Methods and Applications for
Distance Based ANN Training

Christoph Lassner, Rainer Lienhart
Multimedia Computing and Computer Vision Lab
Augsburg University, Universititsstr. 6a, 86159 Augsburg, Germany
Email: {christoph.lassner, rainer.lienhart} @informatik.uni-augsburg.de

Abstract—Feature learning has the aim to take away the hassle
of hand-designing features for machine learning tasks. Since the
feature design process is tedious and requires a lot of experience,
an automated solution is of great interest. However, an important
problem in this field is that usually no objective values are
available to fit a feature learning function to.

Artificial Neural Networks are a sufficiently flexible tool for
function approximation to be able to avoid this problem. We
show how the error function of an ANN can be modified such
that it works solely with objective distances instead of objective
values. We derive the adjusted rules for backpropagation through
networks with arbitrary depths and include practical considera-
tions that must be taken into account to apply difference based
learning successfully.

On all three benchmark datasets we use, linear SVMs trained
on automatically learned ANN features outperform RBF kernel
SVMs trained on the raw data. This can be achieved in a feature
space with up to only a tenth of dimensions of the number
of original data dimensions. We conclude our work with two
experiments on distance based ANN training in two further fields:
data visualization and outlier detection.

I. INTRODUCTION

Artificial Neural Networks are a flexible and powerful
function approximation tool. Specifying the network topology
allows to control the learning capacity, and specifying the error
function and training method gives the possibility to control the
learner’s preference bias. While the usual choices are the mean
squared error and stochastic gradient descent respectively, there
are plenty of other options.

Replacing the mean squared error with a distance based
error function, i.e. an error function that compares the distance
of two mapped points in the codomain of the ANN to an ob-
jective value, opens up new application areas. As an immediate
consequence, the absolute values of the learned mapping can
vary, since the ANN only learns the shape of the objective
function, but not its absolute position in the codomain. On the
other hand, the different type of annotation used and this way
of learning matches exactly the requirements of certain ap-
plications, such as feature learning, dimensionality reduction,
outlier detection and visualization of high dimensional data.

The most important requirement in feature learning is to
find a mapping from data space to a space where points that
are considered to be similar for the target concept have a
small distance, and points that are considered different have a
large distance. Only these distance requirements are available,
but no specific objective values for each input. However, an

146

eceo
o® ¢

RS
2 &

cC
& ‘3
&
Oy v
(a)

Fig. 1. A set of sample points and distance based learning results in 3D space.
This simple but illustrative example demonstrates the idea of distance based
ANN training. The points on the sine spiral in Figure la are located in 3D
space. The colors are nonlinearly spread over the spiral. A neural network is
trained to find a mapping to a 3D space where the euclidean distance between
points corresponds to their color difference. Figure 1b shows the mapped
points after one million steps of stochastic gradient descent.

(b)

ANN trained on the objective distances can learn a feature
space transformation. For an illustrative example, see Figure 1.
Notice how easily a classifier can separate points with different
colors in the learned feature space in Figure 1b with linear
hyperplanes whereas this is not possible in the original space
depicted in Figure 1a.

In this work, we briefly present methods and applications
for distance based ANN training. After systematically deriving
the rules for error backpropagation through networks of arbi-
trary depths, we generalize the method by introducing kernel
functions. These naturally open up further application areas by
making unsupervised training possible. In a series of experi-
ments, we evaluate the performance of DANNs (ANNs trained
on distances) for feature learning and dimensionality reduction,
visualize the points of a 21-dimensional dataset and briefly
introduce the use case of outlier detection.

I1.

Constructing and training a neural network based on dis-
tances or similarities has, to the authors” knowledge, only been
described in the paper ”A similarity-based neural network for
facial expression analysis” by Suzuki et al. [1]. In that work,
the authors focus on facial expression analysis and only briefly
introduce the necessary formulas for constructing their two
layer network. They do not derive the general backpropagation
formulas for networks of arbitrary depth and do not discuss
general features and applications of distance based ANN
training.

