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ABSTRACT

This paper presents a new approach for multi-view object
class detection based on part models. While most existing ap-
proaches have in common that they use real images for train-
ing, our approach requires only a database of synthetic 3D
models Lo represent both the appearance and the geometry of
an object class. We use semantically equivalent object points
on 3D models to build part models and encode the local ap-
pearance of the parts by a discriminative learning method that
applies AdaBoost to histograms of gradients. The geometric
configuration of the parts is represented by spatial distribu-
tions which are also directly derived from the 3D models. For
recognizing an object in an image, our model provides object
hypotheses which are re-ranked with global appearance mod-
els. The 2D localization is evaluated on the PASCAL 2006
data set for cars and bicycles, showing that its performance
can compete with state-of-the-art detection resullts.

Index Terms— 3D models, multi-view object class de-
tection

1. INTRODUCTION

Object class detection is one of the primary research topics
in computer vision; it is of relevance to numerous applica-
tions, ranging from retrieval tasks to robotics. Fischler and
Elschlager [1] originally introduced an approach to the prob-
lem consisting of a constellation of basic image parts con-
nected by spring-like links. The idea has recently regained
attention, notably in [2, 3, 4]. Other publications resort to
the heuristic selection of parts as subregions without seman-
tic meaning and model few sparse viewpoints [4]. Alter-
natively, brute-force regular part subdivisions are suggested
in [5] which may introduce a large per-part variance into the
training process. In the present work, we propose an approach
to semantic part-based object class detection which relies on
synthetic 3D CAD models as training data; part annotation is
performed in 3D space once per model and allows generating
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arbitrary amounts of precisely labeled 2D part training anno-
tations over the entire view sphere. Unlike previous work,
both appearance and geometry of parts are learnt exclusively
from synthetic data. We compare our approach to state-of-
the-art detectors and show that we achieve comparable results
using a single synthetic training procedure without requiring
any data set specific retraining or adaptation.

The paper is structured as follows: Section 2 summarizes pre-
vious work on part models and multi-view object class de-
tection. An overview of the training procedure is given in
section 3. In section 4, details for the detection process are
provided. Experimental results and a comparison with state-
of-the-art on the PASCAL VOC 2006 [6] data set for cars and
bicycles are outlined in section 5.

2. RELATED WORK

Recent work on multi-view object class detection can be di-
vided into two groups which rely on different choices for the
geometric representation of an object class, either by mod-
eling two-dimensional constellations or by building 3D ap-
proximations. The combination of 2D detectors to cover an
entire object over a multi-view sphere has been the initial step
towards a more comprehensive use of geometry for object
class detection: Thomas et al. [7] suggest linking several Im-
plicit Shape Models to achieve a detection over multiple view-
points. In order to increase robustness towards pose changes,
additional probabilistic layout models as well as local 2D
geometric constraints have been introduced. Originally de-
scribed in [1], the idea is taken up by [2] who introduce a
simplified layout which assumes a set of mutually indepen-
dent object parts. The approach is further extended in [4] with
discriminatively learnt part appearance and different heuris-
tic layout models for multiple viewpoints, thereby increasing
robustness. Hoiem et al. [8] suggest a Layout Conditional
Random Field to model part interactions for a set of discrete
viewpoints from the pixel level upwards. Instead of modeling
sparse sets of parts, a fixed grid-based subdivision of object
views has been suggested in [5] who propose a greedy algo-



Fig. 1. Examples for 3D models from our training database.

rithm to detect regions of parts which conform to the training
part layout. While being robust, these approaches mostly as-
sume heuristic rules for choosing part regions, rely on a sparse
set of viewpoint models and require tedious manual viewpoint
and part annotations in 2D.

