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Abstract—We present an approach to detect speech im-
pairments from video of people with aphasia, a neurological
condition that affects the ability to comprehend and produce
speech. To counter inherent privacy issues, we propose a cross-
media approach using only visual facial features to detect
speech properties without listening to the audio content of
speech. Our method uses facial landmark detections to measure
facial motion over time. We show how to detect speech and
pause instances based on temporal mouth shape analysis and
identify repeating mouth patterns using a dynamic warping
mechanism. We relate our developed features for pause fre-
quency, mouth pattern repetitions, and pattern variety to actual
symptoms of people with aphasia in the AphasiaBank dataset.
Our evaluation shows that our developed features are able
to reliably differentiate dysfluent speech production of people
with aphasia from those without aphasia with an accuracy
of 0.86. A combination of these handcrafted features and
further statistical measures on talking and repetition improves
classification performance to an accuracy of 0.88.

Keywords-facial features; speech diagnosis; medical assess-
ment

I. INTRODUCTION

Speech impairments are common symptoms for people
with neurological conditions. Aphasia is one such neurolog-
ical condition that affects a person’s ability to understand or
produce speech. Aphasia typically results from a stroke or
other brain injury and can improve or worsen over time [1].
The degree and types of speech impairments in aphasia span
a broad continuum, ranging from slightly dysfluent speech
to severe limitations that only allow for a few words or
utterances.

Assessing the abilities of people with aphasia is usually
performed manually in direct interviews with doctors or
therapists. The assessment itself can range from a broad
classification of a patient’s capabilities to a detailed analysis
of symptoms based on interview transcripts [1]. Especially
in the latter case, the time effort is enormous and may
not even represent the person’s abilities outside the clinical
environment. Thus, there is an opportunity for automated
assessment tools to track speech abilities more frequently
over time and outside the clinical environment, enabling
more effective tailoring of therapy for people with aphasia.
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Figure 1. Example of our two best performing temporal features. In
combination, they separate non-fluent aphasia patients from control group
members in most cases.

Integrating assessment tools with everyday video calls (e.g.
FaceTime) can provide more continuous and representa-
tive evaluations of speech impairments as they improve or
worsen over time. A straightforward approach might focus
on audio information to infer speech capabilities; however,
it would require the system to listen in on what people
actually say, which can raise concerns about privacy and
confidentiality. In this paper, we propose a cross-media
approach that only uses visual information to infer speech-
related properties, while maintaining the person’s need for
privacy of their semantic speech content. This can increase
the acceptance of automatic evaluation systems with pos-
sible applications in diagnosis and therapy [2], continuous
assessment in video conferences or specific discourses with
doctors, self-evaluation over time, or large scale medical
studies.

Our approach is based on an initial registration of facial
landmarks of people when they are talking. This is common
for traditional facial vision tasks like face [3], emotion [4],
[5] or gaze [6] recognition. Whereas the recognition targets
for these tasks are typically related to visual facial prop-
erties, we instead specifically attempt to recognize speech
properties. The task closest to our approach is visual speech
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Figure 2. Overview of our basic features: (a) Video frame example from the AphasiaBank [1] dataset with detected facial landmarks. (b) Temporal mouth
dissimilarity for different temporal windows. (c) Vertical mouth opening measure. (d) Combined talk score and the derived detection of talking intervals
and pauses

recognition, with recent successes in automatic lip reading
using DNNs [7]. Because we want to avoid extracting
information on the semantic level, we focus on temporal
features of facial motion to infer properties of speech pat-
terns instead of the actual speech content. Our contributions
are the development of temporal features for speech and
pause detection, detection of repeating facial patterns, and
the measure of overall facial pattern variety. We relate these
features to actual speech-related symptoms of people with
aphasia such as dysfluency, repetitive speech, and the use of
a limited vocabulary. We report classification results using
these features to distinguish different groups of people with
aphasia from control group participants without aphasia,
based on five minutes of interview recordings taken from
the AphasiaBank [1] dataset.

