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ABSTRACT

The enormous growth of image databases calls for new tech-
niques for fast and effective image search that scales with mil-
lions of images. Most importantly, the setting requires a com-
pact but also descriptive image signature. Recently, the vec-
tor of aggregated local descriptors (VLAD) [1] has received
much attention in large-scale image retrieval. In this paper
we present t(wo modifications for VLAD which improve the
retrieval performance of the signature.

Index Terms— VLAD, image retrieval, compact signa-
tures, LCS

1. INTRODUCTION

In the field of image search, the bag-of-features (BoF) ap-
proach [2] has become very popular during the last decade.
Hereby, an image is described by local features where the
corresponding descriptors are quantized into discrete visual
words. The image is then represented by a histogram of
weighted visual word occurrences. The advantages of this
representation are simplicity, robustness to occlusion, clutter
and other image transformations, as well as the reduction
of the high-dimensional image descriptors into a single his-
togram vector. However, despite its success, a simple bag of
visual words still requires at least the memory to store the
several thousand visual words it contains. Furthermore, for
efficiency, the search is usually performed via an inverted
index where each individual visual word is issued as query
to the index. In contrast, the representation of an image by
a vector of aggregated local descriptors (VLAD) [1] offers
an effective way to encode the information from all the local
feature descriptors into a single compact vector. In combi-
nation with PCA and product quantization, images can be
represented by a signature with a size of a few bytes only.
In contrast to other global features, VLAD still builds on
the robustness and the descriptive power of local features
while being a compact signature that can be used with image
databases of several million images.
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2. RELATED WORK

There is much work on global features that represent a whole
image as scene within a single description. For instance,
hashing-based methods such as Spectral Hashing [3] rep-
resent images by compact bit strings where the hamming
distance between these resembles the underlying similarity
between the corresponding images. This representation re-
quires a few bits only, but the similarity search tends to work
well only for images that are globally similar.

One technique inspired by random projection creates mul-
tiple mini-bag-of-words by randomly selecting components
from the original bag-of-words histogram [4]. For retrieval,
multiple queries are then issued with these mini-BoFs and the
result sets are merged.

An alternative technique that bundles multiple visual
words into a small number of sketches that describe the
whole image is Geometric min-Hashing [5]. While a retrieval
based on this particular method has high precision, recall is
usually low, making steps like query expansion necessary.

Another way to compress bag-of-words histograms is to
employ topic models such as pLSA and LDA. Instead of mod-
elling the images as high-dimensional histograms of visual
words, the image is represented by a mixture of (a few) top-
ics [6], which require less memory than the full BoF his-
tograms. However, the underlying generative representation
tends to map many (conceptually) different visual words into
the same topic yielding false positives during retrieval.

The Fisher vector [7] aims to overcome this problem. It
combines a generative Gaussian mixture model with a dis-
criminative coding scheme and yields a highly distinctive
image signature which was successfully used for retrieval
and image classification. Its downside are its computational
complexity and increased memory requirements compared to
VLAD.

3. VLAD

3.1. The original VLAD pipeline

The vector of locally aggregated descriptors (VLAD) de-
scribes an image by the difference of its local feature de-
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scriptors from a learned codebook. For that, VLAD utilizes
a coarse visual codebook ¢ : X — C, C = {c1,¢9,...,¢1},
that has been learned offline and maps image descriptors to
a set of centroids of size k. Here, X denotes the descriptor
space and C' the set of centroids. Typically, such a visual
codebook is obtained by k-means clustering of descriptors
of a training dataset. Common choices for the number of
clusters range from k£ = 32 to k = 256.

Given an image represented by a set of m local descriptors
I = {x1,X2,...Xm}. the original VLAD representation is
obtained by encoding the descriptors in the following way:

vi= Y

x€l:q(x)=c;

X —C ey

That is, each local descriptor is assigned to its nearest cen-
troid and the residual with this centroid is computed. The
residuals of all descriptors with centroid c; are accumulated.
Each centroid c; in the codebook contributes a vector of ag-
gregated residuals. The final VLAD signature v is obtained
by concatenating the residual vectors v; forminga D = k£ x d
dimensional image signature where d is the dimensionality of
the original descriptors. Finally, the concatenated vector v
is Lo-normalized. In the following we refer to the resulting
vectors as uncompressed signatures.

