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ABSTRACT

In this paper, we present a method to automatically identify dis-
eases from videos of gastrointestinal (GI) tract examinations using
a Deep Convolutional Neural Network (DCNN) that processes im-
ages from digital endoscopes. Our goal is to aid domain experts by
automatically detecting abnormalities and generating a report that
summarizes the main findings. We have implemented a model that
uses two different DCNN architectures to generate our predictions,
which are also capable of running on a mobile device !. Using this
architecture, we are able to predict findings on individual images.
Combined with class activations maps (CAM), we can also automat-
ically generate a textual report describing a video in detail while
giving hints about the spatial location of findings and anatomical
landmarks. Our work shows one way to use a multi-disease detec-
tion pipeline to also generate video reports that summarize key

findings.
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1 INTRODUCTION

In this work, we present our method for automatic identification of
diseases and anatomical landmarks in the human digestive system.
Gastroscopy and colonoscopy are real-time examinations of the

!We ported one of our MobileNetV2 models to be usable on an iPhone.
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human gastrointestinal (GI) tract by using digital endoscopes. An-
alyzing these videos is both time-consuming and needs a domain
expert. Supporting these domain experts by machine learning tech-
niques is one promising approach to reduce costs.

This work gives a technical overview of our submission to the
2019 ACM Multimedia Grand Challenge BioMedia: Multimedia in
Medicine [4]. This challenge focuses on automatically detecting
normal findings, abnormalities and anatomical landmarks in GI
tract images composed from two different datasets. Pogorelov et
al. [10] presented a multi-class dataset consisting of GI tract im-
ages, which has greater variability than other publicly available
datasets [1, 12]. In addition, their dataset contains other classes
than only focusing on polyps, i.e., classes related to polyp removal
and three anatomical landmarks of the GI tract. Pogorelov et al. [9]
also presented a dataset consisting of classes that allow to assess
whether the bowel was cleansed sufficiently before colonoscopy.

2 DATASET

For our work, we use the Medico 2018 dataset provided by the
challenge. The dataset includes images for 16 classes and consists
of a development split and a test split with 5,293 and 8,740 im-
ages, respectively. The classes represent anatomical landmarks,
pathological findings or endoscopic procedures in the GI tract. The
Medico 2018 dataset comprises parts of the Kvasir [10] and the
Nerthus [9] dataset. The different classes are quite balanced with
the exception of the out-of-patient and instruments class, which
only account for 0.076% (4 images) and 0.680% (36 images) of the
development split, respectively. For our models, we create a train
and validation split from the development set with a ratio of 3 : 1,
respectively.

In addition, we use the Kvasir-v2 dataset [10] for two of our models
to improve detection accuracy. The Kvasir-v2 dataset provides 8000
additional images covering 8 classes. For the report generation sub-
task an additional dataset consisting of six videos has been provided
by the BioMedia challenge organizers.

3 METHOD

We use two different CNNs to extract features from the input images,
i.e., the MobileNetV2 [11] and the DenseNet-121 [5]. In order to
detect the class of the input image, we append two fully-connected
layers to the average-pooled feature map f € R of the CNN with k
being the depth of the respective CNN’s feature map. The develop-
ment dataset is labeled as a single-classification problem, i.e., one
correct class per image. Thus, we train the first fully-connected
layer fc; with a Softmax (o) cross-entropy loss function

Loftmax = — ) , 8t(x) log o(fe1 (£)) (1)
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with gt(x) being the ground-truth label for training sample x. Nev-
ertheless, a single image could still have multiple correct classifica-
tions, which we try to model with a second prediction module. For
instance, an image could depict a pathological finding and an in-
strument. We train the second fully-connected layer with a Sigmoid
cross-entropy loss, which allows us to output the likelihood of every
class instead of predicting the most probable class only. However,
predicting probabilities for independent classes does not impose a
ranking on those classes. Hence, we always use the prediction of
the fully-connected layer trained with the Softmax cross-entropy
loss first. We select the class-specific thresholds for the predictions
trained with the Sigmoid cross-entropy loss by using the thresholds
that yield the highest F1-score. If there are additional predictions
after applying the class-specific thresholds, we output those accord-
ing to the Softmax ranking.

3.1 Training

While training, we resize every image to a size of 256 X 256 and
extract a random crop of size 224 X 224. Additionally, for every
image, we randomly decide whether to rotate the image by 90°, to
flip it horizontally and to flip it vertically, which results in 8 possible
configurations for every input image.

