http://www.multimedia-computing.de

 583

Fig. 2. Examples for aligned groups of fragments. (a)-(e) show intermediate results after iteration . (f) depicts the entirely reassembled document. The curves
(highlighted red) are contour intersections which form the coincident border between groups of fragments. This information is utilized for alignment as detailed
in Section V-B. (a) (b) (c) (d) (e) (f) .

Our paper is organized as follows: In Section II we give a
brief overview of related work. In Section III we explain how
we digitize our dataset of manually shredded documents. We
also describe how we determine support points of fragments
which are used as points of attachment. Section IV deals with
our pre-selection step for support points. This is an important
part of our approach since it makes our assembly algorithm fea-
sible. In Section V we explain our main algorithm which itera-
tively reassembles shredded documents. Here we provide a de-
tailed description of the algorithm and explain the constraints
which are used to determine pairs of fragments that t together
well. Afterwards, we describe our dataset and how it has been
annotated in Section VI. Finally, Section VII presents experi-
ments and a thorough quantitative evaluation of our approach.
Section VIII concludes the paper.

II. RELATED WORK

As mentioned in the introduction, the problem of reassem-
bling shredded documents is closely related to the problem
of automatically solving jigsaw puzzles. As early as 1964,
Freeman et al. [1] for instance dened shape-related features
for matching pieces of jigsaw puzzles. In 1982 Radack et al.
[2] described the borders of puzzle pieces using a log-polar
representation in order to efciently match them.
There are also various approaches that apply the paradigms

of jigsaw puzzle solving to real-world applications. For in-
stance, Sagiroglu et al. [3] propose a method for reassembling
broken objects. They expand the boundaries of fragments using
inpainting and texture synthesis. The problem of reconstructing
wall paintings is also closely related to the reassembly of
jigsaw puzzles. Papaodysseus et al. [4] approach this problem
by using shape-based contour matching. Zhu et al. [5] present
an approach for the reconstruction of ripped-up manuscripts
based on partial curve matching. Their method iteratively
disambiguates candidate matches by maximizing a global com-
patibility criterion. Based on a partial curve matching strategy,
Cao et al. [6] use inter-fragment constraints to identify possible
matches between pieces from multiple photos. Therefore, they
augment their geometric shape features by color information.
In order to assemble the photos, a graph-based approach is
proposed which rst identies subgraphs corresponding to
separate photos and then searches for a spanning tree of each
subgraph.

In our previous work [7] we adapt the preprocessing strategy
of Cao et al. for fragments of shredded documents. We also iter-
atively determine a spanning tree, however, we consider infor-
mation obtained by evaluating shape- and content-based con-
straints on partial solutions. For more examples of document
and artifact reconstruction methods refer to the survey of Kleber
et al. [8].
Since the above mentioned approaches are designed for

real-world applications, they deal with randomly shaped pieces
as created by natural processes. For this reason, the assembly
problem is two-fold: On the one hand fragments have to be
aligned properly onto each other, and on the other hand, nding
a globally consistent solution poses a combinatorial problem.
However, by considering more regularly shaped fragments
the inherent challenges are shifted towards the combinatorial
optimization problem.
For instance, Chung et al. [9] map the corners of each puzzle

piece into a unit square to describe the shape. Furthermore, all
pieces are categorized into frame pieces and interior pieces.
They interpret the problem of positioning the frame pieces as a
traveling salesman problem, which is solved heuristically. Af-
terwards, the inner pieces are placed by nding the globally best
permutation. Goldberg et al. [10] address this problem in a sim-
ilar manner. However, they also apply an optimization step to
rene the embedding once a new piece is placed.
Cho et al. [11] focus on the general case of rectangular image

patches. They use a probabilistic model and a belief propagation
algorithm to determine the optimal patch conguration. Since
there is no shape information available, they use a similarity
measure based on the pixels along the respective patch borders.
They also evaluate various compatibility metrics.
For a discussion on the combinatorial aspects of jigsaw puz-

zles and other types of puzzles we refer to the work of De-
main et al. [12], who show that nding a solution in general
is NP-complete.

III. PREPROCESSING

Our dataset, which is described in detail in Section VI,
consists of 120 pages taken from two scientic magazines. All
pages have been manually shredded into 16 pieces of different
sizes and shapes. A subset of 48 pages has been further divided
into 24 and 32 pieces, respectively. As in our previous work
[7], each piece has been scanned, front and back, against a
uniformly colored background.

584

Fig. 3. Line segments constituting the approximate contour of two fragments
and . Note that each support point is associated with exactly two line

segments.

Afterwards we subtract the background from the resulting
image. Therefore, we use a ood ll algorithm to distinguish
background from foreground pixels. The implementation of this
algorithm uses an edge map of the raw scanned image to avoid
cutting into the fragments. We use a standard implementation
of the Canny edge detector [13] for creating the edge map.
The preliminary segmentation results are rened along the frag-
ment borders by morphological openings. Eventually, the en-
tire process yields a binary foreground-background segmenta-
tion mask.
We nally apply the algorithm of Suzuki et al. [14] to this

segmentation mask to determine the contour of each fragment.
As the exact contour of the -th fragment of each page is given
by a set of pixels that tends to be large in practice, we use the
Douglas-Peucker algorithm [15] to determine a subset of sup-
port points that allows an accurate
yet less complex description of each fragment. By connecting
each consecutive pair of support points we obtain a contour ap-
proximation thatmakes our approach feasible while maintaining
fair performance.
We dene fragments by , where refers to the

image content and denotes the set of support points as illus-
trated in Fig. 3. For each support point we also extract features
as described in detail in Section IV.

