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Abstract

In this paper we study the problem of estimating inner-
cyclic time intervals within repetitive motion sequences of
top-class swimmers in a swimming channel. Interval limits
are given by temporal occurrences of key-poses, i.e. distinc-
tive postures of the body. A key-pose is defined by means of
only one or two specific features of the complete posture. It
is often difficult to detect such subtle features directly. We
therefore propose the following method: Given that we ob-
serve the swimmer from the side, we build a pictorial struc-
ture of poselets to robustly identify random support poses
within the regular motion of a swimmer. We formulate a
maximum likelihood model which predicts a key-pose given
the occurrences of multiple support poses within one stroke.
The maximum likelihood can be extended with prior knowl-
edge about the temporal location of a key-pose in order to
improve the prediction recall. We experimentally show that
our models reliably and robustly detect key-poses with a
high precision and that their performance can be improved
by extending the framework with additional camera views.

1. Introduction

In this work we describe an application for top-class
competitive sports, taking into account recent developments
in pose and motion estimation as well as time series anal-
ysis. Consider the following real-life application of a cam-
era system for evaluating the technique of swimmers: In
the field of competitive swimming, a quantitative evalua-
tion is highly desirable to supplement the typical qualitative
analysis. Therefore, an athlete swims in a swimming chan-
nel, a small pool where the water can be accelerated to con-
stantly flow from one end to the other. The pool has at least
one glass wall and is monitored with multiple cameras from
different angles. The athlete then performs regular swim-
ming motions in one of the four swimming styles, namely
freestyle, breaststroke, backstroke or butterfly, while being
filmed by one or more cameras. Figure 1(a) depicts an ex-
ample snapshot from one camera for this setup. The video
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footage is evaluated afterwards by an experts who for in-
stance annotates certain poses, single joints and other vari-
ables of interest. Desired kinematic parameters are inferred
from this manual evaluation in a last step. However, quan-
titative (manual) evaluations are very time consuming and
therefore only used in very few individual cases. The pro-
posed solution focuses on determining all data necessary to
automatically derive desired kinematic parameters of a top-
level swimmer in a swimming channel, that is, we would
like to retrieve the stroke frequency and inner-cyclic inter-
vals. Concluding kinematic parameters from these intervals
and recommending actions for improving the technique is
not part of our approach; this is the job of a professional
coach and falls into the field of training sciences. Hence, we
look at this problem solely from a computer vision stand-
point.

The problem of determining all aforementioned param-
eters can be reduced to the following: Given a stream of
image frames, we would like to identify poses of special in-
terest, which we label as key-poses. In general, a key-pose
is defined by a human expert based on arbitrary features of
the pose. A feature could for instance be the position or
angle of the upper arm in the image. Detecting such pose
features directly in a video stream is quite challenging due
to heavy noise and (self-) occlusion. We therefore assume
that the frames of interest, i.e. the ones showing a key-pose,
are “hidden” as we cannot detect them directly. A cyclic
motion however has a predetermined structure. Hence, we
interpolate the occurrence of a key-pose based on points in
the cycle that can be detected reliably.

Therefore, we propose the following method: A database
of joint - annotated images of swimmers is temporally clus-
tered and a detector is trained for each cluster. The term
temporally refers to a central property of each cluster, which
should only contain image patches from a part of poses
that appear closely within a small window of time within
a swimming cycle. Multiple detectors are joined into a star-
shaped pictorial structure, which outputs a frame descriptor
for each image based on spatially restricted max pooling
of each part. We aggregate all frame descriptors to form
a set of time series in order to decide whether a detector
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Figure 1. (a) A swimmer in a swimming channel (left). Arm configuration patches form clusters for poselets (right). (b) Above view on
the swimming channel. (c) Example from the CMU motion of body database with poselet cluster examples.

is activated. Based on these activations, the occurrence of
a key-pose is estimated by averaging over “good” detector
signals. Finally, we show that our approach is not limited to
the analysis of athletes and apply it to a human gait dataset.

Preliminary Definitions. Before we dive into the model
formulation, we would like to define some commonly used
terms in this work. The smallest unit within a repetitive mo-
tion is one cycle or stroke, defined by the time that passes
between the appearance of a specific body pose and its earli-
est reappearance. Freestyle swimming (like walking or run-
ning) is an anti-symmetrical cyclic motion: Every pose of
the left body half occurs approximately half a cycle later on
the other side of the body. This observation is important
as a detector based on gradients is not able to reliably dis-
tinguish anti-symmetrical poses given that we observe the
person from the side.