We employ a two-stage training. In the first stage, we freeze the
weights of the feature extractor CNN and only train the two fully-
connected layers. We use the Adam [7] optimizer with a learning
rate 1 = 0.001 and train for up to 100 epochs with early stopping.
In the second stage, we unfreeze the weights of the CNN and train
with 7 = 0.0001 and an exponential learning rate schedule, which
decays the learning rate by 0.5 every 20 epochs. In the finetuning
stage, we also use an L2 regularization loss with a multiplier of
1-107* for all convolution and dense layer weights. We select our
final model with an early stopping strategy, i.e., we choose the
model with the best accuracy on the validation set.

4 REPORT GENERATION

Medical report generation is a task with which is dealt in other areas
as well. For instance, with the release of the Indiana University X-
ray dataset [2], many works deal with connecting natural language
and chest X-ray images. For instance, Jing et al. [6] and Harzig et
al. [3] use a hierarchical Long Short-Term Memory (HLSTM) [8]
model, which allows to generate multiple sentences to form a para-
graph that reflects a doctor’s report. However, in contrast to our
problem, this dataset [2] contains chest X-ray images combined
with natural language reports of doctors. We, however, cannot use
a language model like a Recurrent Neural Network (RNN), trained
on natural language paragraphs.

The provided dataset contains six videos which span from 00:01-
05:11 (39-7,783 frames) from which we extract each frame with
the FFmpeg library. Then, we use our trained model to predict the
class for each frame. We smooth the predictions over 30 frames
in the past and future using a simple algorithm: Given the future
and past frames, we determine the most probable prediction by
removing outliers using the z-score?. Whenever the prediction of
the current frame is the same as the most probable future prediction
and different from the most probable past prediction, we change

2The z-score of a random variable X is defined as Z = %)g(]

the classification result of our smoothed prediction.

For each continuous sequence of frames for which the same classifi-
cation result was predicted, we create a so-called video section. For
example, we identified 19 consecutive video sections in Figure 3.
In addition, we use class activation maps (CAM) [13] to localize
class-specific image regions, i.e., we infer the regions that con-
tributed most to the classification outcome. The CAM can be seen
as a probability distribution over the CNN’s output feature map f.
We average these probabilities over each video section that we iden-
tified in the video. By using these averaged probability distributions,
we then identify the area (one of top-left, top-right, bottom-left,
bottom-right or center) that seems to be mostly responsible for the
classification. We visualized this process in Figure 1.

Our final report for each video consists of three sections, (1) the
main findings, (2) a brief summary and (3) a detailed summary. In
the main findings, we provide the two most probable classifications
over the whole video sequence together with their respective fre-
quency of occurrence. Second, we provide a brief summary which
explains all consecutive classifications of video sections in a chrono-
logical order. Finally, we give a detailed summary that describes
every event within the video sequence with an exact time span, the
classification result and the spatial location in which the event has
been detected with the highest probability.
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Figure 1: Average class activation map (CAM) for a video seg-
ment together with an overlay describing our five areas of in-
terest. The area with the highest attention score is chosen as
the most interesting area within the current video segment.
Note that all region scores are normalized according to their
respective areas.

5 RESULTS

For our submitted models, we use two different training datasets.
For the -verl models, we use 75% (3969 images) of the provided
Medico development dataset for training while keeping 25% for
validating our model and selecting the best performing one. We



Table 1: Results of all our models on the detection (detection-ver?) and efficient detection (speed-ver?) subtasks. detection-ver2
is our model with the best performance according to the MCC score. We report the individual times for the efficient detection

subtasks in Table 2.

model TP TN FP FN precision recall  specificity F1 MCC
detection-verl 8291 130609 446 446  0.94442 0.90053 0.99664 0.91054  0.94332
detection-ver2 8419 130737 318 318 0.89897  0.88458 0.99752  0.88471 0.95974
speed-verl 8108 130426 629 629 0.86063  0.85300 0.99514  0.85142  0.92009
speed-ver2 8375 130693 362 362 0.89534  0.88129 0.99713  0.87993  0.95429
hardware 8108 130426 629 629 0.86063  0.85300 0.99514  0.85142  0.92009

Table 2: Official timings for our models. All times ¢t are mea-
sured in milliseconds (ms). fps stands for frames per second.

model tavg tmin tmax fpsave  PSmin PSmax
speed-verl 0.3087 0.1219 18.1812 3238.87 55.00  8204.27
speed-ver2  0.3100 0.1342 17.3601  3226.04 57.60  7453.23
hardware 0.7862 0.1090 9.3824  1271.98 106.58 9175.40

extend the training split by the Kvasir-v2 [10] dataset (3969 +8000 =
11969 images) for our -ver2 models.