II. METHOD

The basic idea of our approach is to analyze mouth
shapes and mouth motion and to develop features related to
actual speech properties. We use point detections outlining
the mouth of a person in a video and compare the mouth
shape over time. This reveals speaking turns as well as
short pauses within speaking turns. Additionally, we group
temporally sequential mouth shapes into mouth patterns
and compare different patterns with each other to identify
repeating patterns during talking. Finally, we measure the
variety in mouth motion for a person by comparing it to
a small vocabulary of observed patterns. Next, we describe
each feature in detail.

A. Basic Features

The video material consists of recordings of participants
(i.e. people with aphasia and a control group without apha-
sia) during interviews with fixed protocols. Even though the
participant’s face is either the only or the most prominent
face in the recording, the camera viewpoint can vary from

frontal to profile views of the participant’s face. Our analysis
begins with the registration of 2D landmarks on the person’s
face. We use a CNN-based approach following [8] to obtain
a 70-point model for the characteristic facial points (see
Figure 2a). Because many of the 70 facial points do not
meaningfully change when the person is speaking, most of
our analysis focuses on the mouth with its M = 20 points
outlining the lips. We refer to this set of 2D mouth points
at a specific point in time t in a video as:

mt =

(
x1 x2 · · · xM
y1 y2 · · · yM

)
. (1)

All video material is recorded at 30 frames per second, so
we specify any point in time t by its frame index.

Our analysis of mouth configurations and their motion
over time is based on a temporal similarity measure of a
person’s 2D mouth points and certain direct measurements
of the mouth’s opening. To compare how much the shape
of a mouth changes over time, we measure the difference
of two mouth configurations mt1 and mt2 based on their
point-wise quadratic difference ‖mt1−mt2‖22. Any changes
in the mouth configuration over time result from (a) body
movement, (b) head movement or (c) inner-facial motion. To
account only for the latter, we allow an arbitrary scaling s,
2D rotation Rθ and translation t to map one of the compared
mouth configurations as close as possible onto the other. We
then use the remaining difference as the actual difference
in shape. This is similar to the approach in [9] to capture
body pose differences. In contrast to [4], we directly map
the two mouth configurations we want to compare without
an intermediate mapping onto a frontal template view of
a mouth. Since we are later interested in the difference
of temporally nearby mouth configurations in a video, we
avoid the additional error induced by the intermediate face
frontalization step [10]. Our approach is closely related to
shape analysis with Procrustes methods [10], [11] and leads



to a mouth dissimilarity measure msim with:

msim (mt1,mt2) = min
s,θ,t
‖mt1 − sRθmt2 + t‖22 . (2)

msim is inherently dependent on the scale of its first
operand mt1. We therefore use the symmetric and scale
invariant msimnorm with:

msimnorm (mt1,mt2) =

msim (mt1,mt2)

smt1

+
msim (mt2,mt1)

smt2

, (3)

where smt is the average distance of any point in mt from
its center and acts as an estimate of its scale.

We can now use msimnorm to measure inner-facial motion
by comparing mouth configurations of the same person in
a temporal window ∆t. Because it is unclear which choice
of ∆t will result in the most informative measure, we use
a collection of different temporal windows w. This leads to
our final temporal self-dissimilarity measure for the mouth
dw(t), defined as:

dw(t) =
∑

∆t∈w
msimnorm (mt,mt+∆t) . (4)

Our experiments revealed that short temporal windows
w = {2, 3 . . . , 10} are best suited to capture mouth changes
during talking (see Figure 2b for examples).

B. Talking Detection

In order to infer different properties of someone’s speech
capabilities, the first step is to detect when someone is
talking. (Certainly, talking can be easily inferred from the
audio channel, but we restrict our approach to only visual to
preserve privacy.) Since talking results in mouth movement,
periods of talking reveal themselves as areas of high activity
(or dissimilarity) in dw(t). Note that dw(t) not only captures
mouth movement during talking but also (1) jitter in the
point detections or missdetections and (2) changes due to
out-of-plane rotations of the mouth, e.g. when nodding or
shaking the head. To account for the former, we only con-
sider time instances where all facial landmarks are detected
with sufficient confidence. Registration errors from the latter
effect are filtered out based on the observation that talking
can only occur when the mouth is open at some point in the
window. Thus, we measure the vertical distance between
points on the upper and lower lips. Let o(t) denote this
vertical opening of the inner mouth, normalized by the scale
of the complete face (analogous to the mouth scale smt

).
Since o(t) is changing frequently during talking, we apply a
closing operation to smooth over gaps of size up to ∆t = 50
with a combined minimum and maximum filter and obtain
omax(t) with:

omax(t) = min

(
max

t′∈[t−∆t,t]
o(t), max

t′∈[t,t+∆t]
o(t)

)
. (5)
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Figure 3. Detected pauses for (a) a person with aphasia and (b) a control
group member.

