Learning an Object Class Representation on a Continuous Viewsphere

Johannes Schels*, Joerg Liebelt*
EADS Innovation Works
Miinchen, Germany

{johannes.schels, joerg.liebelt}@eads.net

Abstract

We propose an approach to multi-view object class de-
tection and approximate 3D pose estimation. It relies on
CAD models as positive training examples and discrimina-
tively learns photometric object parts such that an optimal
coverage of intra-class and viewpoint variation is guaran-
teed. In contrast to previous work, the approach shows a
significantly reduced training set dependency while avoid-
ing any manual training supervision or annotation, since it
is capable of deriving all relevant information exclusively
from the provided set of 3D CAD models and an arbitrary
set of 2D negative images. In entirely circumventing seman-
tic or view-based representations, part symmetries and co-
occurrences between viewpoints can be efficiently exploited.
This, in turn, leads to a significantly lower complexity while
still achieving state-of-the-art performance on two current
benchmark data sets for two different object classes.

1. Introduction

In recent years, multi-view object class detection and ap-
proximate 3D pose estimation from single images have re-
gained attention [10, 13, 21, 22, 23, 27]. Although the in-
creasingly sophisticated representations suggested in pre-
vious work have improved detection and estimation pre-
cision, they typically have not led to a significantly bet-
ter generalization power, nor reduced the degree of train-
ing supervision. To the contrary, the dependency on train-
ing set characteristics seems to have increased, e.g. in
relying on structure from motion to build precise repre-
sentations of the objects in the training set [10] or in as-
sembling a set of view-dependent edge templates for each
object instance [18]. Similarly, the level of training su-
pervision has increased, requiring at least viewpoint la-
bels [13, 23], sometimes even manual annotations of 3D
correspondences [27]. In most cases, preference is also
given to view-based representations [13, 20, 21, 27] or se-
mantically chosen parts [21], which are trained separately,

*acknowledge support by BMBF grant SiVe FKZ 13N10027

3170

Rainer Lienhart
University of Augsburg
Augsburg, Germany

lienhart@informatik.uni-augsburg.de

Viewpoints
Viewsphere i — -
e Bl
‘__‘F‘ s -
/! ---\""-\-\.._\
3D Object A L

Rendered
Training Images

Model Database Query Images

Figure 1. An object class representation covering the entire view-
sphere is built from a database of synthetic 3D object models by
deriving part structures for each class from the rendered training
images such that intra-class and viewpoint variation is covered.
The part structure allows for a 2D localization and an approximate
3D pose estimation on unseen test images.

even though they frequently share significant geometrical
and visual similarities. Only [14] recently considered the
trade-off between class and viewpoint variation in a more
principled way, although they require video sequences for
training and testing.

In the present paper, we propose to reconsider previ-
ous work on unsupervised selection of informative fea-
tures [4, 17, 24, 25] for the task of multi-view object class
detection and pose estimation. We extend previous fea-
ture selection methods which were based on simple image
patches [4, 24, 25], generative learning [15] or multi-level
hierarchical models [26]. Instead, we rely on a discrimina-
tive learning of object parts; unlike [16], these parts are ini-
tialized in an unsupervised clustering step. Our approach is
based on a flat hierarchy which can be efficiently evaluated
using well-known spatial layout models [8]. We exploit the
advantages of CAD models for training, as previously iden-
tified in [20, 21, 27], in order to perform a fully unsuper-
vised selection of photometric object parts over the entire
viewsphere. By avoiding manually chosen semantic part
correspondences [27] or view-based subdivisions [20, 21],
common geometry and appearance, which are intrinsic to
each object class over the entire viewsphere are discov-
ered without requiring any data set specific positive train-
ing examples. Consequently, an object part can contribute
to the object class representation for different points on the



bike| bus | car cat | cow| dog| horse| mbike| person| sheep)

831| 1455| 17134| 733| 362| 894| 1161 | 370 1801 | 123

Table 1. Number of available pre-built synthetic 3D models from
turbosquid.com for the PASCAL VOC2006 object classes.

viewsphere; see Figure 2. We demonstrate that our object
class representation is suitable for object classes with signif-
icantly different appearance and geometry; it can be adapted
to 2D detection and, in further contrast to [16], allows to in-
fer an approximate 3D pose from the constellation of the
shared parts. Despite a significantly leaner part representa-
tion it performs on par with or better than state-of-the-art on
several test sets.