RELATED WORK

A DANN can be used, depending on the kernel function,
in a supervised or unsupervised manner. In the case of an
unsupervised learning scenario, it is similar to the autoen-
coder [2]. An autoencoder is an ANN with a specific structure
(the amount of output nodes equals the amount of input nodes)
that is trained to find a hidden representation that allows to
reconstruct examples well. However, a DANN has a different
inductive bias. For the standard kernel that is used in an
unsupervised setting, the DANN is trained to find a hidden
representation that preserves the original distances of the exam-
ples. This bias is particularly interesting in certain applications
(especially in some dimensionality reduction scenarios and in
data visualization), where it is a lot more appropriate than
the one of the autoencoder. In all experiments where it is
applicable, we provide the results of applying an autoencoder
on the data to give a direct comparison of both methods.

Whereas an autoencoder can reconstruct data from the
low-dimensional space using its decoding layers, the DANN
can not. However, this comes with a theoretical speed gain
during training by a factor of two (the DANN does not have
a decoding layer, which corresponds to the application of a
matrix of the same size of the encoding matrix). Since the
reconstruction capability is not needed if just the transformed
data representation is required, this advantage can be used in
many cases.

The literature about feature learning focuses mostly on
methods involving NNs or Convolutional Neural Networks
with many layers, referred to as deep learning. These deep
architectures have many hyperparameters and very long train-
ing times. Additionally, they have many parameters which
leads to severe overfitting if no countermeasures are taken [3].
An analysis of ‘shallow’ architectures (few layers) in feature
learning is given in [4] by Coates et al. Their results suggest
that shallow architectures are competitive.

The de-facto standard for dimensionality reduction is the
Principal Component Analysis (PCA). The comparison with
this method is included in all our experiments where it is
applicable. The DANN for dimensionality reduction is consid-
ered superior to Multidimensional Scaling (MDS), since MDS
needs to use all points for scaling at training time, while a
DANN can be applied to new data after training. This is an
advantage for the proposed DANN method in the field of high-
dimensional data visualization where MDS is often applied.

We only briefly introduce the possible application of outlier
detection, but do not intend to compete with the state of the
art in that field. We compare our method with a One-class
SVM [5] and the fit of a thresholded elliptic envelope to give
the reader a comparison with standard methods.

III. DISTANCE BASED ANN TRAINING

The standard stochastic gradient descent algorithms require
that the error function must be computable per example, and
that it is differentiable. In the case of distance based training,
the error function should capture the distance of

1) the results of forward propagation through the net-
work (the distance in the codomain) and
2) a specified objective distance

for any pair of points (x1,z2).

To allow for the introduction of Kernel functions, we
denote the function for 1) as 6y (x1,x2) and introduce a
second function for 2) that calculates the objective distance
0, (z1,22). 0, can, in the simplest case, evaluate to the user-
annotated objective distance of z; and zs.

In the following sections we will introduce a distance based
error function that can be derived for all ANN connection
weights. Hence, all stochastic gradient descent algorithms can
be applied. The notation used is similar to [6]. The original
notation is parameterless and assumes the propagation for only
one example at a time (e.g. the output of node j in the network
is denoted with o; for the current example). Since we use pairs
of examples, the values for the second example are marked
with * (e.g. the output of node j for the second example is
denoted with o;).

Let 2;; denote the ith input to network unit j, wj; the
weight associated with the edge from unit ¢ to unit j and
net; =y . wj; - the weighted sum of inputs for unit j. Let
the output computed by the jth unit of the ANN be denoted
by o;. With these preceding definitions, we define the error as

1
B(z1,22) = 3105 (0.0') =0 (x1,2)[’

1
_ 5(9f(o,o')—eo(xl,x2))2. (1)

The distance function for the network output is chosen as
the squared Euclidean distance, i.e.

Gf(o,o'):% Z

reoutputs

2
(0r —07)", ()
with outputs being the set of output units.

A. Derivation of the error function

To be able to apply gradient descent w must be

found for all ¢ and j. If this term is known for all weights,
e.g. standard stochastic gradient descent can be applied.

To specify these values for networks with arbitrary depths,
it is necessary to make repeated use of the chain rule and build
up an inductive definition. First, consider that any weight can
only influence the error function through paths to output nodes
of the network. Let the set of output nodes that can be reached
from node j be denoted with outlets(j). It is possible to split

up
OF (x1,22) Z

Owjz-

OF (x1,23) 0 (or — 0p)
A (or — 0) Owy;

3)
rcoutlets(j)
The first part of the equation, %, can be treated
similarly for all edge weights, independent of their depth in
the network. It evaluates to

OF (z1,x
8(0(7' i o;)) = (05 (0,0") =0, (x1,22)) - (0, — 0}) (4
The second term in Equation 3 splits up as follows:
A (o, — o)) do, Onel; dol. Onet;
= — g ®)
810]‘1' 8netj wjj, 3Tl€tj wjj,

This is the basis for the inductive definition. For a weight
in the output layer of the network, the remaining terms become

/
o, B (net;), oo,

onet; i)net;

=n (net;) , (6)

where h' denotes the derivation of the applied transformation
function and

Onel;
Wy

8net9

@)

=x..