In contrast, viewpoint-annotated training data can be used to
dynamically build 3D representations to better address the
possible viewpoint variations of object classes. Savarese and
Li [9] estimate homographies of groups of local features in
order to map large 2D image regions onto a collection of near-
planar parts to form a viewpoint-independent 3D model; more
recently, [10] introduced a probabilistic approach to learn
affine constraints between sparse object patches. In [11],
sparsely annotated 2D feature positions are factorized to ob-
tain a 3D implicit shape model which extends the original
implicit shape model to 3D transformations and occlusion is-
sues. Alternatively, 3D models have been suggested as train-
ing data. Lowe [12] resort to flexibly aligning groups of
consistent edge segments from CAD models by probabilistic
matching. Heisele et al. [13] generate training sets from syn-
thetic 3D models for an active learning algorithm. Recently,
Yan et al. [14] suggested to collect patches from 2D im-
ages with 3D viewpoint annotations and to map these patches
onto an existing 3D CAD model. In [15], local features are
derived from synthetically rendered models to evaluate the
global consistency of a 2D detection with respect to a 3D ge-
ometry. Although these 3D representations may be closer to
the actual object class geometry, they can be more difficult to
train and may not be necessary for pure 2D detection tasks.
In the following, we outline an approach that builds on 2D
part representations learnt from semantically corresponding
object regions and the exhaustive generation of automatically
annotated 2D training data from 3D CAD models, thereby
combining the main advantages of the two domains described
above.

3. TRAINING

The training procedure of our approach makes use of standard
3D models as they are typically used in computer graphics
applications. Some examples of such 3D models are shown
in Figure 1.

A database of models of the same type (e.g. cars) is used
to represent each of the object classes to be detected. Initially,
every model in the database is manually annotated by specify-
ing semantically equivalent object points (for example the left

a) 3D Models

b) Rendered Images c) Part Appearance

Fig. 2. Overview of the training steps using annotated syn-
thetic 3D models (a). The part appearance (c) and part geom-
etry (d) are learnt from the rendered training images using the
projected positions of the 3D parts (b).

front wheel) in 3D space using a 3D labeling tool. As our ap-
proach is based on a small number of synthetic 3D models to
represent a class, the labeling effort is rather small compared
to a manual annotation of bounding boxes of an entire training
database of real images. Figure 2a illustrates two car models
of our database with annotated semantically equivalent object
points. The annotated model database is then used to generate
a large number of training images of the 3D models from arbi-
trary viewpoints in front of arbitrary backgrounds (Figure 2b).
In addition, we also vary the light conditions for each image in
order to cope with the imaging conditions in real images. The
exact locations of the semantically equivalent object points as
well as the exact bounding box of the object are determined
in each training image by projecting the annotated 3D models
into the 2D image space (Figure 2b). They are subsequently
used to train a part model, consisting of per-part appearance
and part geometry, as well as a global appearance model for
each discrete viewpoint. Both the part model and the global
appearance model together form an object detector for a spe-
cific viewpoint.

3.1. Learning the Part Appearance

From the known locations of the semantically equivalent ob-
ject points within the training images, we generate for each
part a collection of small patches representing the appearance
of the given semantic part (Figure 2c) over all models in the
training database, which are then fed into a learning method
applying AdaBoost to histograms of gradients [16]. Discrete
AdaBoost defines a strong binary classifier H as a linear com-
bination of *weak’ classifiers h:

T
H(x) = sgn(z athy(x)) . (1)

t=0

z is a fixed-size patch, as shown in Figure 2c. In this work



Fig. 3. Tree structure of our spatial model which allows pre-
dicting a bounding box by propagation from the root location
(upper left corner) to the node (lower right corner). The Fig-
ure is best viewed in color.

a weak classifier consists of a feature f and threshold 0 such
that

@)

1 if f(x) >0
hay =4 I =
—1 otherwise
We define our features f in terms of differences between
two histogram bins of a HOG-descriptor g of [16]:

f(@) = gi(x) —g;(z) i#37. 3)

where g;(x) is the i-th and g;(x) is the j-th bin of the
HOG-descriptor encoding a patch x. For our experiments (see
section 5) we choose a quadratic HOG-layout with 5x5 cells
and 18 orientation bins, resulting in a 450 dimensional HOG-
descriptor g. As the result of the training a strong classifier
H is assigned to each specific viewpoint of each semantically
equivalent object point.