2. Object Class Representation

In this section, we describe each stage of building a rep-
resentation of an object class which covers viewpoint and
intra-class variation without requiring manual intervention.

2.1. Training Data

The approach derives its positive training examples for
all subsequent steps entirely from a database of textured
3D CAD models (see Figure 1) and it draws all negative
training examples from the VOC2006 data set. Such an
object class specific database is established by download-
ing 3D models from distributors such as turbosquid.com or
doschdesign.com and converting these models into a suit-
able format. Table 1 shows that a sufficient number of these
3D models is available for each of the VOC2006 object cat-
egories. In relying on 3D CAD models, our approach does
not need to be retrained or adapted to the data set character-
istics. This is a key advantage in reducing training set de-
pendencies in favor of a better generalization. Each model
in the database is rendered from a dense grid of points de-
fined on the entire viewsphere in steps of 5° over azimuth «
and elevation e¢; further details are given in Section 4. The
rendering of the models is done once in front of a black
background, which we term the pure training images, and
once in front of randomly selected images from the negative
set, which we term the validation images. Lighting condi-
tions are randomly varied in each rendering step. Training
is performed on a single scale; yet, at test time, the approach
is capable of detecting object classes on multiple scales.

2.2. Generating a Pool of Parts

Initially, for each object class, a pool P of object parts
is generated as input for the subsequent higher-level train-
ing steps as follows: On each pure training image, HOG
features [3] of different layout sizes are computed densely.
Affinity propagation [9], which is an unsupervised cluster-
ing procedure, is applied to all features of each HOG layout
collected from the pure training images. For certain object
classes, it can be advantageous to enforce a balanced cov-
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Figure 2. Object parts from different viewpoints may display sim-
ilar appearance characteristics in HOG space. Our object class
representation exploits these similarities in an adaptive way for
detection and pose estimation.

erage of all viewpoints. This can be achieved by applying
the clustering procedure repeatedly on subsets of features
from subspaces on the entire viewsphere, instead of a single
set of features on the entire viewsphere; see Section 4.1 for
an evaluation of different balancing strategies. The features
assigned to each cluster serve as the positive training ex-
amples for a linear SVM, trained against features from the
negative training set. Each potential object part in the pool
P is now represented by a linear SVM classifier.

2.3. Selecting the Most Informative Parts

Due to symmetries and self-similarity (see Figure 2),
the pool P contains a large number of redundant or non-
informative parts. In the next step, a subset of the object part
pool is selected by ranking the informativeness of each part
w.r.t. a positive and a negative image set with an entropy-
based measure [25] and retaining only those parts which
are most informative for the given task; altogether N parts
are chosen until the informativeness of an additional part is
below a threshold. Depending on the task setting, the infor-
mativeness of a part can be defined in different ways: for
separation of an entire object class from the background,
informative parts are those which appear on as many object
instances under as many viewpoints as possible, whereas for
precise pose estimation, informative parts are those which
generalize over as many models as possible, but are visible
under only a small range of viewpoints. In the first case, the
negative set is chosen to contain negative training examples
from the VOC2006 data set, whereas in the second case, all
other pure training images are considered as the negative
set.

2.4. Modeling a Dense Grid of Spatial Part Layouts

Each classifier associated with an object part is applied
denscly to each of the pure training images of a point on the
viewsphere; its responses form part score maps as shown in
Figure 5. However, each of the selected object part clas-
sifiers alone still does not offer sufficient discriminatory
power for the task of detecting the presence of an object
of a certain class and estimating its spatial extent. In a sub-
sequent step, we build a generative model which describes
the spatial occurrence layout of a small subset of M ob-
ject parts (M C N) for each of the points on the entire
viewsphere in order to provide an initial object location hy-



Viewpoints
Viewsphere /

Spatial Layout Models

3D Object
Model Database

Figure 3. For each point on the densely sampled viewsphere, the
spatial layout of informative parts is described by a spatial layout
model.

pothesis (see Figure 3). In choosing a mixture of Gaussian
distributions where all part locations are conditioned on the
object center (see Section 3.2), we obtain a flat hierarchy
which can be efficiently evaluated at test time as suggested
in [7]. On the validation set, we optimize the trade-off be-
tween minimizing the number of parts M represented in the
generative model in favor of a lean description, and maxi-
mizing the recall of the model on the expected intra-class
and intra-viewpoint variation; see Section 4 for experimen-
tal results.