IV. SUPPORT POINT SELECTION

In regular puzzles pieces often have tabs and corresponding
blanks cut into their respective sides. However, instead of puzzle
pieces our dataset consists of fragments without interlocking
pairs of tabs and blanks. In fact, each support point on an ap-
proximate contour can be considered a candidate for the align-
ment with another support point of a second fragment. A naive
selection strategy would make our approach prohibitively ex-
pensive in practice. Thus we restrict the pairs of support points
to a small subset of points that are likely to t together. To ac-
complish this, each support point is rst described by 5 comple-
mentary local features. These features model the shape and the
content of the respective fragment in the vicinity of the support
point.

Fig. 4. (a) Angle and line segments features. (b) Shape feature with 2 radial
and 4 angular bins. Bin weights are assigned proportionally to the number of
fragment pixels intersecting with the image region covered by the respective bin.
A dark shading indicates a high number of foreground pixels in the respective
bin.

For each pair of support points we use the feature descriptors
to compute feature dissimilarities, individually for each of the
5 feature channels. By concatenating the resulting dissimilarity
values we form a descriptor of the respective support point pair.
Finally, we train a SVM on these dissimilarity vectors, using
true and false correspondences from our annotated dataset.

A. Features

In order to identify true correspondences between fragments,
we extract a set of features for each support point. Despite the
fact that local features, such as SIFT [16], are commonly used to
describe image patches, they are not appropriate in our scenario
as fragments do not share meaningful content overlap.
Instead, we extract 5 features around each support point of

each fragment. These features describe the shape and the content
of a small foreground region. For each feature channel we
obtain a descriptor .
Note that our approach requires all features to be invariant

towards rotation since we do not know the true orientation of
our document fragments.
Line Segments Feature. Our rst feature is the absolute length

of the line segments associated with a support point. As illus-
trated in Fig. 3, support points of fragments are traversed in ei-
ther clockwise- or counterclockwise direction. We thus know
which line segments from different support points are to be as-
sociated with each other. Intuitively, two support points match
if their associated line segments are very similar in length.
Angle Feature. Our second geometrical feature is the angle

which lies on the inside of the polygon. As depicted in Fig. 4(a),
it is enclosed by the two line segments adjacent to the sup-
port point. Except for noise, the angles of two matching support
points are conjugate angles and thus sum to . In general, the
deviation from this ideal angle sum is large for non-matching
support points.

 585

Shape Feature. Since the line segments and angle take into
account only a narrow region around each support point we pro-
pose a contextual descriptor that captures the spatial distribu-
tion of content. Motivated by the shape context feature [17] we
create a log-polar-like coordinate system dened by the number
of angular and radial bins. After identifying foreground and
background pixels, we assign a weight to each bin. Each weight
is simply given by the relative number of foreground pixels in-
tersecting with the image region covered by the respective bin.
As illustrated in Fig. 4(a), bins which almost exclusively cover
foreground are assigned large weights (indicated by dark gray),
whereas sparsely populated bins obtain small weights.
We need to ensure that our feature is invariant towards rota-

tion. Thus we rectify each shape feature with regards to a dis-
tinctive bin. We choose the bin which covers the boundary from
background to foreground of the fragment. Note that we have to
search for the distinct bin in different directions (clockwise or
counterclockwise) for support points on opposing fragments.
Color Histogram. We use color histograms in CIE Lab color

space that are extracted over circular regions around each sup-
port point. Color histograms yield a rotation-invariant descrip-
tion of the content around the respective support point. How-
ever, they also omit the spatial color layout.
Color Layers Feature. Since regular histograms do not en-

code any spatial information, we group pixels nearby the outer
contour of the fragment into multiple color layers. As detailed
in Section III, we use the algorithm of Suzuki et al. [14] on
the foreground-background segmentation mask to nd the frag-
ment contour. All pixels on this contour within a maximum dis-
tance to the support point constitute the outmost color layer.
Repeating this process on a modied binary mask in which all
previously identied contour pixels have been removed yields
contours that are located further on the inside of the fragment.
Each content layer is represented by a xed-size vector which
contains pixel values in CIE Lab color space. The color values
are ordered canonically in clockwise- and counterclockwise di-
rection for features to be matched. Finally we concatenate all
layer vectors into one single feature descriptor.
All of our features depend on various parameters which in-

uence their discriminativeness. Thus we experimentally de-
termine the best conguration for each feature as detailed in
Section VII-A.

B. SVM on Feature Dissimilarities

We train a SVM to efciently distinguish matching pairs of
support points of adjacent fragments from false matches.
Given the set of features described in the previous section we

determine the dissimilarity between pairs of support points for
each feature channel. By design, the pairwise distance between
two feature descriptors of non-matching support points tends to
be large in practice. Accordingly, it is small for support points
which belong together.
It is worth mentioning that in some cases the vicinity around

support points provides insufcient evidence to disambiguate
false from true matches. Thus, the distance between feature de-
scriptors is a necessary but no sufcient condition.