3.2. Learning the Part Geometry

To learn the geometry model of the parts of an object class,
we make use of the known positions of the semantic parts
and the upper left and lower right corner of the bounding box
within a training image. We model the spatial distribution of
these points as Gaussians (Figure 2d) and arrange them in a
tree structure. Figure 3 shows such a tree structure of our
spatial model, where the upper left corner is the root of the
tree, the lower right corner is a node and the object points are
the leaves. Consequently, the bounding box of an object can
be predicted by propagation from the root location (i.e. the
upper left corner) to the node (i.e. the lower right corner).
The conditional spatial distributions s;;(c;, ;) between the
location ¢; of a parent p; and the location ¢; of a child p; are
modeled as

sij(ciycj) = Ke~((cimen)=min) S5 (eimei)=mas) (4

where m;; is the mean of the relative location to the parent
location ¢, S;; is the covariance matrix and K the normaliza-
tion factor.
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Fig. 4. Overview of the detection steps for recognizing an ob-
ject in an image (a). We apply our strong classifiers to gener-
ate dense part maps (b). From the part maps we derive a final
cost map for each viewpoint detector by using a dynamic pro-
gramming approach; the local minima of those maps provide
the object hypotheses (¢). We score (d) and merge those hy-
potheses to obtain our final detection result (e). The Figure is
best viewed in color.

3.3. Learning the Global Appearance

Detections based on our part models allow determining im-
age regions which have a high probability of containing a set
of object parts. However, the scores generated by the part
model alone are not suitable for ranking detections for differ-
ent viewpoints between each other, since the part models for
different viewpoints vary in complexity and cannot casily be
normalized. Some parts may be generally more difficult to
detect, thus introducing a bias into the detection which influ-
ences the overall score; in addition, occluded objects may re-
sult in lower scores of the part model, although the occluded
bounding box is predicted accurately. As a consequence, a
different method for scoring the regions of interest (ROI) pre-
dicted by the part model has to be introduced. Subsequently,
we use our part models to only provide ROIs (i.e. object hy-
potheses), which are then classified in a separate stage. This
approach is similar to the scoring approach of the exemplar
model in [17]. Instead of training an SVM classifier with real
images as in [17], we rely on the global appearance of our
rendered synthetic 3D models to train a linear SVM classifier.
For this purpose, a HOG layout is chosen to cover the entire
object in our training images (see Figure 2b). The negative
examples for training are initially chosen randomly from a
background data set. After the initial training, the classifier is
refined with a bootstrapping procedure on an extended train-
ing set which has been augmented with the false positives and
false negatives of the initial classifier. As a final result, each
viewpoint detector has a linear SVM that classifies the global
appearance of the provided ROIs.

4. DETECTION

Figure 4 illustrates the necessary steps for recognizing an ob-
ject in a query image (Figure 4a). We apply the classifiers
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Fig. 5. Precision/Recall for the PASCAL VOC 2006 car data
set for each individual viewpoint detector and the final com-
bined multi-view detector (red).

of each viewpoint detector to obtain a cost map for each part
(see part maps in Figure 4b). Dense classification of all pos-
sible patches in the image results in a dense cost map for each
object point. Building on the efficient matching algorithm
proposed by [3], an overall cost map is derived; its local min-
ima indicate object hypotheses corresponding to a probable
configuration of object parts (green boxes in Figure 4c). The
location of a local minimum provides the upper left corner
of the bounding box and by propagation to the node of the
spatial model, we locate the position of its lower right corner.
Eventually, we apply the global appearance SVM for the de-
tected viewpoint to each object hypothesis in order to obtain
a detection score (Figure 4d).

As our viewpoint detectors are defined on a fixed scale, the
above described procedure is applied to each level of an im-
age scale pyramid in order to generate scored object hypothe-
ses on different scales. As shown in Figure 4c), the detec-
tion process can result in multiple overlapping detections.
In order to determine the most promising single detections
(Figure 4e), we rely on a non-maximum suppression where
bounding boxes overlapping with higher-scoring boxes by
more than 50% are discarded.

5. EXPERIMENTAL EVALUATION

This section presents the experimental results achieved with
the proposed approach. We use the publicly available VOC
2006 data set to evaluate the performance of individual view-
point detectors and the 2D localization of our approach com-
pared to state-of-the-art results.

5.1. Evaluation Criteria and Data Sets

In order to evaluate the performance of our detector with re-
spect to 2D ground truth bounding boxes, we use the detec-
tion quality criterion suggested by [6]. A predicted bounding
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Fig. 6. Precision/Recall for the PASCAL VOC 2006 bicycle
data set of our approach compared to state-of-the-art detec-
tors.
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Fig. 7. Precision/Recall for the PASCAL VOC 2006 car data
set of our approach compared to state-of-the-art detectors.

box is considered correct if the overlap between this predicted
bounding box and a ground truth bounding box exceeds 50%.
Multiple detections are penalized. If a system predicts sev-
eral bounding boxes, only one box is considered correct, the
remaining detections are considered as false positives. The
average precision scores a system.