2.5. Learning the Global Object Class Appearance

During testing, the spatial layout models for all defined
points on the entire viewsphere will allow generating a set
of hypotheses. However, depending on each spatial layout,
these hypotheses can have different score ranges and vary-
ing aspect ratios. In order to rank them against each other in
a consistent way, we resize the hypotheses generated on the
validation images to the training scale, convert them into
spatial pyramid representations [12] and train a nonlinear
SVM with an intersection kernel [11]. In using spatial pyra-
mids, we can impose a regularly spaced grid subdivision
which is relative to the area covered by a hypothesis and
thus independent of its aspect ratio and dimension. The spa-
tial pyramids encode the part score maps of all N selected
object parts within the area covered by a hypothesis. They
provide a more fine-grained appearance description and al-
low to jointly describe an entire object class with a single
classifier. The nonlinear classification step results in a sig-
nificant gain in precision of up to 40% in our experiments
when compared to the scores of the spatial layout models
alone. Note, however, that the nonlinear classifier is expen-
sive to evaluate; in using the efficient spatial layout models
to preselect object hypotheses, we can limit the nonlinear
classification to a few hundred evaluations per test image.

2.6. Pose Estimation

Unlike object class detection, pose estimation requires
that object parts be specific to a small range of viewpoints
instead of covering the entire viewsphere. In adapting the
selection criteria in Section 2.3 accordingly, we can draw a
new subset of parts from the original pool P which satisfy
this criterion for each of a set of suitably discretized sub-
spaces of the viewsphere; note that the discretization can be
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Figure 4. Mutual information as a function of varying the detection
threshold of an example object part.

freely adapted to the task setting and is not inherent to or
imposed by our training procedure. The steps described in
Section 2.5 can then be repeated in the same way, replac-
ing the single spatial pyramid classifier for the entire class
by classifiers for each subspace. Within the discrete sub-
space with the highest classification score, the pose estima-
tion precision can be further refined by modeling its spatial
layout of object parts as described in Section 3.3. This al-
lows the most likely pose parameters to be inferred from the
spatial layout of the detected parts at test time.

3. Learning Methodology

In the following, we provide details on the learning
methods used to build the object class representation.

3.1. Part Selection

In order to choose parts which are informative for de-
tection or pose estimation, the first step of our entropy-
based selection process is to determine the optimal detec-
tion threshold € by maximizing the mutual information [2]
between each object part in the pool P and sets of positive
and negative images. To this purpose, an indication func-
tion p,, of an object part,, in association with a detection
threshold 6,, is defined as binary variable

1, if $mae (L, party) > 0,
0, otherwise

pn(I7€n) = { (1)

Here s,,4, 1s the maximum score of the object part clas-
sifier (i.e. the linear SVM) in an image /. In addition, a
binary class variable C' is defined where C'(I) = 1 if the
image I belongs to the positive set of images and O other-
wise. Between these two binary variables the mutual infor-
mation M1(p,(6,,);C) is defined as

MI(pn(0n); C) = H(C) = H(C|pn(6n))  (2)

with H(z)! and H(z|y)? being the marginal and the con-
ditional entropy. As shown in Equation 2, the mutual in-
formation of an object part with its indication function p,,

'H(x) = =32, p(x) log(p(z))
TH(zly) = =32, , plz,y) log(p(zly))




depends on the detection threshold 6,,. Consequently, the
optimal detection threshold 6P for an object part can be
determined from

0Pt = argmax[MI(pn(0,); C))].

0,

An example for the mutual information of an object part as
a function of the detection threshold is given in Figure 4. If
the detection threshold is set too low, the mutual informa-
tion score will also be low since the object part is detected
frequently in the negative images. A high detection thresh-
old will likewise result in a low mutual information since
the object part is now too sparsely detected in the positive
images. At some intermediate value of the detection thresh-
old the mutual information reaches a maximum and the ob-
ject part delivers a maximum amount of information about
the set of positive images.