Once the coding is done, compression is performed in two
rounds to minimize the required memory: First, a PCA is ap-
plied and only the components with the largest variance are
retained. Typically, the number of retained dimensions D’ is
tuned for best performance, but D’ = 128 has been reported
[1] to be a good choice for most configurations. After the
dimensionality reduction, the variance of the components is
optionally rebalanced prior to product quantization. For this,
arandom but fixed orthogonal transformation is applied to the
compressed vector. Finally, the resulting vector is then com-
pressed by product quantization to a short code vector.

3.2. Further improvements

Power-Law Normalization: Bursty features can be caused by
repeating structures in the original image and are known to
be able to corrupt in the similarity metric [8] in BoF image
retrieval as they might dominate other descriptors which are
more useful to estimate similarity. The power-law normaliza-
tion [9] given by

U5 = sgn(v;) ‘U;l 2)

was proposed to downweight bursty components. In equa-
tion 2, @ € [0, 1] is a normalization parameter that needs to
be tuned for best performance. It has been suggested that
a = 0.2 is a good choice [10]. The power-law normaliza-
tion is applied prior to the Ly-normalization of the VLAD
descriptor. Delhumeau suggested [10] that the effectiveness
of the power-law normalization could be improved by trans-
forming the descriptors to another coordinate system which is

better suited for handling bursty components. This projection
is learned through a PCA without dimensionality reduction.
Further improvements can be achieved by learning one PCA
projection per Voronoi cell [10], which allows to address a
more diverse range of bursty patterns as the PCA can now
adapt to the characteristics of each Voronoi cell. This scheme
has been termed the local coordinate system (LCS).

Residual Normalization (RN): It has been shown that
when the burstiness is addressed through a power-law nor-
malization, the retrieval performance can be improved when
all descriptors contribute equally to the aggregated resid-
ual vector [10]. Therefore it has been suggested [10] that
the residuals should be Lo-normalized prior to accumu-
lation. The coding scheme with standard VLAD coding,
RootSIFT [11] descriptors — pre-processed by a PCA — and
power-law normalized image signatures has been termed
VLAD* [10].

Cluster Center Adaption: Arandjelovic et al. [12] have
noted that the performance of VLAD depends significantly on
the consistency of the coarse visual codebook. In other words,
the average of all the local descriptors in the dataset assigned
to a certain cluster should be the cluster center of this cluster.
In order to keep a consistent codebook, it was proposed to
update the centroids when images from a different dataset are
processed.

Other Extensions: Further improvements were achieved
by extracting multiple VLAD descriptors per image [12], by
pooling descriptors by scale and orientation [13] and by using
multiple vocabularies [14]. However all of those extensions
tend to increase the dimensionality of the (uncompressed) im-
age signature significantly.

4. HIERARCHICAL VLAD

The similarity between two VLAD-encoded images is typ-
ically measured through the cosine similarity between their
signatures. However, the quality of this similarity mea-
sure strongly depends on the position of the codebook vec-
tors within the corresponding Voronoi cell. Arandjelovic et
al. [12] have shown that the consistency of the codebook has
a great influence on the cosine similarity. Best results are
achieved when the codebook vector is indeed the mean vec-
tor, such that the sum of all residuals over the whole dataset
is zero for every Voronoi cell.

While the mean vector provides a good reference point to
judge similarity over the whole dataset, this is not necessar-
ily true for individual images. Descriptors which are located
closer to the codebook vector can be discriminated very well.
Small changes in the location of the descriptors produce a
strong change in the direction of the residual. A descriptor
located at the border of a Voronoi cell has to undergo a much
larger shift in its position in order to produce the same di-
rectional change. Assuming that all points of the descriptor
space are equally important for judging similarity, this means
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that the similarity measure is not equally sensitive to all de-
scriptors. For greater sensitivity, the codebook vectors need
to be located close to the descriptors. With a single codebook
vector per Voronoi cell this is not always possible. Any vector
different from the mean vector will improve the separability
of a few data points at the expense of all the others. We there-
fore search for a way to encode descriptors that allows us to
treat the individual descriptors more equally.

If residual normalization is used, another problem arises:
In this case only the directional contribution of a feature de-
scriptor is encoded. If the centroid and two descriptors form
a collinear set in the descriptor space the descriptors cannot
be distinguished, even if a large euclidean distance between
them might indicate a strong dissimilarity. In order to al-
leviate this problem, we introduce multiple reference points
for every Voronoi cell. To adapt the position of those refer-
ence points according to the density of the distribution of data
points this can be done by clustering the data points within
each Voronoi cell. The result is a hierarchical codebook sim-
ilar to [15] with the difference that the vocabulary tree is
limited to two levels and the branch factor is not necessar-
ily fixed. We call the Voronoi cells of the original codebook
coarse Voronoi cells and the Voronoi cells on the second level
of the tree fine Voronoi cells.