5.1 Detection Subtask

We submitted two models for the detection subtask, namely
detection-ver] and detection-ver2. We trained detection-verl with
a MobileNetV2 with a width multiplier of 1.4. Even though the
MobileNetV2 is designed as a mobile architecture, we found it to
perform better than a DenseNet-121 and or a DenseNet-201 when
only using the train split of the Medico development dataset. For
detection-ver2, we used the DenseNet-121 CNN that achieved bet-
ter results on the validation split. We depict our results in Table 1
and see that detection-ver2 performs better for almost every metric
except precision, recall and the F1-score. As we can see in Table 3
this is caused by the underrepresented out-of-patient class, which
does not get detected by the detection-ver2 model.

Our models are able to output multiple detections, e.g., there might
be cases where a finding and an instrument is detected. However,
detections for multiple classes is constrained as there are no multi-
class annotations as of now.

5.2 Efficient Detection Subtask

Similar to the detection subtask, we submitted two models for the
efficient detection subtask, which make use of the two different
dataset variants, which we proposed in Section 5. We use a Mo-
bileNetV2 with a width multiplier of 1.0 for our efficient detection
models, which allows for faster detection times while sacrificing
a bit of accuracy. However, the Matthews correlation coefficient
(MCC) score for the model speed-ver2 is almost on par with the
detection-ver2 model. In contrast, when using the smaller dataset,
i.e., only the train split of the Medico development dataset, the
performance decreases by over two percent when using the Mo-
bileNetV2 with the smaller width multiplier. In Table 2, we list
the times our models take to classify a single image. speed-verl

Main findings:

nce shows the following events in this chr ical order: colon-cl
normal-z-line, esophagitis.

Detailed summary:

. blurry-nothing, esophagiti

FROM - TO
00:00-00:00
00:00-00:01
00:01-00:02
00:02-00:04
00:04-00:09
00:09-00:09
00:09-00:09
00:09-00:10
00:10-00:11
00:11-00:15
00:15-00:15
00:15-00:31
00:31-00:32
00:32-00:44
00:44-00:46

Description of current time period within the video.
An inflammation of the esophagus is visible mostly in the center (Esophagitis).
A clear colon can be seen mostly in the center.
An inflammation of the esophagus is visible mostly in the center (Esophagitis).
A clear colon can be seen mostly in the center.
The image is blurry and it is hard to identify what currently can be seen.
Instruments are visible within the current section of the video mostly in the bottom-left.
The image is blurry and it is hard to identify what currently can be seen.
retroflex-rectum mostly in the top-left.
The image is blurry and it is hard to identify what currently can be seen.
An inflammation of the esophagus is visible mostly in the center (Esophagitis).
A normal z-line can be seen mostly in the top-right.
An inflammation of the esophagus is visible mostly in the center (Esophagitis).
The image is blurry and it is hard to identify what currently can be seen.
An inflammation of the esophagus is visible mostly in the center (Esophagitis).
A normal z-line can be seen mostly in the center.
: :47 An infl ion of the is visible mostly in the top-right (Esophagitis).
00:47-00:48  Dyed resescected margins can be seen mostly in the top-left.
00:48-00:49 Instruments are visible within the current section of the video mostly in the bottom-left.
00:49-00:51  An inflammation of the esophagus is visible mostly in the center (Esophagitis).

Figure 2: Generated report for 3e3a7ac0-4244-46cc-89al-
44ce84dd1ccf.avi. This report matches with the smoothed
prediction (bottom bar) of Figure 3.

and speed-ver2 are our submitted models with an average detection
time for a single image of 0.3087 ms and 0.3100 ms, respectively. We
measured those times on a dual-CPU workstation with 48 threads
and a single NVIDIA TITAN X (Pascal) GPU. The hardware model
is the same as speed-verl, but was submitted to the organizers of
the challenge as a docker image to be comparable with other sub-
missions in terms of hardware configuration. In this scenario, the
average processing time per image takes longer with 0.7862 ms, but
the minimal processing time for an image is shorter with 0.1090 ms
compared to 0.1219 ms for model speed-ver1.