After the optimal detection threshold for each object part
in the pool is determined we can select an optimal subset
of N parts from the pool P iteratively. Formally, this selec-
tion process can be described as

p; = argmax| min [MI(p;, pm; C) — MI(p; C)]].

pmEP; PIES:

Here P; is the pool of available object parts at iteration ¢
and 5 is the subset of selected object parts from the pool at
iteration ¢. The minimum taken over all previously selected
parts p; avoids redundancy. The maximum is taken over
all object parts p,, from the pool P; to ensure that a part is
selected that yields the maximum increase of information
about the set of positive images. The update rules for the
pool of available object parts and the subset of selected ob-
ject parts are defined by

Pipi=Pi\pi Siy1=8Up; 1<i<N+1 (5
The initial pool P; contains all generated object parts
from P and the initial subset of selected parts .S is an empty
set. After N + 1 iterations we have selected N object parts
from the pool that contain a maximum of information re-
garding the sets of positive and negative images.

3.2. Spatial Layout Model

3

“

To jointly describe the spatial occurrence and the de-
tection uncertainty of the informative object parts, a spa-
tial layout model is built for each point on the entire view-
sphere. Each classifier associated with an object part is ap-
plied densely to each of the pure training images of a point
on the viewsphere; its responses form part score maps as
shown in Figure 5. The location of the maximum classifier
score in each score map is stored, resulting in a set of 2D
locations for each part. For each object part we fit a mix-
ture of Gaussian distributions [1] to the locations to obtain
one spatial layout model for each densely sampled view-
point, conditioned on the location of the center of the object
and linked to the mean training bounding box size (see Fig-
ure 5). During testing, for an unseen object, its bounding
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Figure 5. For each point on the entire viewsphere we resize the
training images to the corresponding mean bounding box and ap-
ply the classifiers corresponding to the respective subset of object
parts. We model the occurrence of these parts by using a mix-

ture of Gaussians distributions to describe the spatial distribution
of their detection scores.
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Figure 6. The pose refinement step is based on several Gaussian
mixture models. Each Gaussian mixture model captures the spatial
arrangement of an object part for a point on the viewsphere.

box can be inferred by evaluating the probability of the loca-
tion of each detected part w.r.t. the spatial layout model; in
practice, this evaluation can be efficiently performed using
distance transforms [7]. The number of informative object
parts to be considered in the spatial layout model is linked
to the trade-off between a high recall and a low model com-
plexity. In practice, we determine the optimal number of
object parts in a validation step; see Section 4 for an exper-
imental evaluation.

3.3. Pose Refinement

As described in Section 2.6, the pose estimation is based
on several classifiers where each classifier is directly linked
to a discretized subspace of the viewsphere. Figure 6 shows
how the estimation precision can be further refined for the
subspace with the highest score of the corresponding spatial
pyramid classifier (see Section 2.6). Each of the discretized
subspaces has its informative subset of N object parts and
consists of several viewpoints w, = {, €, }. During train-
ing, the subset of object classifiers is applied densely to each
of the pure training images within the corresponding sub-
space. As described in Section 3.2, for each object part we
again fit a mixture of Gaussians to the locations of the max-
imum classifier score to obtain a spatial layout model for
cach object part and cach viewpoint within the subspace.
Assuming that such a model has K components, the proba-
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Figure 7. Tradeoff between recall on the validation set and number
of selected parts for spatial layout models of the bicycle class.

bility p of an object part for a viewpoint w is given by

p(part|w) =

Z i (part|w). (6)

Assuming conditional independence of the IV parts, the es-
timated pose can be refined to the viewpoint
N

wt = argmax H p(part|w) = H Zpk (part|w).

n=1 n=1k=1

@)
Note that the refined viewpoint in Equation 7 is relative to
the virtual camera parameters used to generate training im-
ages from our synthetic 3D model database. With an esti-
mated viewpoint and a bounding box of the 2D localization
step we are able to project a mean 3D bounding box com-
puted from the 3D model database into each tested image.
Some examples are shown in Figure 12.

4. Experimental Results

In this section we outline the results we achieve with our
proposed model for object localization and pose estimation.
For these two tasks we evaluate the performance of our ap-
proach for cars and bicycles on the 3D Object Category data
set introduced by [19]. It is the current state-of-the-art data
set for multi-view object class detection and pose estima-
tion. For each object class the 3D Object Category data
set contains 10 different object instances; for each instance
48 images are provided. They are taken at 8 different az-
imuth angles in 45° steps (back, back-left, left, front-left,
front, front-right, right, back-right) for 2 different elevation
angles, and 3 different scales. In order to evaluate the 2D
localization we use the overlap criterion suggested by [6]: a
predicted bounding box is considered as correct if the over-
lap between a predicted bounding box and a ground truth
bounding box exceeds 50%. If several bounding boxes are
predicted in the same image area, only the highest scoring
detection is considered as correct, while the remaining de-
tections are considered as false positives.