Fig. 5. In this example, clusters and contain two fragments each. They are
combined by aligning fragment to using support points . The
resulting transformation is then applied to all remaining fragments, i.e., .

Throughout the rest of this paper we refer to matching pairs
as true correspondences and non-matching pairs as false corre-
spondences. For each feature we compute the dissimilarity
between two support points and of fragment pair
by

(1)

where is the value of the median of all pairwise distances in
feature channel of fragments and . Finally, we concate-
nate the ve resulting dissimilarities over all features in one dis-
similarity vector .
Our dataset, as described in Section VI, contains annotations

for all pages and provides examples of true and false correspon-
dences, which are used as positive and negative examples for
training. Since there are signicantly more negative than posi-
tive examples we randomly sample negative examples to main-
tain a balanced training set.
We use LIBSVM [18] to train a binary SVM using a RBF

kernel. We perform a coarse-to-ne grid-search over the
parameter space and use 5-fold cross-validation. It should be
emphasized that the quality of our SVM classier depends on
the feature parameters which are evaluated in Section VII-A.

V. APPROACH

In this section we provide a thorough explanation of our main
algorithm and its components. We rst explain our concept
of fragment alignment by providing an illustrating example
in Section V-A. Then we describe the constraints used to
determine whether two fragments or groups of fragments t
together. We explain how we evaluate these constraints and
how we translate them into an alignment score. Finally, we give
a formal step-by-step explanation of our assembly algorithm in
Section V-C.

A. Fragment Alignment

Assuming no prior knowledge about fragments one can align
two fragments based on any pair of support points. In prac-
tice, however, a naive approach that considers each pair of sup-
port points is prohibitively expensive, since the number of pos-
sible combinations grows quadratically in the number of support
points of the respective fragments. As described in the previous

586

Fig. 6. Schematic representation of four distinct alignments between two fragments and . The red lines illustrate the coincident border between and .
Red circles symbolize true positive correspondences and gray circles indicate false positive correspondences (both contribute to the consistency). Gray regions
visualize the intersection between fragments. Examples show (a) long coincident border together with high consistency and no intersection, (b) low consistency,
(c) low consistency with intersection, and (d) low consistency with long coincident border and intersection.

section we use a SVM to discard most of the false correspon-
dences a priori to the actual algorithm.
To exemplify the alignment between a single pair of frag-

ments, assume that fragment is to be aligned onto ac-
cording to a pair of support points . First, we
translate all support points of fragment by an offset vector
such that coincides with . Second, we rotate all support

points by angle enclosed by the pair of line segments given
by and respectively (see Fig. 3). Finally,
the same translation and rotation is applied to the image content
.
However, as our algorithm iteratively creates clusters of

aligned fragments, we need a strategy to align entire groups of
fragments. As illustrated in Fig. 5, an
between groups of fragments and is dened by an
afne transformation between two fragments and a single
corresponding pair of support points. Without loss of gener-
ality, assume that from their respective fragments

are chosen for the alignment. In order to
align both clusters we rst compute the afne transformation
that locally aligns to . Afterwards, this alignment is
applied to each fragment within .

B. Constraints on Alignments

In this section, we introduce an alignment score which re-
ects our condence in the correctness of a given alignment.
Our score is based on a set of geometric and content-based con-
straints. These constraints are evaluated for each alignment
between any pair of clusters.
Our rst constraint is the coincident border between two

groups of fragments, which is illustrated in Fig. 2 as red curves.
It is dened as the number of intersecting contour pixels be-
tween the fragments that are to be aligned. Second, to model
the fact that properly aligned fragments do not have any content
overlap, we also determine the absolute intersection between
them.
Since fragments often vary in size, we also take into account

the relative intersection, which is computed by normalizing
the absolute intersection with respect to the minimal area of
both fragment groups. Finally, we use the SVM introduced in
Section IV-B to classify each pair of support points along the
coincident border. The number of all pairs that are classied as
positive is referred to as the consistency of the given alignment.

For instance, consider the four situations shown in Fig. 6.
Note that aligning the two fragments and as depicted in 6a
complies with all constraints optimally because of a long coin-
cident border and a high consistency as well as no intersection.
The remaining gures give examples for violated constraints.
First, in situations where shape information is present, geo-
metric constraints often provide sufcient evidence for aligning
fragments correctly. However, in cases where shape informa-
tion is insufcient, one also requires content-based information
to resolve such ambiguities. For example the fragments in
Fig. 6(b) seemingly match with regard to their coincident
border and their lack of intersection. This alignment, however,
conicts with the last constraint due to a low consistency along
the coincident border. Second, the examples in Fig. 6(c) and (d)
both violate the intersection constraint.
As illustrated by these examples, an alignment is correct

only if it fullls all constraints at the same time. Therefore, to
each alignment we assign scores , , for
each of the above mentioned constraints. We normalize
the scores to , individually for each constraint. Finally, we
compute the alignment score of an alignment as

(2)