5.3 Report Generation

For generating reports, we used the detection-ver! model from Sec-
tion 5.1. As we already described in Section 4, we extracted all
frames for each given video and predicted their most probable class
label. We depict such a classification result for one video in Figure 3,
where the top bar shows the raw classifications for every frame.
The bottom bar shows the predictions which were smoothed over
a window of 30 frames in the future and past. In the Figure, we also
depict one image representative for each extracted video section.
Together with a text template library and identifying the region



Table 3: Main metrics listed by class. We report the results of models detection-ver1 and detection-ver2 seperated by /.

class TP TN FP FN precision recall specificity F1

blurry-nothing 37/35 8698/8698  0/2 2/2 0.94872/0.94595  1.00000/0.94595  1.00000/0.99977  0.97368/0.94595
colon-clear 1065/1065  7660/7634  0/0 12/38  0.98886/0.96555 1.00000/1.00000 1.00000/1.00000  0.99440/0.98247
dyed-lifted-polyps 520/540 8101/8130 36/16 80/51  0.86667/0.91371  0.93525/0.97122  0.99558/0.99804  0.89965/0.94159
dyed-resection-margins  535/564 8122/8142 29/0 51/31  0.91297/0.94790  0.94858/1.00000 0.99644/1.00000 0.93043/0.97325
esophagitis 462/543 8132/8180 94/13 49/1 0.90411/0.99816  0.83094/0.97662  0.98857/0.99841 0.86598/0.98727
instruments 131/125 8464/8464 142/148 0/0 1.00000/1.00000  0.47985/0.45788  0.98350/0.98281 0.64851/0.62814
normal-cecum 570/582 8136/8149  14/2 17/4 0.97104/0.99317  0.97603/0.99658  0.99828/0.99975 0.97353/0.99487
normal-pylorus 560/561 8171/8176 1/0 5/0 0.99115/1.00000  0.99822/1.00000  0.99988/1.00000 0.99467/1.00000
normal-z-line 512/562 8082/8162 51/1 92/12  0.84768/0.97909  0.90941/0.99822 0.99373/0.99988  0.87746/0.98857
out-of-patient 1/0 8735/8735 1/2 0/0 1.00000/0.00000  0.50000/0.00000  0.99989/0.99977  0.66667/0.00000
polyps 365/373 8261/8295 9/1 102/68 0.78158/0.84580  0.97594/0.99733  0.99891/0.99988 0.86801/0.91534
retroflex-rectum 184/179 8535/8544 8/13 10/1 0.94845/0.99444  0.95833/0.93229  0.99906/0.99848  0.95337/0.96237
retroflex-stomach 394/394 8338/8336  3/3 2/4 0.99495/0.98995  0.99244/0.99244  0.99964/0.99964  0.99369/0.99119
stool-inclusions 494/468 8221/8181 12/38 10/50  0.98016/0.90347 0.97628/0.92490  0.99854/0.99538  0.97822/0.91406
stool-plenty 1956/1886  6771/6772  9/79 1/0 0.99949/1.00000  0.99542/0.95980  0.99867/0.98847  0.99745/0.97949
ulcerative-colitis 505/542 8182/8139 37/0 13/56  0.97490/0.90635  0.93173/1.00000 0.99550/1.00000 0.95283/0.95088
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Figure 3: Resulting classifications on a per frame basis for 3e3a7ac0-4244-46cc-89al-44ce84dd1ccf.avi. The upper bar shows
the raw classifications for every frame within the video. The bottom bar shows the classification smoothed over a time period
of 30 frames. We also depict one example frame for each smoothed section within the video.

that mostly contributed to the classification outcome, we gener-
ated a detailed summary of each video. We depict one such report
combined with main findings and a brief summary in Figure 2.

6 DISCUSSION AND FUTURE WORK

We presented an architecture using a DCNN to predict abnormal-
ities and diseases from GI tract images. To improve our classifi-
cations, we employed augmentation and examined different CNN
feature extractors to find models that perform best given two con-
straints: That is inferring the best possible predictions and to return
the predictions as fast as possible while not sacrificing too much
detection accuracy. In addition, we expanded our architecture to
automatically generate a detailed report for a given video of a gas-
troscopy or a colonoscopy. This report also describes in which
spatial location of the video the findings were observed.

Automatic report generation could be greatly improved in the fu-
ture, if ground-truth doctors’ reports become available. Then tech-
niques like hierarchical LSTM networks [3, 6, 8] could be used to
automatically generate text paragraphs in natural language. We
also want to focus on improving detection accuracy by using multi-
class labels, e.g., there could be a polyp together with an instrument
within a given image.
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