Figure 2c depicts the result of this operation on a sample
video. It fills gaps of a briefly closed mouth during talking
while retaining sharp boundaries for longer periods of non-
talking. Thus, a sufficiently high value of omax(t) is a
precondition for talking to be detected. Head motion without
actual talking (or mouth opening) is filtered out, e.g. when a
person is simply nodding. The final talk score is now given
by talk(t) = dw(t) · omax(t), where dw(t) and omax(t)
are maximum-normalized to [0, 1]. Finally, we apply a talk
threshold τtalk for a hard {0, 1} assignment, remove very
short talking intervals, and join closely adjacent talking
intervals that are separated only by very short gaps. This
represents our final talk instance detection (see Figure 2d).

C. Pause Frequency

One decisive symptom of impaired speech for people with
aphasia is dysfluent speech, manifested as unintended pauses
during talking. Developing a measure for pauses can lead
to a direct measure of fluency. To detect pauses, we can
again use the talk score talk(t), apply a more restrictive
threshold τpause, and register all areas of inactivity during
the previously detected talk instances in Section II-B. Fig-
ure 2d shows an example for such pauses. Despite intended
pauses being detected as well, we expect that the overall
pause frequency is still related to a person’s speech fluency.
Figure 3 shows a qualitative example of the difference in
pause frequency for a person with aphasia and a control
group member.

D. Repetitive Patterns

Apart from dysfluency, one of the more noticeable speech
symptoms of aphasia patients are frequent repetitions of
utterances, words, or sentence fragments. These repetitions
often occur when forming the subsequent word or when
trying to correct the last word. We aim to find repetitions in
the mouth motion that are related to speech repetitions. Even
though repeating mouth motion may not be necessarily a
direct indicator for repetition on the semantic level, statistics
of visual repetition can still offer insight into repetition
behaviors.
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Figure 4. Repeating mouth patterns for (a) a person with aphasia and (b) a control group member. Different colors encode different mouth motion patterns.
Pattern repetitions use the same color.

For our approach to detect visual repetitions of mouth
motion, we define a pattern of mouth motion of length l
around time t as pt = (mt−bl/2c, . . . ,mt, . . . ,mt+bl/2c).
We compare two observed patterns of arbitrary length using
Dynamic Time Warping [12], [13]: We transform pt1 into
pt2 by either directly transforming a mouth configuration in
pt1 into the respective configuration in pt2, or by allowing
insertions or deletions in pt1. The cost for direct transfor-
mation operations is given by msimnorm between the two
transformed mouth configurations, maximum-normalized to
[0, 1]. The more dissimilar both configurations are, the
higher the cost. Insertion and deletion operations are always
assigned the maximum cost of 1. Since the same mouth
motion is not always performed at the same speed, temporal
warping using insertions and deletions enables us to match
similar patterns of different lengths. The overall pattern
match cost is the cost sum of the optimal sequence of
transformation operations.

To find possible repetitions, we first extract reference
patterns around locally unique mouth configurations, i.e.
maxima in dw(t). We then search for matching patterns in
the direct vicinity (±5s) that have a match cost below a
certain threshold τmatch. Figure 4 shows examples for pattern
matches for a person with aphasia that frequently repeats
single words and a person without aphasia. Even though
repeating patterns are found in both cases, the person with
aphasia shows few but direct repetitions compared to the
many highly interleaved repetitions for the person without
aphasia. This hints that direct repetitions separated by no
(or only a few) other patterns may be a good indicator for
direct word repetitions. We therefore count the occurrences
of direct repetitions and normalize by the total talking time
to obtain a measure of (visual) repetitions per second.