Since on the one hand, all individual constraint scores are
restricted to and on the other hand, all summands are
weighted equally, large values for can only be obtained
if the alignment complies with all constraints at the same time.
It should be emphasized that in practice the angle that is

computed for each alignment is only approximately correct as it
is inferred from the contour approximation of fragments. There-
fore, we use a heuristic that allows for small variations of the
alignment angle. To make this computationally feasible in prac-
tice we apply a coarse-to-ne search in a small interval around
. We then choose the locally optimal solution that yields the
highest alignment score. Note that this local optimum corre-
sponds to a global optimum in most cases since usually is a
good estimation for the correct alignment angle.
The alignment score can be used to determine the best align-

ment between two groups of fragments by

(3)

 587

where is the set of alignments between the two clusters.
Since alignments are based on pairs of support points we can
use our SVM to discard unpromising candidates in advance.
As a consequence, we signicantly reduce the computational
complexity of nding the optimal alignment.
It is now straightforward to choose the overall best alignment

between any pair of clusters by

(4)

Algorithm

Given the fragments of a shredded document that are posi-
tioned and oriented randomly, our algorithm is capable of repo-
sitioning all fragments to recover the layout of the intact docu-
ment. We aim to determine a sequence of translations and rota-
tions for each fragment that yield the best assembly result with
respect to the aforementioned constraints.
As in our previous work [7] we create a document graph

in which each fragment corresponds to a vertex and
edges between them are associated with alignments. Since each
pair of support points provides one alignment we obtain a large
number of edges between each pair of vertices. However, we do
not have to consider the subset of alignments that are rejected by
our SVM. For all remaining alignments we weight their edges
with respect to the alignment score. Also, edge weights are up-
dated after each iteration. As a consequence, alignments that
were seemingly correct in prior iterations due to insufcient
contextual evidence may later cause inconsistencies and vice
versa.
By iteratively choosing the best alignment to combine clus-

ters within each iteration, we greedily determine a spanning tree
of as in Kruskal�s algorithm [19]. Provided as input the pos-
itive correspondences between each pair of fragments, the al-
gorithm returns an alignment for each fragment as well
as a spanning tree represented by edge set . Applying each
alignment to its respective fragment yields the assembly of the
document. The spanning tree is required to evaluate the quality
of the assembly result as discussed in Section VII-B.
In the following we describe each step of our proposed algo-

rithm in detail.

Algorithm 1

Step 1: Initialization. Initially at time , each fragment
is considered a cluster by itself, i.e.,

and . Each edge of the
document graph is weighted according to its
alignment score (see (2)) and each is initialized
as an empty sequence of alignments. Also, is an
empty set of edges.

Step 2: Combining Clusters. Let be the current iteration. In
order to nd the best alignment between any pair
of clusters, we simply determine the edge with the
largest weight that connects two distinct clusters.
Let be this edge and, without loss of generality,
let it connect clusters and , . We add to
the spanning tree:

We combine both clusters into by
aligning their fragments according to as described
in Section V-A. As only fragments of cluster are
aligned in this step, we append to their sequence
of alignments, i.e.,

We obtain the set of clusters for iteration by
replacing the clusters that were combined, i.e.,

Since we reduce the number of clusters by one
during each iteration, the algorithm terminates
after iteration . Fig. 2 shows some
intermediate results.

Step 3: Removing Unpromising Alignments. To speed up
the computation during the remaining iterations,
we aim to reduce the number of alignments to
be considered. For this purpose we apply two
heuristics that remove any pair of support points
from that became obsolete due to alignment .
First, we disable support points along coincident
border of the new cluster (illustrated as red curves
in Fig. 2). Intuitively, aligning another fragment
to one of these points naturally produces high
intersections. Second, we remove all pairs of
support points which are evidently incorrect due to
their clearly insufcient alignment score.

Step 4: Updating Edges. As mentioned before, combining
two clusters provides additional evidence about
the document at hand. Therefore the weight of all
edges originating from the combined cluster
need to be updated as described in Section V-B.

Step 5: Return. After iterations we accumulate
the sequence of afne transformations for each
fragment into .

VI. DATASET

Our dataset comprises sheets taken from two magazines.
The former is a scientic journal (bdw082010)2, consisting
of 96 pages. As the examples depicted in Figs. 7 and 8 sug-
gest, its pages show a wide variety of content including text,
illustrations, and layout elements such as tables and diagrams.
The second magazine is an information brochure (booklet)
consisting of 24 pages, and its pages differ from those of
bdw082010, both in terms of content and also page format.
All pages have been manually shredded into 16 pieces.

A subset of 24 pages from each magazine has been further
divided into 24 and 32 pieces, respectively. Thus, in total 48
pages are available in three different degrees of fragmentation.
The number of pieces per page is indicative for the theoretical
and computational complexity. Therefore, different numbers
of pieces present different levels of complexity on which we
evalute our approach.

2Bild der Wissenschaft, 08/2010.

588

Fig. 7. Examples for pages in the bdw082010 dataset.

Fig. 8. Examples for pages in the booklet dataset.