= Zyji, Ji-

Wi
For a network unit j in a preceeding layer of the network, let
downstream(j) denote the set of units in the following layer
unit 5 has a connection to. Then

8OT Z

Onet;)
kedownstream(y)

>

kedownstream(j)

>

kedownstream(y)

do,. Onety,
Onet, Onet;

Onety, 0;

onet;

Ok
0j

(®)

8k - wyj - b’ (net;)

with corresponding results for adn—zlt, The results from Equa-
tion 7 still apply. ’

Note that the choice of the symmetric distance function
in Equation 2 is important for the symmetry property of the
backpropagation algorithm (i.e. it does not matter if a pair of
examples is used as (z1,x2) for training or as (z2,x1)). This
is a usually wanted property. It also holds for the derivation
(see Equations 4 and 5).

B. Example

Using distance based training, the network has the advan-
tage that it can “place” the samples at well-fitting positions
in its codomain as long as they have the appropriate pairwise
distances. The network outputs can hence be located at very
different positions in the codomain over several runs: they are
equivalent for the error function under all distance-preserving
transformations.

We implemented the distance based learning algorithm for
a two layer network. A network of this depth can already
approximate all continuous functions, which is the family of
functions we intend to use for feature learning. To remove
the step size parameter, we use an automatic step size es-
timation method described by Pawet Wawrzyriski in “Fixed
point method of step-size estimation for on-line neural network
training” [7], leading to results superior to manual step size
tuning.

Figure 1 shows the learning results on a simple example
to illustrate the concept. The network learns a mapping from
3D to 3D space using the similarity annotations represented by
the HSV color of the points. Similarly colored points should
be mapped close together, whereas differently colored points
should be mapped with greater distance. Note that it is not
possible to use a linear hyperplane in the original space to
classify differently colored points correctly, but it is possible
in the learned “feature space” using the mapping of the DANN
(depicted in Figure 1b).

148

C. Kernel functions

The distance function for the objective distance between
two examples 6, (x1,z9) occurs in the derivation function for
all weights only in its original form (see Equation 4). This
allows to extend its definition from objective distance annota-
tions to arbitrary functions or a distance matrix. Theoretically,
the distance matrix may even be non-symmetric.

To denote the general objective distance function, we intro-
duce the notion of the kernel function similar to Support Vector
Machines. Formally, the function 6, (x1,z2) is replaced by the
kernel function s (1, x2) that returns a value representing the
objective distance between the two input vectors. In contrast
to SVMs, this function does not have to satisfy any axioms.
However, it should be symmetric to facilitate learning. This is a
property that holds for the most useful metrics. In the following
list, we present the kernel functions that were implemented for
our experiments. For these definitions, let /() denote the class
label of sample z.

KClass (71, 72) = [l (z1) =1 (a2)?
The objective distance is the squared distance in
the annotation space. This function is a straight-
forward choice to make the feature mapping use-
ful for a classification task. It is used to learn the
mapping in Figure 1 wizth the HSV color as label.

KOriginal (¢1,22) = [[o1 — 2]|
The objective distance is equal to the original
distance in the domain of the network. This func-
tion leads to a completely unsupervised learning
method, similar to the autoencoder and MDS. In
contrast to the autoencoder, however, it does not
search for a latent representation of the data but
tries to preserve the original distances. This is an
appropriate inductive bias for many applications.
Using this function, the DANN does not necessar-
ily learn a representation of the data that is useful
for a classification task.)

KQrig+Class (71, 22) = [lz1 — za||” + [l (z1) — 1 (22)
This kernel function combines the benefits of
both of the aforementioned kernels. It makes
the learner find a distance preserving transform
including the class distance.

RDPCA (:L‘l,l'g) = HDPCA71 (DPCA (.Z'l - .Z'g))”z
The objective distance is equal to the distance
reduced on the main differences between samples
from the different classes (explanation follows).