E. Visual Vocabulary of Mouth Patterns

Instead of looking where in time certain patterns occur or
repeat, we can also collect patterns over a complete video
and assess their variety. This directly relates to the overall
variety in mouth motion or expression and therefore - to a

lesser extent - to the actual variety in speech. We would
clearly expect a person capable of only expressing a few
words or utterances to show less variety in mouth motion
than an unimpaired person with a normal vocabulary.

To obtain such a measure of variety, we build a visual
vocabulary of mouth patterns for each person by collecting a
fixed number of patterns throughout a video and aggregating
them using clustering with a fixed number of clusters. Only
patterns that repeat at least once are selected. If not enough
such patterns can be extracted, we select the missing ones
randomly from the video. The representatives of all cluster
centers form the vocabulary. For our approach we use k-
medoids clustering with a predefined vocabulary size k. For
a small k, we want to measure how well the vocabulary
represents the complete variety of mouth motion of the per-
son. We split the talking periods in the video into fixed-sized
blocks of mouth motion. The blocks have the same length as
the patterns in the vocabulary. Each block is now assigned
the vocabulary element with the lowest pattern match cost
from Section II-D. The idea is to reconstruct the complete
mouth motion during talking by only concatenating the best
fitting vocabulary elements. From this reconstruction, we
measure the match (or reconstruction) cost between each
block and its assigned vocabulary pattern and calculate the
total reconstruction cost as the block-wise average. With
limited variety in mouth motion, a small vocabulary suffices
to describe the overall motion sufficiently well and leads to
a good reconstruction. We compute the reconstruction cost
for k ∈ {5, 10, . . . , 50} and use its mean as the final score
of mouth motion variety.

III. EVALUATION

We evaluate our developed features on the Aphasia-
Bank [1] dataset of video recordings and transcripts of
interviews with people with aphasia (APH) and control
group participants (CTR). The aphasia patients are further
classified based on their speech capabilities into fluent (FL)
and non-fluent (NFL) speakers. While non-fluent patients
show major impairments in physical speech production, flu-
ent patients are usually able to talk more or less fluently but



the semantic content is often incorrect or incomprehensible.
We removed a few videos of insufficient video quality and
control group members below the age of 35 - an age group
not represented in the dataset of people with aphasia. This
resulted in a dataset of 163 CTR, 99 NFL and 111 FL videos.
Because videos vary in length, we extract five minutes of
direct discourse between the interviewer and the participants
from each video for a fair comparison.

To evaluate the effectiveness of our developed features,
we construct three binary classification tasks to discriminate
the different groups of participants: CTR vs. NFL, FL vs.
NFL and CTR vs. FL. Parameters for all speech features
are optimized individually on a training set consisting of
45 CTR, 30 NFL, and 30 FL videos. The remaining videos
are used as a test set for evaluation. Each classification task
has a different ratio of positive to negative examples. In
order to keep results across the different tasks comparable,
we evaluate classification results using a balanced accuracy
(ACC) measure. This is simply the mean accuracy on both
classes, weighted by the fraction of examples in each class.

A. Individual Features

Table I shows the results when using each individual
feature to directly classify participants on a video level. Each
feature is treated as a likelihood score that a participant
belongs to one class or the other. For the CTR vs. NFL
task, i.e. discriminating normal and notably dysfluent speech,
our inferred pause frequency measure performs best with an
ACC of 0.86. This is not surprising, as pauses are inherently
related to fluency of speech. The repetition frequency of
mouth patterns reveals itself as not very informative with an
ACC of only 0.64. To explain this result, Figure 5a shows
the relationship between the detected pattern repetition fre-
quency and the actual word repetition frequency derived
from the video transcripts. It is obvious that there is no
real correlation between both properties. Simply counting
the number of directly repeating mouth patterns is therefore
not suitable as an indicator for actual repetition in speech.
As the third feature, the mouth pattern variety based on
the concept of a visual vocabulary performs better, with an
ACC of 0.72. Figure 5b shows that the visual vocabulary
is able to identify parts of the aphasia patients with actual
limited speech vocabulary by variety scores in the range
[0.7, 0.8], which are hardly observed for the control group.
However, it is not well-suited as a single discriminating
feature to distinguish the two participant groups on its own,
but in combination with other features (see Figure 1), it still
contains viable information.