A. Partitions

We aim to show that our approach performs well in the fol-
lowing two scenarios. First we show that, despite using only 16
pieces per page during training, our approach generalizes well
to a higher number of pieces. Second, we show that it is capable
of reassembling documents for which no training data is readily
available.
Therefore, we split the 96 pages of bdw082010 into three sets

, and , consisting of 32, 16 and 48 pages
respectively. We categorized each page into either featuring a
picture, text or a combination of both. Finally we proportion-
ally distributed the pages of all three categories among ,

and with respect to their sizes in order tomake each
partition representative for the whole magazine. Pages taken
from booklet are used for testing only to ensure that our ap-
proach is not biased towards characteristics of bdw082010.

B. Annotation

Since we want to evaluate our approach quantitatively, we
need a ground truth for the correct layout of the shredded doc-
uments. Note that it is sufcient to know all pairs of support
points among adjacent fragments that constitute a true corre-
spondence. However, it is not straightforward to manually an-
notate these pairs since all fragments were scanned at different
orientations.
Therefore, we created an annotation tool which allowed a

human user to manually reconstruct the shredded documents.
The user had to correctly arrange the digitized fragments of a
given document by translating and rotating them individually.
After the user nished reassembling a document the annotation
tool automatically determined true correspondences for all ad-
jacent fragments.

More precisely, let be a pair of fragments that are
adjacent in the manually reconstructed document. Given these
fragments we aim to determine the set of support points that are
mutually closest to each other. That is, we create an annotated
subset that contains a pair of support points

if and only if

(5)

holds, where species the distance between two points in
image coordinates and is a constant for their maximum
distance. The support points satisfying (5) constitute the set of
true correspondences that induce a bijection between the re-
spective fragments. Note that only approximately 0.2 percent
of all pairs of support points in our dataset are annotated as true
correspondences.

VII. EVALUATION

In this section we rst describe how we optimize the parame-
ters of the local features representing support points. Afterwards
we introduce a quality measure for quantitative evaluation of the
assembly results. We then shortly address the issue of compu-
tational complexity. Finally, we conduct experiments that illus-
trate the trade-off between quality of assembly results and com-
putational complexity.

A. Feature Parameter Learning

To nd the optimal parameter conguration for the SVM in-
troduced in Section IV-B, we experimentally evaluate different
congurations. Since the dimensionalities of the descriptors de-
pend on the parameters, we choose to concatenate the feature
dissimilarities instead of concatenating descriptors directly. We

 589

Fig. 9. The ROC curves for the best parameter conguration of each feature.
The curve labeled with green square markers shows the performance of our
SVM which uses a combination of all features. The AUC for the SVM using all
features is 0.9184.

argue that otherwise, high-dimensional features would tend to
outweigh low-dimensional features.
Furthermore, we assume to maximize the classication capa-

bility of our SVM by maximizing the discriminativeness within
each feature channel separately. Our training data comprises
pairwise dissimilarities computed on a subset of positive and
negative examples from . For each feature individually,
we then train a SVM, separately for each combination of param-
eters, by performing grid search.
For the color histograms the radius of the circular area

and the number of bins are chosen from and
, respectively.

Regarding the color layers feature we set the number of
layers to 5 and use different lengths from pixels.
Also, we vary the weighting scheme which either assigns
uniform weights to all layers or chooses the weights according
to a normal distribution with and ,
where the weight for layer is given by .
The parameters for the shape feature dene the log-polar-like

grid. We use an inner radius , which is chosen from .
Based on a xed expansion factor , empirically set to 1.5, we
compute the size of the -th radial bin as . For the number
of radial and angular bins we choose values from and

respectively.
Based on the performance of all SVMs on we deter-

mine the ROC curves of all congurations, individually for
each feature. We then choose the conguration which yields the
largest AUC. In Fig. 9 we plot the results for the best parameter
conguration of each feature. We also show the performance
of our SVM using the nal descriptor, dened in (1), which
we obtain from concatenating all optimally congured feature
dissimilarities.
Note that we also use the angle and line segments features

for the nal SVM. However, their respective ROC curves are
omitted in Fig. 9 as they do not involve any parameters.

B. Adjustment Cost

Recall that our algorithm provides an accumulated alignment
for each fragment, as well as a spanning tree of the document
graph. Applying each alignment to its respective fragment
yields the assembly result.
However, fragments that have been aligned accordingly may

still deviate from their position in the ground truth. Thus we in-
troduce a quantitative evaluation scheme that allows to rate the
quality of each assembly result. Intuitively, our quality measure
reects the cost of transforming the assembly result to the cor-
rect layout dened by the ground truth.
Let be a pair of fragments and let them be connected

by an edge in the spanning tree. By applying align-
ment to and to , respectively, we position both frag-
ments relative to each other. Since the optimal relative position
for each pair of adjacent fragments is given by the ground truth,
we can determine an adjustment that corrects the relative posi-
tion of with regard to . For this purpose we determine a
translational and a rotational component, represented by vector

and angle , respectively. Finally, we compute
distinct costs�one for each component. The translational cost
is dened as

(6)

where is some normalization constant that has been set empir-
ically. The cost for the rotational component is dened by

(7)

Intuitively, if two fragments are aligned as dened in the ground
truth, both costs equal zero. For a given pair of adjustment pa-
rameters we then dene an adjustment cost by fusing both
cost functions as follows:

(8)

Note that each edge in the spanning tree is associated with
exactly one iteration . Thus we use the equation above to assign
a score in to each of the intermediate results. The cost
function dened in (8) reects our intuition that, if the length of
the offset vector is zero, only the rotation needs to be corrected
and thus is the only parameter having impact on the overall cost.
On the other hand, if the offset becomes larger, the rotation is
a less signicant factor to measure the effort for realigning the
fragments.
We accumulate the costs over all edges in the spanning tree

to determine an overall cost for correcting the layout of a re-
assembled document. Accordingly, we dene the accumulated
cost over spanning tree by

(9)

Assuming a page shredded into pieces we thus obtain an
accumulated cost for each reassembled page.
Consequently, averaging over all iterations yields a mean
accumulated cost .