Our approach relies exclusively on training data rendered
from pre-built 3D models, which are available from the dis-
tributors turbosquid.com and doschdesign.com. For train-
ing, we use 25 car models and 8 bicycle models. In order

3D Object Category, car 3D Object Category, bicycle
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Figure 8. Precision/Recall curves for the 3D Object Category data
set car (left) and bicycle (right) using different viewsphere sub-
spaces to balance the part generation (solid/dashed), and different
maximum numbers of object parts for part selection (red/green).

to define a dense grid of viewpoints on the viewsphere, az-
imuth is sampled from 0° to 360° in 5° steps and elevation
is sampled from 0° to 20° in 5° steps. This viewpoint setup
is used to generate the pure training images and the vali-
dation set. We draw all negative training images from the
PASCAL VOC2006 training data set excluding the training
images for the object classes car and bicycle. For our exper-
iments we rely on the HOG descriptor of [8] with a HOG
cell size of 8 pixels; the spatial encoding is done with a spa-
tial pyramid on three levels of linear subdivision.

In Section 2.4 we outline that the number of selected ob-
ject parts for the spatial layout models is chosen in a valida-
tion step to optimize the tradeoff between recall and model
complexity. Figure 7 shows the impact of changing the part
number w.r.t. the achieved recall for the object class bicy-
cle. In this example, saturation is reached when selecting
50 object parts.

4.1. Subspaces and Number of Object Parts

In the first experiment, we evaluate the impact of two pa-
rameters of our learning procedure for the 2D localization
task: the influence of balancing the part generation over the
viewsphere, and the influence of the maximum number of
selected object parts. For both classes, cars and bicycles, we
compare the 2D detection performance on the 3D Object
Category data set when generating informative parts from
the entire viewsphere or when balancing the part genera-
tion to equally cover eight viewsphere subspaces. For each
setup of both classes, we learn an object class representa-
tion with 50 and 100 selected parts. We apply our approach
to the entire 3D Object Category data set containing all 480
test images per class. The precision/recall curves we obtain
are shown in Figure 8. For cars, the number of subspaces
has little effect on the overall detection accuracy, the reason
being that for both settings, suitable object parts for cach
subspace are generated in a balanced way and the resulting
object class detector does not suffer from low recall. In ad-
dition, the number of selected object parts has little effect
on the performance of the car detector. For bicycles the be-
haviour is different, since the front and back views which
cover relatively small areas and contain delicate structures,
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Figure 9. Precision/Recall curves for the 3D Object Category data
sets car (left) and bicycle (right) for our approach (red curves)
compared to state-of-the-art detectors.

contribute fewer parts if the generation is performed on a
single viewsphere; in choosing eight subspaces, the gener-
ated informative object parts are more equally distributed
over the viewsphere, resulting in a higher recall. Further-
more, increasing the maximum number of selected object
parts from 50 to 100 parts improves the overall precision of
the bicycle detector.

Based on these results, for the subsequent tests 8 sub-
spaces and at most 50 parts are chosen for the car detector
and 8 subspaces and at most 100 parts for the bicycle detec-
tor. For training the 3D pose estimation, we also rely on the
8 subspaces and for each subspace we select a subset with
at most 50 object parts for cars and at most 100 object parts
for bicycles.

4.2. Object Localization

In order to compare our detection approach on the 3D
Object Category data set to previous work, we follow the
test protocol of [21] for cars and the test protocol of [13] for
bicycles. Note that these test protocols define test subsets
and therefore differ from the test setup for the experiments
in Section 4.1 which are evaluated on the entire data set. For
both classes, we also compare against the current state-of-
the-art approach of [8] using their pre-trained object class
models provided as part of voc-release3. As shown in Fig-
ure 9, with 94.9% on the car data set our approach can
compete with the detector of [8] (96.2%) and outperforms
the approach of [21] (89.9%), despite our detector being
trained on different, i.c. synthetically generated, training
images. Note that the approach of [21] which is also trained
on synthetic data uses a bank of 36 viewpoint-specific mod-
els with more than 400 trained object parts. In contrast, our
detector which is able to exploit appearance co-occurrences
across different viewpoints requires only 50 object parts.
With 87.0% on the bicycle data set we outperform the ap-
proaches of [13] (69.8%) and [8] (71.2%) due to a signifi-
cantly higher recall.