2. Related Work

Part based models have played a huge role in the fields
of object detection and (human) pose estimation within the
last years. Based on the fundamental work Fischler and
Elschlager [9], these models represent an object through
multiple parts which are connected via deformation terms,
often visualized as springs, allowing for matching them in a
flexible configuration. Various manifestations of this basic
notion have been developed through the years, kicked of by
Felzenszwalb et al [8] with their deformable part models for
object detection. Different refinements have been proposed
specifically for human pose estimation, e.g. by enriching a
model with additional parts to compensate for the flexibility
of the human body [22] or by allowing rotation of parts [1].

While effective implementations of part detectors have
been proposed for characteristic body parts like head and
torso, part templates for extremities are usually weak. This

87

issue has been addressed by [15], who argue that person and
body part templates should be pose specific rather than gen-
erally trained. Bourdev et al [3] also follow this notion by
proposing the concept of poselets, generic rigid part detec-
tors based on Histograms of Oriented Gradients (HoG) [6]
as a generalization of specific body part detectors. Pose-
lets lift the spatial limitation of parts being connected to
an actual body part and encode generic parts of the body.
Gkioxari et al [ 10] recently utilized poselets for training dis-
criminative classifiers to specifically differentiate between
arm configurations of a person.

In the context of key-frame selection in videos, pose-
lets have been used for human activity recognition. [16]
proposed a framework based on poselet activations for se-
lecting key-frames that represent key-states in an action se-
quence. An additional classifier trained on pairwise terms
for all activations then decides if a specific action sequence
occurred. Carson et al [4] select action specific postures by
matching shape information from individual frames in order
to recognize specific tennis strokes in game footage.

The analysis of human gait probably plays the biggest
role in the field of periodic motion research. A big focus
lies on the identification of a person via his/her intrinsic
gait signature, for example by determining and tracking the
body shape [24] or through fusion of multiple gait cycles
[13]. More general approaches strive to recover the human
body pose [14] in order to retrieve a full set of gail param-
eters. Periodic motion in images was examined by Cutler
& Davis [5], who use self similarity and frequency transfor-
mations to obtain the frequency of the periodic motion of
human and animal gait.

Most work researching the tracking of people in aquatic
environments has focused on drowning detection [7], lo-
calization of athletes in swimming competitions [19] and




motion analysis for video based swimming style recogni-
tion [21]. A Kalman filter framework is presented in [11]
to explicitly model the kinematics of cyclic motions of hu-
mans in order to estimate the joint trajectories of backstroke
swimmers. Ries et al [17] use Gaussian features for detect-
ing a specific pose of a swimmer in a pool with the intention
of initializing his/her pose. The method closest to our ap-
proach is presented in [23], who divide swimming cycles
into intervals and train object detectors for each interval.
The stroke rate is computed by counting the occurrences of
the intervals. However, they show that arbitrary poses can-
not be detected with their approach.

3. Method

For deducing desired key-poses from a predictable or
repetitive motion, we build a two staged system: Firstly, a
pictorial structure of poselets is trained in order to extract a
descriptor for each frame in the video. Secondly, we aggre-
gate all frame descriptors to time series and define a maxi-
mum likelihood estimator for good poselet signals in order
to predict the occurrence of a key-pose.

3.1. Poselet Training

We build our system on localizable parts of the human
pose, initially introduced as poselets by Bourdev et al.[3].
The original work defines poselets as rigid linear filters,
based on Histograms of Oriented Gradients (HoG, [6]) fea-
tures. Each filter is trained from a set of example image
patches that are close in configuration space. The patches
are transformed into feature space and a linear SVM is
trained for them. For evaluation, the resulting dense linear
filter is cross-correlated with a feature grid/pyramid, yield-
ing a score for every placement of the filter.

Our approach depends heavily on precisely trained, dis-
tinguishable poselets. We achieve this by extracting patches
of characteristic parts of the motion, e.g. patches of the
limbs, from all images. The underlying groups of joints,
called configurations, are clustered by a k-means algorithm.
From each resulting group of patches a linear SVM is
trained.