2
|

The DPCA function denotes the projection of the difference
vector into a PCA space (DPCA_1 denotes the reprojection).
This space is learned before network training by sampling
an arbitrary number of difference vectors between samples of
different classes and applying PCA on them. The PCA hence
learns the “principal differences” between the classes.

Projecting the vector into the PCA subspace and repro-
jecting it immediately yields the distance reduced to the main
differences between the classes. Note that this kernel function
has additional parameters: the amount of difference vectors for
calculating the PCA and the amount of principal components
to use.

TABLE L. CLASSIFICATION DATASETS AND RESULTS

[[thyroid [mushroom] gene |
Dimensions 21 125 120
Classes 3 2 3
Samples (train/val/test) 3600/1800/1800 4062/2031/2031 1588/794/794
Balance 2.5%195%12.5% 52%/48% 25%/50%/25%
Lin. SVM 0.95 1.00 0.91
RBF SVM 0.97 1.00 0.91
Lin. SVM after DANN 0.99 1.00 0.93

IV. APPLICATIONS AND EXPERIMENTS

Due to their flexibility, DANNs can be used for a range
of applications. In this section, we suggest certain setups and
present an experiment for each suggested application area. The
focus lies on feature learning and dimensionality reduction,
where we give a comprehensive qualitative evaluation of
results. Additionally, we address some practical pitfalls that
must be taken into account to apply distance based learning
successfully.

A. Data preprocessing

For all our experiments we apply the standard ANN
preprocessing steps: the input data is normalized to have mean
zero and standard deviation one. We then use an appropriately
scaled tanh transfer function in the first layer, as suggested
by Le Cun et al. [8].

For distance based training it is even possible to apply a
normalization on the annotation data as long as the relative
distances are preserved. This facilitates learning, since the
derivation function is more often evaluated at “steep” locations,
and updates have more effect. We apply this method for
preprocessing to make use of this advantage.

We noticed that it is critical to apply a feature selection
process before training the ANN to remove noisy feature
dimensions without or with few information about the target
concept. To have a fair comparison, we apply this also as a
preprocessing step for the autoencoder.

The feature preselection is automated by training a decision
tree without any structural bias, i.e. no maximum depth and
no minimum number of examples at leafs or nodes. This
leads to a perfectly overfitted tree on the training data. From
the tree’s feature selections, we compute feature importances
in accordance with the frequency of feature occurrence. For
training the networks, we only use the most informative
features that hold 90% of the total feature importance and
discard the rest. As an alternative to using a decision tree as
feature selector we experimented with an overfitted AdaBoost
classifier that achieved comparable results.

B. Feature learning and compression

The first usage scenario we propose is automated feature
learning and feature compression. A useful feature transforma-
tion for classification fulfills the following three requirements:

1Y)

It maps input vectors with the same classification
labels on close points in the codomain.

2) The distance between output values of input vectors
with different labels is large.
3) Noise in the input vector is ignored.

149

We address point 3) with the automated preprocessing step.
The points 1) and 2) are then tackled by using a distance
trained ANN.

The number of output nodes (i.e. the dimension of the
feature space) can be specified by the user and can be smaller
than the dimension of the input space. If this is the case, the
network also compresses the data. This can be very useful in
a setting where large amounts of data are collected and should
be saved for classification at a later point in time. Dependent
on the used kernel function, the data can be compressed to be
prepared for a classifier or to have as similar distances as in the
original space as possible. This is not necessarily a choice that
helps for a classification task, but can facilitate data analysis
on the compressed data. The DANNs have in this case the
advantage that

e they can project new data points quickly (compared

to MDS) and

they can use a nonlinear projection to the lower-
dimensional space (compared to PCA).

1) Experimental setup: To give a detailed comparison of
classification performance for various setups and give the
reader the possibility to compare the DANN for different
amounts of output nodes we designed the experiment for this
use case as follows: for each dataset, we trained a DANN
with ten different amounts of output nodes (feature space
dimensions) with an equal step size in the range from one
to one more than the number of original data dimensions.

To find the best amount of hidden nodes, we increase
the amount of hidden nodes step-wise for each configuration
until the error on the validation set does not decrease any
more. Similarly, we use the validation set performance as
early-stopping criterion to determine the amount of stochastic
gradient descent steps.

The network weights are initialized by fan-in. To account
for the slightly varying results of stochastic gradient descent
and the random weight initialization, each experiment is con-
ducted seven times and the best result (on the validation set)
is used.