590

Fig. 10. Mean accumulated costs averaged over all pages of on bdw082010 (a) and booklet (b), for various SVM thresholds corresponding to
different false positive rates. The circle is the median of costs, boxes show the 25% and 75% quantiles, respectively. Whiskers are indicated by dashed lines and
red crosses represent outliers.

C. Computational Complexity

As mentioned before, the feasibility of our approach depends
on the number of alignments. Using the SVM introduced in
Section IV-B we control this number by choosing a threshold
with respect to the distance from hyperplane. In the following
we will refer to this threshold as SVM threshold. Note that the
choice of this threshold is based on the ROC curve depicted in
Fig. 9 and corresponds to selecting a xed false positive and true
positive rate on . Conversely, we can choose a false posi-
tive rate on and determine the according SVM threshold.
Since the absolute number of true positives is signicantly

smaller than the number of false positives, the false positive rate
of the SVM is the dominating factor regarding computational
complexity of our approach. Intuitively, a more restrictive SVM
threshold reduces the number of false positives (i.e., number
of alignments) that need to be considered. Because limiting the
number of alignments by this threshold also reduces the number
of true positives, it controls the trade-off between computational
complexity and quality of the result.
To keep our experiments feasible we empirically limit the

false positive rate to . Note that the corresponding
true positive rates range from 0.177 to 0.784. For unbalanced
problems, however, relative frequencies tend to be misleading.
It should thus be emphasized that for each fragment pair in our
training set, we observe on average 5210 false correspondences.
Using our SVMwith a false positive rate as low as 0.005 reduces
this number to less than 10 incorrect alignments. The following
experiments display this trade-off between computational com-
plexity and quality of the proposed method.

D. Experiments

The rst experiment is conducted on of both mag-
azines. We choose pieces for each page and assign
the adjustment cost to the results as detailed in Section VII-B.
In Fig. 10 the mean accumulated cost is plotted against the

false positive rate of our SVM, separately for bdw082010 and
booklet. As can be seen, the mean accumulated cost, averaged
over all pages, is below 0.1 for all false positive rates except the
rst one. Note that this false positive rate of 0.005 corresponds
to merely 17.7% true positives. Also, a cost of 0.1 means that on
average all fragments are positioned very precisely with respect
to the ground truth. Furthermore, one can observe that despite
slightly higher cost, we are able to reassemble almost all pages
of booklet, except for a few extreme outliers. The outliers stem
from two pages that are almost entirely colored uniformly and
thus offer no content information. Fig. 13(a) and (c) show ex-
ample results for bdw082010 and booklet, respectively.
In our second experiment we increase the number of pieces

to and use representative subsets of 24 pages of both
magazines. As Fig. 11 suggests, our approach is still capable
of reassembling the pages correctly. In this setting, however,
we require a higher number of true positives to maintain our
desired level of quality. Still, the according false positive rates
are as low as 0.11.
We suppose there are two main reasons for the increasing

demand for true positives. First, fragmenting pages into a higher
number of pieces naturally results in smaller fragments. Since
we keep the accuracy for contour approximation xed, there are
less support points per fragment, and thus we need to increase
the true positive rate to maintain the same absolute number of
true positives. Second, increasing the number of pieces from 16
to 24 increases the complexity of the problem considerably. As
the number of potential fragment pairs grows quadratically in
, we need more true positives to make our greedy selection

strategy work.
Finally, we repeat the second experiment with pieces

and plot the result in Fig. 12. Even though the performance
slightly declines, the overall result is still satisfactory given the
inherent complexity of reassembling 32 pieces.We show results
for the same pages as in the rst experiment in Fig. 13(b) and (d).

 591

Fig. 11. Performance for 24 pieces per page, conducted on representative sets of 24 pages each, for bdw082010 (a) and booklet (b), respectively.

Fig. 12. Performance for 32 pieces per page, conducted on representative sets of 24 pages each, for bdw082010 (a) and booklet (b), respectively.