A simplifying assumption often made in the context
of poselets is that the representation of the part does not
change with part rotation. While other approaches [10]
strive to find the best possible transformation between dif-
ferent configurations by rotating, reflecting, translating and
rescaling body configurations, we would like to extend the
notion of a poselet as a representation of a part of the pose
and additionally a small time window within a repetitive
motion. Hence, we develop the following distance function
for the clustering algorithm which assures that the configu-
rations are not rotated.

Dataset. Our dataset for training the poselets is build on
video footage of freestyle swimmers. We annotated 1200
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images with complete configurations, i.e. a total of 13 joints
per athlete. In case of (self) occlusion, we averaged be-
tween joint location estimates of different annotators. The
images cover different athletes, 3 male and 5 female, per-
forming overall 20 strokes. We tried to cover most obvious
variables that influence the configuration space and image
quality, e.g. different genders, body heights, physiques,
illumination and water flow velocities (between 1ms !
and 1.75ms™!). All swimmers are filmed by one camera
trough the side wall of the swimming channel, depicting
their left body side. The camera films with a resolution
of 720 x 576 pixels at 50:. From these images, groups of
“sub-configurations” are extracted, e.g. arm-configurations
(shoulder, elbow and wrist of the same arm) or leg config-
urations (hips and knees). The clustering algorithm then
groups these sets of joints and each cluster forms the foun-
dation for training a linear SVM (poselet).

Temporal Poselet Clustering. Let A =
(@i, -+ ,a,)" € R"?and B = (by,---,b,)" € R™?
be two configurations of n joints, where each a;,b; € R?
(i = 1,--- ,n) denotes a 2 dimensional location (z,y) of
one joint. We wish to find a transformation that moves B
to A so that the euclidean square norm is minimized, i.e.

d(A,B)=min ) | a; —sbi +c|3. (1)
|

Thus the configuration B is translated via ¢ and resized
with a scaling factor s. This formulation closely resembles
the Procrustes optimization problem [18], with the impor-
tant difference that we do not allow for B to be rotated and
reflected by a linear transformation. This will assure that a
configuration from any point within the cyclic motion is not
reflected or rotated onto a configuration that is not tempo-
rally close. One solution for equation 1 is given by

S0 |l @ — max(0,tr[AB")/tr[BB" b)) |I3

d(A,B) =
B tr[AA"]

o _ 2)
where A, B and a;, b; are mean corrected matrices and
vectors respectively. The max operator in equation 2 con-
straints s to be greater or equal than zero. A negative scaling
factor is equivalent to a point reflection at the origin of the
coordinate system. As we stated that any kind of reflec-
tion is unwanted behaviour, we force the distance function
to the closest optimal solution w.r.t. the constraint. The de-
nominator of equation 2 was suggested by Sibson [20] and
standardizes the distances between different pairs of config-
urations with the intention of making them comparable.

A k-means clustering is applied using distance function
in 2, yielding groups of image patches that occur temporally
close within a cycle. Hence, each cluster represents a part
of an athlete’s body within a small time frame. All image
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patches in a cluster are transformed into dense HoG grids
and a linear SVM is trained on them, yielding one poselet
per cluster.

3.2. Frame Descriptor

Recently poselets have been used in human detection and
pose estimation [16]. Given a set of poselets trained from
different temporally close configurations, we would like to
pick up the notion of a poselet activation vector [2]. Instead
of simply maximizing over the cross-correlations of a pose-
lets at all positions and scales of a feature pyramid, we add
a spatial bias to our model: A poselet is only evaluated in
a region relative to the location of an athlete, which is de-
termined by an additional detector trained for the complete
configuration of a swimmer. This guarantees that we do not
search for a part of the human body if there is no person
present in the image or close to its position. We take ad-
vantage of the temporal component of our system in order
to decide if a poselet is activated by observing the score of
a detector over time and deciding that it is activated if its
score is a locally maximal.