The relative ordering of feature performance stays the
same for the FL vs. NFL task, but the overall performance
drops significantly with only 0.69 ACC for the pause fre-
quency. This is somewhat to be expected as the ground
truth separation into fluent and non-fluent aphasia patients
is based on a subjective impression of the interviewer. Both
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Figure 5. Relationship of developed features and speech properties:
(a) Detected mouth pattern repetitions and actual word repetitions from
the transcript. (b) Mouth pattern variety and actual vocabulary size. Only
the latter shows informativeness.

groups still share symptoms of varying degrees and are
therefore much more difficult to distinguish.

For the final task CTR vs. FL, performance slightly
recovers again. Most notably, the pause frequency and the
mouth pattern variety perform very similar with 0.74 and
0.70 ACC each. Since highly non-fluent participants are not
present in this task, the pause frequency as a direct measure
is not necessarily the most informative feature.

B. Feature Combination

Different aphasia patients may vary in the types and
degrees of speech symptoms, so a single feature extracted
from the interview videos might not be optimal in differ-
entiating different types of aphasia in general. We therefore
additionally examine if the combination of features within
an arbitrary classifier outperforms the classification using
each feature separately. To this end we use a random forest
classifier on our developed features and apply it to the same
three classification tasks. We choose its hyper-parameters
based on the training set and report the results from a 5-fold
cross-validation on the test set in Table I. With the exception
of the CTR vs FL task, the performance of the classifier
seems to be capped by the best performing single feature.
Since randomized classifiers in general benefit from a large
set of features to draw from, the performance using only
the three specifically designed and parameterized features is
not necessarily optimal. However, many other features can
be extracted from our concepts of talk and pause detection,
pattern repetition and pattern variety. We repeat the experi-
ment by including further statistical measures which are not
directly related to specific symptoms. Our choice includes
the average length of talk intervals and pauses as well as
the average duration between pattern repetitions. Extending
the feature set leads to gains in all three classification tasks
compared to the single feature performance, with an ACC of
up to 0.88. Therefore, adding more statistical features built



Pause Freq. Repetition Freq. Mouth Pattern Variety Feature Combination Extended Features

CTR vs. NFL 0.86 0.64 0.72 0.86 0.88
FL vs. NFL 0.69 0.59 0.60 0.68 0.69
CTR vs. FL 0.74 0.64 0.70 0.76 0.76

Table I
BALANCED ACCURACY ON THE THREE CLASSIFICATION TASKS USING INDIVIDUAL FEATURES, FEATURE COMBINATIONS WITH A RANDOM FOREST

CLASSIFIER, AND AN EXTENDED FEATURE SET WITH ADDITIONAL TALK AND REPETITION STATISTICS.

on our concepts of talk detection and repeating patterns leads
to an increase in discriminative power, but at the cost of los-
ing the semantic interpretation of the individually developed
features. Thus, computational approaches such as ours may
be able to identify subtle patterns in behaviors related to
aphasia that traditional therapists may not normally be able
to detect.

IV. CONCLUSION

We presented a cross-media approach to infer speech
impairments of people with aphasia based on visual facial
features alone, without the need to listen to what they say.
Based on detections of facial landmarks, we applied tech-
niques from shape analysis and sequence warping to develop
methods for detecting periods of talking and pauses as well
as repetitions in facial temporal patterns. We additionally
measured the variety of facial patterns based on a visual
pattern vocabulary. Our evaluation showed that measures
of pause frequency and the variety of mouth patterns are
useful in differentiating people with and without non-fluent
aphasia. Combining individual features together, along with
additional statistics on repetition and talking, resulted in
an overall balanced accuracy of 0.88 for distinguishing
people with and without non-fluent aphasia. In the future,
we aim to include body movement such as head motion
and hand gestures into our analysis to detect gesturing as
a replacement for missing speech capabilities, as well as,
expanding to other neurological conditions such as dementia.
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