In the learned feature space, we apply a linear SVM
classifier. The implementation used is LibLinear [9]. To have
a fair comparison of SVM performance, the C' parameter is
evaluated for each SVM at each point in the range from 1073
up to 103, The performance is evaluated after every 10 epochs
(the “strip-length”) of DANN stochastic gradient descent with
a maximum amount of 120 strips. This upper limit is hardly
ever reached.

We apply this setup on three datasets of the Probenl ANN
benchmark set [10], in the version that is published together
with the FANN library [11]. The training part of the data
is used unchanged, the test data is split into validation and
test parts with equal size (first and second half respectively).
An overview over the datasets’ characteristics can be found in
Table 1.

Since the thyroid dataset is very unbalanced, an evaluation
metric must be used that truly reflects classifier performance
and does not allow a classifier to ‘ignore’ a class. To be
able to use the same metric for all experiments, including

| mushroom

gene

oo
1
LX)

1 Score

Fig. 2.
SVM on the original data with the full amount of dimensions.

Validation Training

50
Feature space dimension

Linear SVM classification results for automatically learned feature spaces. The black solid and dashed lines

Reduction Method/Kernel

[DANN/XGisss

© DANN/Korginal
DANN/Xorig:class

©- DANN/xopoa

- Plain PCA

- Autoencoder

show the linear SVM and RBF kernel

Test (@l

Fig. 3. Visualization of the rhyroid dataset using a DANN with two output nodes and the KQriginal function. The network was trained only on the training set.

the ones with three classes, we use the f1 score. To have a
fair performance comparison, the reference values of linear
and RBF kernel SVMs trained on the original data (marked
in Figure 2 by the black lines) have been determined with a
parameter sweep for C' and +.

2) Results: The results of the experiment are summed up in
Figure 2. The results on the thyroid dataset show the potential
of the presented method: the classification performance can
be increased with all kernels, even for a significantly lower
amount of feature space dimensions. The performance of
the RBF kernel SVM on the original 21 dimensions is still
surpassed using the k),qg kernel with one dimension, and
for all other kernels except KOriginal with three dimensions.

The second part of the experiment is performed on the
mushroom dataset to show that linear separability can be
preserved with the feature space transformation. Hence we did
not apply the feature selection preprocessing step to maintain
it before performing the DANN learning. Both, the linear
and RBF kernel SVM, reach 1.0 performance on the test
set. The lines are omitted in the graphic to show the DANN
results. For a dimension of 13, all kernels still achieve near
1.0 performance, the worst being KOriginal with an f1 score
of 0.99.

We conclude the discussion of this experiment with an
analysis of the results on the gene dataset. On this dataset,
the difference between the different kernel functions becomes
more apparent. The k.45 kernel outperforms all others for
the classification task, as expected. It can keep its performance
as the only kernel up to a feature space dimension of one. The

150

other kernels and the latent representation of the autoencoder
stay en par with the SVM results up to a feature space
dimension of 13. Only the Kypca kernel performs worse than
the others. The plain PCA fails in this dataset to capture the
dimensions that are important for classification.

Summing up the results, we show that the performance of a
linear and even an RBF kernel SVM can be outperformed con-
sistently up to a very low amount of feature space dimensions
on the analyzed datasets. The DANN method is en par with or
outperforms PCA and the autoencoder in all experiments. In
the following two sections, we demonstrate the performance
of DANN learning in two further scenarios.

C. Data Visualization

The Original kernel function opens up unique applications
for data visualization. This kernel function allows to train a
DANN in an unsupervised manner to find a mapping to a 2D
(or 3D) space for visualization that preserves the distances
from the higher dimensional space.

This is different from the PCA and the autoencoder, since
these methods find a mapping to a lower-dimensional space
that is decoupled from the original distances. It has advantages
towards MDS since it allows to project points to the lower
dimensional space at a later point in time. This makes visual-
ization of data possible in settings where it was not possible
before.

To give an illustrative example, we used a DANN with an
intermediate layer size of eight nodes and trained it solely on
the training data of the thyroid dataset. Figure 3 shows the

[Elliptic Envelope

One-Class SVM

DANN and Elliptic Envelope

4~

Type
4 Non-Outlier
4 Outlier

Classification
® Correct
A Wrong

Fig. 4. Outlier detection results. With a DANN as preprocessing step, the elliptic envelope method can outperform an RBF kernel One-Class SVM.

projections of the different partitions of the data as well as the
joined projections of all points. Even though the network was
only trained on a part of the data it is used with, it projects
all parts of the set to reasonable positions.