Mixture of poselets. Let P, = (F;,w;, h;) (¢
1,...,n) be a triple describing one of n poselets F; with
size w; X h;. The score of a poselet at position p in a feature
pyramid is computed via the cross correlation

score(F;, p) = F; x (p) 3)
of F; with the underlying subwindow ®(p) in the pyramid.
A position p = (z,y,s,w,h)” is defined by two coordi-
nates x and y, a scale s of a pyramid level and the size of the
subwindow w x h, which equals the size of the poselet.
Multiple poselets are combined into a mixture M
(Py, P1,...,P,). Similar to [6], we train a poselet Fy for
the whole configuration of an athlete and use it to retrieve an
initial hypotesis pg for the placement of the athlete, where

po = argmax score(Fo, p).
P

“4)

This best detection py is projected to the original image size
through py = posgl = (xsgl, ysgl, 1, woso_l, hosal)T =
(Zo, yo, 1, {U\Q,EQ)T. With this root hypothesis, we retrieve
a score for each poselet P; in the mixture by maximizing
over

(&)

Sfp, = ma)}%score(Fi,pk),
€

Pk
R = {Pk

with z = (zk, yr)? —sk((Zo, Yo)? + ;). The set R restricts
the position of a poselet by means of the Mahalanobis dis-
tance. All position elements in R lie within an elliptic re-
gion defined by the covariance matrix ¥; € R2*2, Tt is

where

(6)

2T (siZ)_l z <7 }
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centered around the position of the root model £y plus an
offset y1; € R? of the poselet relative to the root. The size of
this region is restricted by ~ and empirically set to v = 3.
Both ¢ and ¥ can be estimated directly from the training
data by fitting a normal distribution on pairwise offsets be-
tween the root model and a poselet. The final output of our
model is a frame descriptor sy of spatially limited poselet
scores, where

)

for frame f. Note that the scores of each poselet are not
thresholded in any way to determine if it is activated. We
determine if a poselet is active by examining the poselet
scores over time instead in the next section.

The model formulation above closely resembles a star
shaped pictorial structure of poselets, where all parts are
connected via deformation features p and ¥ with a root
model. A popular related approach, initially developed
by Felzenszwalb et al [8] and expanded by many others
[22, 15, 1], is called a deformable part model for object
detection. Similar to these models, we can solve the prob-
lem described in 4 and 5 efficiently using dynamic program-
ming. Note that the root model P, (and also all part models)
do not necessarily have to be poselets; equivalently, they
may be replaced by more sophisticated or complex models
without loss of generality of this approach.

Sr = (SfyFU EEER) Sf,Fn)T

3.3. Key-pose estimation

In order to estimate the (regular) occurrence of a key-
pose in a video, we firstly post-process aggregated frame
descriptors and define a measure of goodness for a time se-
ries of max-pooled poselet scores based on self similarity
of the series. Secondly, we describe a maximum likelihood
estimator for predicting a key-pose.

The frame descriptors from section 3.2 are aggregated in
a matrix S = (s1,---,sp) for the T" frames of a video.
As we trained the mixture model for temporally distinctive
detectors, each poselet vividly acts like a sensor measuring
the presence or absence of a body part. If the body part that
the poselet was trained for is present in a frame at the loca-
tion specified by the deformation variables, the score of the
poselet should be high. If the athlete continues his move-
ment, the position or representation of a body part changes
and the poselet score should decrease. The underlying as-
sumption here is that the poselet “works”, i.e. that the ob-
served score really resembles the image content. This is of
course not the case for all poselets: While some configura-
tions are simply not suited to be represented and reliably de-
tected by a dense linear filter based on HoG features, other
configurations are not present for a specific swimmer.

Recall that the poselets for our mixture model are trained
on images depicting the swimmer from the side. We found
that dense HoG templates trained for arms are not able to



distinguishing between left and right arms. As a conse-
quence, we observe that the score of a working poselet has
two peaks within one stroke for anti-symmetrical swimming
styles. This is not a problem in general if we adjust all eval-
uation criteria accordingly. Before we assess the quality of
a poselet time series, we post process all series as follows.