We also evaluate our approach regarding 2D localiza-
tion on the publicly available PASCAL VOC2006 [6] data
set for cars and bicycles. The precision/recall curves we
obtain with our proposed approach are given in Figure 10
(red curves). For both object classes we provide the best
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Figure 10. Precision/Recall curves for the PASCAL VOC2006 car
(left) and bicycle (right) data set of our approach (red curves) com-
pared to state-of-the-art detectors.
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performing approaches of the PASCAL challenge 2006 [6]
(blue curves), the best performing approaches of the PAS-
CAL challenge 2007 on the 2006 test set [5] (cyan curves)
and the most recent multi-view approaches of [20] (green
curves) and [22] (magenta curves). Although we train our
detector on a synthetically generated training set, our de-
tection results (40.4% on cars and 44.5% on bicycles) can
compete with these state-of-the-art detectors. Compared to
the 3D Object Category data set, the lower recall of our ap-
proach on the VOC2006 data set may be due to the more
pronounced object appearance variations within VOC2006
which are not sufficiently covered by the selected 3D train-
ing models.

4.3. Pose Estimation

In order to benchmark the 3D pose estimation perfor-
mance of our approach on the 3D Object Category data set,
we bin the estimated viewpoints of the pose refinement step
(see Section 3.3) in 45° steps to match to the groundtruth
annotations of [19]. Here we follow the test protocol of [21]
for cars and the protocol of [13] for bicycles in order to
compare our 3D pose estimation approach to existing ap-
proaches. The confusion matrices obtained by classifying
all positive detections are shown in Figure 11. For cars
we observe that confusion is more pronounced for oppos-
ing views due to the symmetries inherent in the car class.
Still, the average accuracy of 82.6% compares favorably to
the reported result of [21] (80.5%). For bicycles we ob-
serve that confusion is more pronounced between neighbor-
ing viewpoints. On the bicycle data set, the achieved result
of 87.7% significantly outperforms [13] (75.0%). Figure 12
shows some results of the full detection process with 2D
localizations and 3D pose estimations. Pose estimation typ-
ically fails when there is ambiguous or insufficient evidence
in the image for a correct pose initialization; see two exam-
ples with red outlines in Figure 12.

Numerous approaches have evaluated on the 3D Object
Category data set. However, different test configurations
have been used, which makes an objective and comprehen-
sive benchmarking difficult. To compare to each approach,
we evaluate our approach using each of the test configura-
tions reported by the different authors on the car data set.
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Figure 11. Confusion matrices (rows: groundtruth, columns: esti-
mates) for the 3D Object Category data sets car (left) and bicycle
(right).

back back-left left front-left front front-right right back-right

Approach Reported AP,p | Own AAzp | Own
Test Config- APyp AAsp
uration

Glasner [10] 5 inst./3 sc. 99.2% | 94.9% 84.9% | 82.6%

Liebelt [13] 3 inst./3 sc. 76.7% 97.2% | 70.0% 81.5%

Schels [20] 10inst./3sc. | 82.0% 90.8% | 62.6% 82.2%

Stark [21] 5 inst./3 sc. 89.9% 94.9% | 80.5% 82.6%

Su [22] 5 inst./2 sc. 55.3% 94.9% | ~69.4%| 83.6%

Sun [23] 5 inst./2 sc. [ 949% | 66.6% 83.6%

Zia [27] 5 inst./3 sc. 90.4% 949% | 84.0% | 82.6%

Table 2. We evaluate our approach following the previously re-
ported test protocols on the 3D Object Category data set for cars
in order to achieve an objective comparison. (abbr.: inst.=object
instance, sc.=scale, AP»p=average precision for 2D localization,
A Asp=average accuracy for 3D pose estimation).

The results are shown in Table 2. Note that our approach
performs on par with or better than most of these state-of-
the-art detectors for both 2D detection and 3D pose estima-
tion, despite being trained synthetically.