In real world applications, however, one is often faced with
the problem of missing pieces. For this reason we conduct a
nal experiment to evaluate the robustness of our algorithm in
situations where fragments are lost. We choose the test set of
bdw082010 consisting of 32 pieces. For each page we discard
a xed number of randomly sampled fragments. As in previous
experiments we determine the performance of our algorithm by
averaging the mean accumulated cost over all pages and itera-
tions. The results are plotted in Fig. 14.
We choose a false positive rate of 0.11. Therefore, the right-

most box in Fig. 12(a) is equal to the leftmost box in Fig. 14.
Not surprisingly, one observes a decrease in performance when
facing a higher number of missing pieces.
Most importantly, when removing too many pieces, the page

at some point becomes disconnected and can not be reassem-
bled entirely. In such cases one would need to stop the assembly
process since no more correct alignments are available. If one

would assume prior knowledge about the expected result, it
would be possible to deduce straightforward stopping criteria,
i.e., violation of the page format. However, such prior knowl-
edge is usually not readily accessible in practice. In most sce-
narios we have only very limited information about properties
of the intact document.
At rst glance one might suppose that the alignment score

also provides the means for such a stopping criterion. According
to our observations, a high alignment score always corresponds
to a correct decision. However, even if the globally optimal
alignment score (chosen according to (4)) is low, it may still
produce a correct alignment. Because of that, it is no sufcient
condition for omitting the remaining iterations.
Fig. 15 depicts two example results for pages where 4 pieces

are missing. It should be emphasized that due to the greedy se-
lection strategy, intermediate results stemming from early iter-
ations are predominantly correct. For instance, the wrongly

592

Fig. 13. Example results for one reassembled page from bdw082010 shredded
into 16 pieces (a) and 32 pieces (b). Analogous results for one page from booklet
(c), (d).

Fig. 14. Performance plotted against the number missing pieces per page. Re-
sults have been computed on the pages of bdw08210 consiting of 32 pieces each.

placed piece in Fig. 15(b) has been positioned in the nal itera-
tion, and the intermediate results of all preceding iterations were
entirely correct.

VIII. CONCLUSION

In this paper we proposed an algorithmic framework for
the reassembly of shredded documents. In the rst step of our
framework we used a SVM to nd pairs of support points be-
tween fragments which are suitable for aligning their respective
fragments. The SVM enabled us to distinguish matching points
of attachment from false matches based on feature dissimilari-
ties which utilized shape- and content-based information.

Fig. 15. Two example results for reassembled pages from bdw082010, fea-
turing 32 pieces. In this experiment, 4 pieces have been randomly removed
beforehand.

After identifying these points of attachment, we iteratively
aligned all fragments into groups, which constitutes the second
step of our framework. Therefore, we had to nd the optimal
alignment between all groups of fragments. For this purpose
we introduced a set of geometric and content-based constraints
which let us rate the quality of each alignment. By greedily se-
lecting the best alignment in each iteration we combined groups
of fragments until the document was entirely reassembled.
We quantitatively evaluated our approach on a novel anno-

tated dataset which is publically available on our website. It
consists of manually shredded pages from two magazines. For
evaluation we created a ground truth and introduced a cost func-
tion that rates the quality of each assembly result.
We showed that our algorithm is capable of reassembling

pages consisting of up to 32 pieces. It also yielded satisfactory
results in the face of multiple missing pieces.
There are several interesting directions for future work. For

instance we will consider a more general setting in which pieces
of multiple sheets will be presented to the assembly process.
This requires a more sophisticated strategy as in the most gen-
eral scenario one does not know the exact number of pieces each
sheet consists of. Furthermore, it will be necessary to develop a
robust criterion to decide whether or not certain pieces belong
to a document at hand. In particular, this would be helpful for
rejecting noisy pieces. In this context we will also investigate
how learning a non-uniformweighting scheme for the constraint
weights may be benecial for improving our results.

ACKNOWLEDGMENT

We thank the editorial staff of Bild der Wissenschaft and the
publisher Konradin Medien GmbH for their permission to use
the magazine and to make the dataset publicly available for
research.

REFERENCES

[1] H. Freeman and L. Garder, �Apictorial jigsaw puzzles: The computer
solution of a problem in pattern recognition,� IEEE Trans. Electron.
Comput., vol. 13, no. 2, pp. 118�127, 1964.

[2] G. M. Radack and N. I. Badler, �Jigsaw puzzle matching using
a boundary-centered polar encoding,� Comput. Graphics Image
Process., vol. 19, pp. 1�17, May 1982.

[3] M. Sagiroglu and A. Ercil, �A texture based matching approach for au-
tomated assembly of puzzles,� inProc. 18th Int. Conf. Pattern Recogn.,
2006, vol. 3, pp. 1036�1041.

 593

[4] C. Papaodysseus, T. Panagopoulos, M. Exarhos, C. Triantallou, D.
Fragoulis, and C. Doumas, �Contour-shape based reconstruction of
fragmented, 1600 bc wall paintings,� IEEE Trans. Signal Process., vol.
50, no. 6, pp. 1277�1288, Jun. 2002.

[5] L. Zhu, Z. Zhou, and D. Hu, �Globally consistent reconstruction of
ripped-up documents,� IEEE Trans. Pattern Anal. Mach. Intell., vol.
30, no. 1, pp. 1�13, Jan. 2008.

[6] S. Cao, H. Liu, and S. Yan, �Automated assembly of shredded pieces
from multiple photos,� in Proc. IEEE Int. Conf. Multimedia Expo,
2010, pp. 358�363.

[7] F. Richter, C. X. Ries, and R. Lienhart, �A graph algorithmic frame-
work for the assembly of shredded documents,� in Proc. IEEE Int.
Conf. Multimedia Expo, Jul. 2011, pp. 1�6.