Time Series Post Processing. Let S; = (s14,--- , S7,)
be the time series describing the score of poselet P; over
time. In order to compensate for the noisy output of linear
HoG filters, we smooth each time series with a Gaussian
filter. The activation of a poselet is then given by locations
of local maxima m; € M; = {m;; € N"}in S;, i.e. M
holds the frame numbers where a poselet detection is locally
maximal. For a good poselet, the distance 7 141 — m; ¢—1
for 1 < ¢t < |M| equals the time of one complete stroke
for all anti-symmetrical swimming styles. For breaststroke
and butterfly, this time period is equivalently given by
M4,1+1 — My,¢, as a poselet only has one score peak within a
stroke. We finally build a histogram for all stroke intervals
within a sliding window of \S; in order to determine the main
stoke frequency fsiroxe for the swimmer and iteratively dis-
card obvious false detections in .S; by greedily deleting oc-
currences in M; that produce frequencies much smaller than
fstroke. All intervals [m; ;_1, m; +11] are called regular, iff
My g4+1 — Mit—1 — fstroke < A holds for a small A (e.g.
A=0.1" fsroke)-

Finally, we sort all poselet activation series by their
“goodness”: By computing the error between adjacent
groups of activations within a poselet series, we get a small
error if the series is very regular (i.e. it is well suited for
the prediction step and therefore a good series) and a larger
error if the series is irregular due to additional, missed or
false detections. These series will introduce errors in our
key-pose predictions and are therefore ill-suited.

Key-pose prediction. The final step in our framework
tries to {ind the best estimate of an occurrence of a key-
pose g given that we observe the activations of n spatially
constricted poselet activations m, i.e.

@®)

g = argmax p(glmq,--- ,mp)
g
We can rewrite this MAP hypothesis by means of Bayes’
theorem, presupposing independence between all poselets,
yielding

g= argmax Zlog(p(milg)) +log(p(g)). 9

For starters, we assume a uniformly distributed prior and
only look into the maximum likelihood of equation 9.
Vividly, each poselet gives its own estimate of where a key-
pose occurs in the time series, modeled by the likelihood
p(m;|g) of poselet i. The final position is then “averaged”
between different estimates. The likelihoods in equation
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9 can be modeled by applying our pictorial structure of
poselets on a set of videos where the ground truth frame
numbers for a key-pose were annotated by a human expert.
The resulting time series for all videos are post-processed
as described above. The likelihood for poselet i is then
modeled by a normal distribution for ground truths relative
to poselet activations. We therefore collect regular activa-
tion intervals [m; ¢—1, m; t+1]. The anti-symmetry property
of freestyle swimmers yields two ground truth occurrences
gi—1, g¢ € NT (i.e. one for the left arm, one for the right
arm) in between them. The likelihood p(m;|g) is modeled
by a Gaussian N (z; u;, 0;) fitted to all ¢, where

gt — My t—1
mit41 — M4 t—1

c= (10)
The denominator normalized the occurrence g;, making c
independent of the stroke frequency. Note that a frame g,
depicting a key-pose has to be given here. As a key-pose is
always defined by a human-expert, all key-poses have to be
manually annotated in order to train a key-pose prediction
model.

At inference time, we directly compute the ML hypoth-
esis, ignoring all non regular intervals. Each good poselet
time series yields regular intervals [m; ;_1,m;+11] which
generate a list of possible occurrence estimates fipos, that is

Hpos = My —1 + i (M1 — My i—1) (I
and an uncertainty o, for cach occurrence, with
Tpos = 03 (M 41 — Miy—1). (12)

Finally, the sum over all individual likelihoods is evaluated
within small subwindows around multiple guesses fipos.
Hence, an occurrence k is given by

)y

[pos €subwindow

log(J\/(x Hpos» U;DOS))'
(13)

We empirically found that good placements for subwin-
dows are given by the locations of local maxima in
(9(2) * 32,05 N (@ fposs Tpos) ), with g(¥) being a Gaus-
sian smoothing kernel.

The formulation above assumes that the prior probabil-
ity p(g) is uniformly distributed, thus reducing the MAP
hypothesis to an ML estimate. The complete hypothesis
however assumes that we have a prior for an initial key-pose
frame. For instance, an expert could annotate just one single
occurrence of a key-pose for a specific swimmer manually
in order to improve the likelihood estimate with previous
knowledge p(g). We could then propagate this single an-
notation to all other cycles by building a (probably incom-
plete) model based on the idea presented in Equation 10,
setting the standard deviation oy, to a fixed value. We will
show the effects of ignoring or setting the prior guess in the
experimental section.

occy, = argmax
T



keypose 1: upper arm vertical under water keypose 2: hand leaves water

keypose 3: upper arm vertical above water keypose 4: hand touches water

Figure 2. Four different key-poses for a freestyle swimmer. Key-poses occur on the left and on the right side of the body.