5. Conclusion

We have presented an approach which learns an ob-
ject class representation from a database of 3D CAD mod-
cls without requiring any manual supervision. It exploits
appearance co-occurrences due to symmetries and self-
similarity by choosing non-semantic parts in a flexible
framework suitable for 2D localization and 3D pose estima-
tion. We demonstrate state-of-the-art performance on sev-
eral test sets without having to use data set specific positive
training examples. Future work will focus on the unsuper-
vised learning of a deformable 3D spatial layout in order to
combine object class detection and instance identification.

References

[1] C. A. Bouman. Cluster: ~ An unsupervised algo-
rithm for modeling Gaussian mixtures. Available from
http://www.ece.purdue.edu/"bouman, 1997.

[2] T. Cover and J. Thomas. Elements of Information Theory. J.
Wiley, 1991.

[3] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR, 2005.

[4] B. Epshtein and S. Ullman. Feature hierarchies for object
classification. In ICCV, 2005.

3176

(3]

(6]

(71

(8]

(9]

(10]

(1]

[12]

(13]
(14]
[15]
[16]
(17]
[18]
[19]

[20]

(21]

(22]

(23]

[24]

[25]

(26]

[27]

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman. The PASCAL Visual Object Classes Chal-
lenge 2007 (VOC2007) Results, 2007.

M. Everingham, A. Zisserman, C. K. I. Williams, and
L. Van Gool. The PASCAL Visual Object Classes Challenge
2006 (VOC2006) Results, 2006.

P. Felzenszwalb and D. Huttenlocher. Pictorial structures for
object recognition. IJCV, 2005.

P. Felzenszwalb, D. McAllester, and D. Ramanan. A dis-
criminatively trained, multiscale, deformable part model. In
CVPR, 2008.

B. J. Frey and D. Dueck. Clustering by passing messages
between data points. Science, 2007.

D. Glasner, M. Galun, S. Alpert, R. Basri, and
G. Shakhnarovich. Viewpoint-aware object detection and
pose estimation. In /ICCV, 2011.

K. Grauman and T. Darrell. The pyramid match kernel: Ef-
ficient learning with sets of features. JMLR, 2007.

S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: spatial pyramid matching for recognizing natural
scene categories. In CVPR, 2006.

J. Liebelt and C. Schmid. Multi-view object class detection
with a 3D geometric model. In CVPR, 2010.

L. Mei, J. Liu, A. Hero, and S. Savarese. Robust object pose
estimation via statistical manifold modeling. In ICCV, 2011.
K. Mikolajczyk, B. Leibe, and B. Schiele. Multiple object
class detection with a generative model. In CVPR, 2006.

P. Ott and M. Everingham. Shared parts for deformable part-
based models. In CVPR, 2011.

M. Ozuysal, V. Lepetit, and P. Fua. Pose estimation for cate-
gory specific multiview object localization. In CVPR, 2009.
N. Payet and S. Todorovic. From contours to 3D object de-
tection and pose estimation. In /CCV, 2011.

S. Savarese and L. Fei-Fei. 3D generic object categorization,
localization and pose estimation. In ICCV, 2007.

J. Schels, J. Liebelt, K. Schertler, and R. Lienhart. Syntheti-
cally trained multi-view object class and viewpoint detection
for advanced image retrieval. In ICMR, 2011.

M. Stark, M. Goesele, and B. Schiele. Back to the future:
Learning shape models from 3D CAD data. In BMVC, 2010.
H. Su, M. Sun, L. Fei-Fei, and S. Savarese. Learning a dense
multi-view representation for detection, viewpoint classifica-
tion and synthesis of object categories. In ICCV, 2009.

M. Sun, H. Su, S. Savarese, and L. Fei-Fei. A multi-view
probabilistic model for 3D object classes. In CVPR, 2009.
A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing vi-
sual features for multiclass and multiview object detection.
PAMI, 2007.

M. Vidal-Naquet and S. Ullman. Object recognition with
informative features and linear classification. In ICCV, 2003.
L. Zhu, Y. Chen, A. Torralba, W. Freeman, and A. Yuille.
Part and appearance sharing: Recursive compositional mod-
els for multi-view multi-object detection. In CVPR, 2010.
Z. Zia, M. Stark, K. Schindler, and B. Schiele. Revisiting
3D geometric models for accurate object shape and pose. In
ICCV 3dRR-11 Workshop, 2011.



Figure 12. Some detection results of our proposed approach on the 3D Object Category data sets car (left) and bicycle (right). For both
object classes an incorrect detection example is shown (indicated with a red outline). This figure is best viewed in color.
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