Formally, let ¢ : X — C be a quantizer which maps
the feature space X to the set of coarse centroids C' =
{c1,¢2,...ck}. Furthermore let f : X — F be a quantizer
which maps the feature space X to the set of fine centroids
F = {f1,f2,...fL}. Animage — represented by a set of local
descriptors I = {x1,Xa2,...Xm} —is encoded by HVLAD in
the following way:

vie Y

x€el:c(x)=c;

x — f(x) 3)
[x — (x|
Note that the dimensionality of the original descriptors is
not increased. The coarse centroid determines where the de-
scriptors should be accumulated and the fine centroid acts as a
reference point for the encoding. This is illustrated in figure 1.

5. IMPROVING THE LOCAL COORDINATE
SYSTEM

Repeating structures in images can yield accumulations of
similar features. These feature are called bursty features [8].
In the context of VLAD, this manifests itself in the follow-
ing way: Since the descriptors of these features are similar
to each other they will likely be assigned to the same cen-
troid where they will be accumulated. When lots of similar
descriptors are aggregated some descriptor dimensions will
dominate the other dimensions, corrupting the similarity met-
ric. This problem is usually addressed by a component-wise
power-law normalization which downweights large compo-
nents.

Fig. 1. Tllustration of the encoding mechanism of VLAD
(left) and HVLAD (right). The blue and red points represent
features from two different images (other descriptors used to
learn the Voronoi cell are not shown to avoid clutter). At the
bottom the resulting aggregated residual vectors are shown.
Within every fine Voronoi cell the separability is improved by
moving the reference point closer to the datapoints.

Delhumenau et al. [10] introduced another method to im-
prove the effectiveness of the power-law normalization. A
PCA without dimensionality reduction is learned for the de-
scriptors. This effectively rotates the features into a coor-
dinate system whose axis are aligned with the directions of
the greatest variance — the principal components. In this new
coordinate system the power-law normalization is more ef-
fective. Compared to a global PCA which rotates the whole
feature space, an even greater variety of bursty patterns can
be captured when a rotation matrix X; is learned separately
for every Voronoi cell. This improvement has been called
the local coordinate system (LCS) [10]. When using resid-
ual normalization the aggregation for VLAD* is done in the
following way:

X — Cj
i = Xit— 4
i D Xy @

xel:q(x)=c;

In the original design [10] X is learned on the descriptors
assigned to this particular centroid c;. However, the power-
law normalization does not operate on the individual descrip-
tors but on the aggregated residuals. Therefore it might be
beneficial to use the aggregated residuals to obtain the PCA
projection matrix instead of the descriptors as they better rep-
resent the data in the input space. Because of the distributivity
of the matrix multiplication we can first aggregate the resid-
uals and then rotate the aggregated residual in order to get
the same effect as in equation 4. Therefore our learning pro-
cedure works as follows: We compute the VLAD*/HVLAD
image representation for the training set without applying the
power-law normalization. From the image signatures we ex-
tract the components belonging to the different (coarse) cen-
troids and use these vectors to learn the rotation matrices.
This improvement which we call LCS™ can be used in the
context of both VLAD and HVLAD. For the indexing step,
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8 16 32 64 | 128
VLAD 0.487 | 0.531 | 0.544 | 0.548 | 0.555
HVLAD 0.540 | 0.555 | 0.575 | 0.575 | 0.585
VLAD* 0.558 | 0.597 | 0.590 | 0.614 | 0.622
HVLAD * 0.594 | 0.611 | 0.610 | 0.618 | 0.638
VLAD*+LCS 0.582 | 0.622 | 0.614 | 0.628 | 0.648
VLAD*+LCS™ 0.620 | 0.642 | 0.651 | 0.691 | 0.699
HVLAD *+LCS™ | 0.622 | 0.649 | 0.640 | 0.670 | 0.691

Table 1. Comparison of thec mAP performance of several
(uncompressed) VLAD signatures evaluated on the Holidays
dataset for different (coarse) vocabulary sizes.