[8] F. Kleber and R. Sablatnig, �A survey of techniques for document
and archaeology artefact reconstruction,� in Proc. Int. Conf. Document
Anal. Recogn., Los Alamitos, CA, USA, 2009, vol. 0, pp. 1061�1065.

[9] M. G. Chung, M. Fleck, and D. Forsyth, �Jigsaw puzzle solver using
shape and color,� in Proc. 4th Int. Conf. Signal Process., 1998, vol. 2,
pp. 877�880.

[10] D. Goldberg, C. Malon, and M. Bern, �A global approach to automatic
solution of jigsaw puzzles,� in Proc. 18th Annu. ACM Symp. Compu-
tational Geometry, 2002, pp. 82�87.

[11] T. S. Cho, S. Avidan, andW. T. Freeman, �A probabilistic image jigsaw
puzzle solver,� in Proc. IEEE Conf. Comput. Vis. Pattern Recogn.,
2010, pp. 183�190.

[12] E. D. Demaine and M. L. Demaine, �Jigsaw puzzles, edge matching,
and polyomino packing: Connections and complexity,� Graphs Com-
binatorics, vol. 23, pp. 195�208, Jun. 2007.

[13] J. Canny, �A computational approach to edge detection,� IEEE Trans.
Pattern Anal. Mach. Intell., vol. PAMI-8, no. 6, pp. 679�698, Jun.
1986.

[14] S. Suzuki and K. Abe, �Topological structural analysis of digital binary
images by border following,� Comput. Vis., Graphics, Image Process.,
vol. 30, no. 1, pp. 32�46, 1985.

[15] D. Douglas and T. Peucker, �Algorithms for the reduction of the
number of points required to represent a digitized line or its carica-
ture,� Can. Cartographer, vol. 10, no. 2, pp. 112�122, 1973.

[16] D. Lowe, �Object recognition from local scale-invariant features,� in
Proc. Int. Conf. Comput. Vis., 1999, pp. 1150�1157.

[17] S. Belongie and J. Malik, �Matching with shape contexts,� in Proc.
IEEE Workshop Content-based Access of Image and Video Libraries,
2000, pp. 20�26.

[18] C.-C. Chang and C.-J. Lin, �LIBSVM: A Library for Support Vector
Machines,� 2001 [Online]. Available: http://www.csie.ntu.edu.tw/
~cjlin/libsvm

[19] J. Kruskal, �On the shortest spanning subtree and the traveling
salesman problem,� Proc. Amer. Math. Soc., vol. 7, no. 1, pp. 48�50,
1956.

Fabian Richter is currently working toward the
Ph.D. degree at the Multimedia Computing and
Computer Vision Lab, University of Augsburg,
Augsburg, Germany. He received his diploma
degree in Computer Science from the University of
Augsburg, in November 2009. His research interests
include Machine Learning, Image Analysis, and
Image Processing.

Christian X. Ries is a Ph.D. student at the Multi-
media Computing and Computer Vision Lab of the
University of Augsburg. He acquired the Master
degree in Computer Science from the University of
Augsburg in 2009. His research interests are in the
area of Computer Vision, Machine Learning, and
Image Content Analysis.

Nicolas Cebron obtained his diploma in Computer
Science from the Ostfalia University of Applied
Sciences in Braunschweig, Germany and his Ph.D.
degree in Computer Science from the University
of Konstanz, Germany. He spent two years as a
postdoctoral fellow in the EU research project
�Bisociation Networks for Creative Information Dis-
covery� and at the International Computer Science
Institute at the University of California, Berkeley.
Dr. Cebron is currently working as a post-doctoral
researcher in the eld of active machine learning and

image classication at the University of Augsburg, Germany.

Rainer Lienhart is a full professor in the computer
science department of the University of Augsburg
where he heads the Multimedia Computing and
Computer Vision Lab. His group is focusing on all
aspects of very large-scale image, video, and audio
mining algorithms including feature extraction and
image/video retrieval.
From August 1998 to July 2004 he was a Staff

Researcher at Intel�s Microprocessor Research
Lab in Santa Clara, California, where he worked on
transforming a network of heterogeneous, distributed

computing platforms into an array of audio/video sensors and actuators capable
of performing complex DSP tasks such as distributed beamforming, audio
rendering, audio/visual tracking, and camera array processing. In particular,
this requires putting distributed heterogeneous computing platforms with
audio-visual sensors into a common time and space coordinate system. At the
same time, he was also continuing his work on media mining, where he is
well-known for his work in video content analysis with contributions in text
detection/recognition, commercial detection, face detection, shot and scene
detection, and automatic video abstraction.
He received his Ph.D. in Computer Science from the University of

Mannheim, Germany, in 1998, where he was a member of the Movie Content
Analysis Project (MoCA).
The scientic work of Prof. Lienhart covers more than 80 refereed publica-

tions and more than 20 patents. He was a general co-chair of ACMMultimedia
2007 and SPIE Storage and Retrieval of Media Databases 2004 & 2005. He
serves in the editorial boards of 3 international journals. For more than a decade
he is a committee member of ACMMultimedia, IEEE ICME, SPIE Storage and
Retrieval of Media Databases, and many more conferences. Since July 2009 he
is the vice chair of SIGMM. He is also the executive director of the Institute for
Computer Science at the University of Augsburg since April 2010.