4. Experimental Results

We validate and discuss the performance of the pro-
posed likelihood estimators on a set of 30 swimmer videos
(720x576@50i) covering different freestyle swimmers (6
male, 8 female, ages 15 to 25, different body sizes) in
a swimming channel with slowly increasing water flow
velocities (minimal velocity 1ms™!, increase of maximal
0.3ms~!, maximal velocity 1.75ms~!). The videos show
the swimmers from the side. An expert annotated all frames
that depict one of four key-poses (Figure 2, overall 4 - 424
occurrences). We trained a 16 part pictorial structure model
of poselets (1 root, 15 arm poselets) from 1200 distinctive
images. We do not directly evaluate the performance of
each poselet but instead show their efficiency in the follow-
ing analysis of the activation sequences. The estimation of
key-pose occurrences is evaluated in a 30-fold leave-one-
out cross-validation, where we extract ML estimators for all
combinations of 29 videos and evaluate their performance
on the remaining video.

Performance measures. In general, we distinguish dif-
ferent types of detections: If our detectors estimate an oc-
currence within 10 half-frames of a ground truth annota-
tion, the prediction is counted as a true positive (7'P) de-
tection and as a false positive (F'P) otherwise. A ground-
truth frame without a prediction is a false negative (F'N). In
the following, we will compare the strokelength-normalized
deviation of a prediction from the ground-truth annotation
(i.e. percent of deviation from optimum, on the x-axis)
with the recall of the system (y-axis), which is defined as
rec = TP/(TP + FN). The recall is an indicator of
how many key-pose occurrences we have estimated cor-
rectly. All recall vs. deviation curves are evaluated at a
deviation z = 0.03 This threshold frames the error human
annotators make when annotating the ground truth. A devi-
ation of 3% reflects a slack between +1 to 2 half frames
on average (for different videos with different water flow
velocities). For each recall vs. deviation graph, we will
also compute the precision of the model, which is defined
as prec = TP/(TP + FP) and an indicator for how many
false guesses we made.
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ML, prior and MAP predictions. We evaluate the max-
imum likelihood model described in section 3.3 exemplary
for key-pose 1. Figure 3(a) visualizes the recall relative
to the deviation from ground truth annotated frames. The
model computes the goodness of each poselet activation
time series. By using the time series of the 5 best perform-
ing poselets, it achieves a recall of 61% at a deviation of 3%
and a precision of 0.99, which means that we made a small
number of false estimations. False positives are predicted
because it is not guaranteed that we always find 5 good per-
forming poselets a time.

We furthermore evaluated a prior estimate and the com-
plete MAP prediction from section 3.3. A model for the
prior can be extracted from just a single expert annotation
for each key-pose in same manner as the ML model. This
model might be incomplete though, as we can’t find regu-
lar stroke intervals for all poselets framing this one ground
truth annotation. Also, we are not able (o set an uncertainty
Opos Tor just one example, although we can assume that the
annotation is probably very good for this swimmer and set
a fixed small value (empirically: op0s = 0.04 - forroke)-
We can apply this model alone or join it with the maximum
likelihood to complete the MAP estimator. While the prior
alone performs unsurprisingly well for all videos and a little
better than the ML, it is slightly surpassed by the outcome
of the complete MAP estimate (Figure 3(a)).

Performance improvements. In order to enhance the
performance of our system, we continually added additional
“bad” poselet time series to our MAP estimates (Figure
3(b)). While the overall performance clearly improves the
predictions up to a recall rate of 0.85 if we use all poselets
(even disadvantageous ones) from the model, the precision
drops down to 0.80 as an unwanted side effect . We found
that most bad poselet time series, even the bad ones, con-
tain at least some valid stroke intervals which improve the
performance. However, they of course contain a lot of reg-
ular stroke intervals which do not fit the regularity of the
complete signal; these intervals will produce a lot of false
predictions. Surprisingly, while the ML estimator always
performs a little worse compared with the MAP estimator,
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Figure 3. Recall of our system for different slacks. (a) Comparison of different estimation methods (ML, prior, MAP) for keypose 1. (b)
Recall for predictions from different numbers of support poses. (c) Performance comparison for different key-poses. (d) Recall for our

system on the CMU MoBo dataset [12] for slow walking.

it keeps its good precision longer (see precision compar-
ison for green graphs). We found that the precision can
be improved by applying the same heuristics used for post-
processing single activation series in section 3.3 to the key-
pose estimation series. Additionally, we condition the slid-
ing window approach for averaging between different single
poselet predictions (Equation 13) so that a minimum of two
predictions have to be within the subwindow. Both heuris-
tics effectively kill nearly all remaining false positives in
any key-pose occurrence series, leaving us with an accept-
able precision of prec > 0.98.