8 16 32 64 | 128
VLAD 0.236 | 0.276 | 0.306 | 0.318 | 0.338
HVLAD 0.278 | 0.311 | 0.334 | 0.363 | 0.392
VLAD* 0.271 | 0.326 | 0.351 | 0.384 | 0.417
HVLAD * 0.300 | 0.330 | 0.361 | 0.408 | 0.434
VLAD*+LCS 0.315 | 0.348 | 0.380 | 0.412 | 0.447
VLAD*+LCS™ 0.350 | 0.378 | 0.426 | 0.447 | 0.475
HVLAD *+LCS* | 0.338 | 0.375 | 0.405 | 0.446 | 0.472

Table 2. Comparison of the mAP performance of several
(uncompressed) VLAD signatures evaluated on the Oxford
dataset for different (coarse) vocabulary sizes.

equation 4 can still be used. For HVLAD (see equation 3),
the aggregation has to be modified accordingly. When used in
conjunction with VLAD we found that o« = 0.2 still remains
a good choice as a normalization parameter. For HVLAD, the
normalization parameter needs to be adjusted slightly for best
results. We obtained the best results with o = 0.4.

6. EVALUATION

We evaluate the different VLAD variants on two well known
datasets: The Holidays dataset [16] and the Oxford5k dataset
[17]. For all experiments we use the Flickr60k dataset [16] to
train all our parameters which includes the vocabulary, PCA,
LCS and the codebook for the product quantizer. As fea-
tures we always use RootSIFT [11] descriptors detected with
a DoG [18] interest point detector. Images were scaled down
to a maximum width of 1024 pixels prior to feature extraction.

Table 1 shows the mAP performance on the Holidays
dataset using the uncompressed VLAD signatures. Residual
normalization is used in all experiments and for the HVLAD
variants the size of the fine codebook is 64. Unsurprisingly
HVLAD generally performs best when the size of the coarse
codebook is small. Compared to the standard VLAD vari-
ant the relative performance gain ranges between 4.5% and
10.9%, depending on the size of the coarse codebook. For the
VLAD#* variant the performance gain is noticeably smaller
but HVLAD * consistently outperforms VLAD* by an av-
erage margin of 2.7%. When a local coordinate system is

16 (D' = 64) | 64 (D’ = 80)
VLAD 0.501 0.528
HVLAD 0.526 0.553
VLAD* 0.555 0.598
HVLAD * 0.572 0.603
VLAD*+LCS 0.584 0.617
VLAD#*+LCS* 0.585 0.619
HVLAD *+LCS* 0.595 0.626

Table 3. Performance on the Holidays dataset with com-
pressed signatures (16 Bytes) for different vocabulary sizes.
Results are averaged over 10 runs.

used, the results are mixed: HVLAD + LCST still consis-
tently outperforms the standard LCS by an average margin
of 5.7% but it is clear that most of the performance gain is
due to the improved LCS. Since the standard LCS cannot be
applied to HVLAD, comparable measurements could not be
obtained. The evaluation on the OxfordSk dataset (Table 2)
shows similar results.

The performance under compression is shown in table
3. All measurements were obtained on the Holidays dataset.
Again, for the HVLAD variants the size of the fine vocabu-
lary is 64 and residual normalization is used in all instances.
Because of the random initialization of k-means when train-
ing the product quantizer, the results shown there are given as
the mean over ten runs using different random seeds. Simi-
lar to the performance on the uncompressed descriptors, the
HVLAD variants outperform the traditional VLAD variants
by a margin of up to 1.9%. However, compared to the evalua-
tion of the uncompressed descriptors the performance gain is
not as distinguished, especially when LCS is used. This be-
havior is consistent with the behavior observed by [10] who
noted that the compression and quantization steps tends to di-
minish the performance gain obtained on the uncompressed
descriptors. Due to the two-step quantization during the en-
coding, HVLAD is slightly more computationally demanding
than the traditional VLAD variants. However, because of the
small vocabularies the added complexity is negligible. The
computational complexity on the retrieval side remains unaf-
fected.

7. CONCLUSION

We have presented two improvements to the VLAD image
signature and evaluated their impact on two well known
datasets. Both measures do not increase the size of the image
signature. We have shown that HVLAD works particularly
well with small vocabularies and does improve the retrieval
results when no local coordinate system is being used. When
a local coordinate system is used, our modified training pro-
cedure improves its effectiveness and outperforms the state
of the art in VLAD-like signatures.
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