D. Outlier Detection

The last suggested use case is outlier detection. We exploit
a natural bias of DANNs, namely the fact that during training
the network will first learn to map clusters of points close
together very accurately, whereas points that do not have many
close neighbors are only learned later to be mapped to the right
spot. This facilitates the identification of clusters of points and
areas with many data points during early stages of DANN
training.

We suggest to apply the DANN as a preprocessing step
for an outlier detection method, such as a robust covariance
estimator (e.g. an elliptic envelope) or a One-Class SVM. The
DANN can be used to learn a mapping to a higher dimensional
space in an unsupervised manner. This makes it easier for the
succeedingly applied outlier detector to separate outliers from
non-outliers, similar as an SVM projects the data to a higher
dimensional space to separate it easier. The learning process
must be stopped after the first epochs to use the aforementioned

property.

It is straightforward to apply this approach in a partially
supervised setting where there is no outlier annotation available
but for a very limited set of data. We show an illustrative
example in Figure 4, where we use a DANN as preprocessing
step for an elliptic envelope method and demonstrate that this
combination can outperform a One-Class SVM. For this ex-
periment, we generated an additional set of annotated samples.
All learners were trained in an unsupervised manner on the
unlabeled data. Their parameters were estimated based on the
classification results on the labeled data. The DANN training
was stopped after only three epochs. With only five misclassifi-
cations, the combined classifier of DANN and elliptic envelope
outperform the One-Class SVM.

V. SUMMARY AND CONCLUSION

Distance based ANN training is a versatile method that has
so far hardly been described in literature. We derived an in-
ductive definition of the distance error gradient for connection
weights in layers of arbitrary depth and introduced the notion
of kernel functions in this context.

151

The great flexibility that comes with the use of kernel
functions opens up many application areas. We presented four,
namely feature learning, compression, data visualization and
outlier detection, and mentioned the specific advantages and
possible pitfalls when using DANNSs. The results in feature
learning show that DANNs as feature learners coupled with
fast, linear SVMs can outperform a finely tuned RBF kernel
SVM.

Especially the combination of compressed feature extrac-
tion and classification at a later point in time makes DANNs
attractive for applications with corresponding requirements.
Similarly, DANNs have unique features for data visualization
by learning a nonlinear distance preserving mapping to a low
dimensional space with the possibility to map additional points
after learning completed. Possible applications for outlier
detection look promising, but a detailed evaluation remains
to be done in future work.

REFERENCES

K. Suzuki, H. Yamada, and S. Hashimoto, “A similarity-based neural
network for facial expression analysis.” Pattern Recognition Letters,
vol. 28, no. 9, pp. 1104 — 1111, jul 2007.

G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality
of data with neural networks,” Science, vol. 313, no. 5786, pp. 504 —
507, July 2006.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” NIPS, 2012.

A. Coates, H. Lee, and A. Y. Ng, “An analysis of single-layer networks
in unsupervised feature learning,” in AISTATS, 2011.

B. Scholkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and R. C.
Williamson, “Estimating the support of a high-dimensional distribu-
tion,” Neural Comput., vol. 13, no. 7, pp. 1443-1471, Jul. 2001.

T. M. Mitchell, Machine Learning. McGraw-Hill, 1997.

P. Wawrzynski. “Fixed point method of step-size estimation for on-line
neural network training,” in Proceedings of WCCI 2010 IEEE World
Congress on Computational Intelligence, July 2010, pp. 2012-2017.
Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Miiller, “Efficient BackProp,”
Lecture Notes in Computer Science, vol. 1524, pp. 9 — 50, 1998.
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“LIBLINEAR: A library for large linear classification.” Journal of
Machine Learning Research, vol. 9, pp. 1871-1874, 2008.

L. Prechelt, “PROBENI — A Set of Benchmarks and Benchmarking
Rules for Neural Network Training Algorithms.” Fakultit fiir Infor-
matik, Universitat Karlsruhe, Tech. Rep., 1994.

S. Nissen, “Implementation of a fast artificial neural network library
(fann),” Department of Computer Science University of Copenhagen
(DIKU), Tech. Rep., 2003, http://fann.sf.net.

(2]

(3]

[4]

(6]

(71

9]

[10]

[11]