Additional camera view. The insight about improving
estimates with additional, if possible good poselet time se-
ries, inspired the following experiment: We trained an addi-
tional 7-part mixture of poselets for a second camera view
(Figure 1(b)) that captures each swimmer from above the
swimming channel. While this camera does not monitor
any movement below the water line because of the turbulent
water surface, it detects the swimmer and any arm move-
ment above the water line very well. Note that this model
behaves like a model trained for a symmetrical swimming
style: poselet activations only occur once a cycle (instead
of two times for an anti-symmetrical swimmer observed
from the side) because each arm is detected by its own set
of poselets. While interpolating key-poses for this type of
model is a bit easier (time series of anti-symmetrical styles
can be interpreted as two independent, superimposed event
signals, one for each body side), we want to join their time
series with our side-view results. Therefore, we condense
pairs of two poselet time series from the above view, so that
the same semantic postures of the arms on both sides of the
swimmer form a new series. For the 7-part model, we hence
get an additional 3 time series, which we join with the other
15 time series which we extracted from the first view. As
a result the recall improves another 4.5% to an overall of
0.89, with no significant change for the precision (drop of
0.01). This final prediction result is depicted in Figure 3(b)
(black graph).
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Comparison between different key-poses. Our ap-
proach is of course not limited to only one key-pose for a
cyclic motion. In fact, il we would like to compute inner-
cyclic intervals, we need more than one measuring point
within a stroke. Therefore, an expert annotated four dif-
ferent key-poses (depicted in Figure 2) and we trained one
combination of poselet+MAP model for each pose. Figure
3(c) shows the deviation from ground truth frames for these
four key-poses. We observe that the predictions for some
key-poses are better than others. This behavior can be ex-
plained by the fact that cyclic motion is of course not linear
(or constant) in its acceleration and velocity. We found that
our model has some difficulties in precisely detecting key-
poses in intervals where the velocity of an arm is very small
over a timespan of 10 to 20 frames. Additionally, we found
that annotating the ground truth for worse performing es-
timators was always more difficult due to heavy occlusion
and image noise.

Human Gait Dataset. Although we developed our mod-
els originally for swimmers in swimming channels, they are
not bound to this application. In order to prove that our ap-
proach can be used for any regular cyclic motion, we car-
ried out another experiment on the CMU Motion of Body
database [12], which is one of the better known human gait
datasets. We trained a 10 part pictorial structure for leg con-
figurations of 10 slowly walking persons depicted from the
left side (Figure 1(c)). The poselet model is completed with
a ML estimator which was trained for the key-pose where
either the left or the right heel of the test person touches
the ground again (end of swing phase, beginning of stance
phase). The model was then evaluated on a different set
of 10 video depicting slowly walking test persons with the
same evaluation criterion as for the swimmers. The result is
depicted in Figure 3(d). As the “walking frequency” is usu-
ally higher than the stroke-frequency of a swimmer, an ac-
ceptable deviation of 2 frames is equivalent to 8%. Within
this range, 80% “tap-events” are classified correctly with a
precision of 0.96.



Comparison to other approaches. Comparing our ap-
proach with other system is difficult: To our knowledge, the
detection of key-poses in repetitive motion of athletes with
the intension of retrieving the stroke frequency and inner
cyclic intervals has not been researched directly. The only
comparable approach [23] trains complete object detectors
on segments of a swimming cycle. The stroke rate is then
extracted by counting the occurrences of an interval in a
video. However, they show that their system is not able to
detect arbitrary poses.

5. Conclusion

We presented a system for estimating the occurrences
of key-poses of top-level swimmers in a swimming chan-
nel. We showed that while it might be difficult to detect a
key-pose feature directly, we can estimate the occurrence
of such a pose with a high reliability. Future work will fo-
cus on extending the approach to other swimming styles and
further sports. An additional interesting question is how our
models can be transfered to work on arbitrary (competitive)
swimmers in swimming pools in general.
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