Our approach is evaluated on the PASCAL VOC 2006 [6]
data set for cars and bicycles. In order to train the part and
the global appearances, we rely on a background data set to
provide negative training examples. For this purpose we use
the PASCAL VOC 2006 training data set after excluding the
training images for the respective positive object classes.

5.2. Training Setup for the Viewpoint Detectors

For training the object class car we use 25 synthetic 3D object
models where 16 semantically equivalent object points (such
as wheels or headlights) are specified for each model. The
class bicycle is trained with 8 synthetic 3D models where 11
points (such as parts of the front and back wheel or handle



bar) are annotated for each model. Note that the manual la-
beling has to be performed only once in 3D space, i.e. only
88 points have to be labeled for all 8 3D models of the ob-
ject class bicycle. Subsequently, these 3D annotated points
allow generating arbitrary amounts of precisely labeled 2D
part training annotations over the entire view sphere. All our
3D object models are available from different free and com-
mercial CAD model databases such as doschdesign.com or
turbosquid.com.

In order to generate the training images for a viewpoint de-
tector, we render 10.000 images with slight variations of the
camera parameters; for symmetric views, only one classi-
fier is trained and applied to both horizontally mirrored im-
ages. We vary the azimuth angle in a range of -8° to +8°,
the elevation angle in a range of 0° to 8° and the scale in
a range of -0.10% to +0.10% as this setting performed best
in our experiments. We train five viewpoint detectors (i.e.
side-view, front-left, back-left, front-view and back-view) for
both object classes. A tree-structured spatial layout assumes
that part appearances are independent which requires a non-
overlapping part selection. For each viewpoint, patches of
size 40x40 pixels represent the part appearance of those ob-
ject points which are visible after perspective projection of
the 3D model from that viewpoint. We choose a quadratic
HOG-layout (5x5 cells) with 8 pixel per cell to encode the lo-
cal and viewpoint-specific HOG-layouts with 4 pixel per cell
to encode the global appearance.

5.3. Individual Viewpoint Detectors

The performance of each individual viewpoint detector on the
VOC 2006 car test set is shown in Figure 5. Each detector is
applied to all images of the test set, resulting in a lower recall
because each detector is only responsible for a specific view.
Note that some viewpoints, such as the profile views, can be
detected more easily by our approach due to their more dis-
criminative appearance. The combined multi-view detector
achieves a significantly higher recall while retaining a consis-
tently high precision which is due to the use of the re-scoring
global appearance classifier on the detections provided by the
part model.

5.4. Results on VOC 2006

Figure 6 shows precision/recall curves for the PASCAL VOC
2006 bicycle test set and Figure 7 shows the precision/recall
curves for the car test set. On both data sets we provide the
precision/recall curves of two multi-view approaches [18, 10]
and the best-performing approaches of the PASCAL 2006
challenge. On the bicycle data set, our approach achieves a
higher average precision (46.8%) than all other state-of-the-
art detectors, although we train our bicycle detector on purely
synthetic (i.e. non data set specific) training data of 8 models.
On the car data set, our result (33.1%) can compete with the
approaches of [18, 10] despite its being trained on a different
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Fig. 8. Some successful detection results of our approach on
the PASCAL VOC 2006 car (first three rows) and bicycle (last
three rows) data sets. Each detection also provides an approx-
imate viewpoint estimate.



(synthetic) data set. We observe that the appearance varia-
tions within the test set of the car class are more pronounced
than those within the bicycle class, which may be the rea-
son for the observed performance difference of our approach:
while the chosen synthetic bicycle models are sufficient to
represent these variations, the synthetic car models seem to
be not representative enough. Figure 8 shows some exam-
ples for successful detections on the PASCAL 2006 test sct.
Note that our approach additionally provides approximate 3D
orientation estimates for each detection.

6. CONCLUSION

In this work we present a new approach to part-based multi-
view object class detection. In contrast to most existing work,
our approach relies exclusively on synthetic 3D models to
represent the object class to be trained. We use semantically
equivalent object points on 3D models to build part models
as well as global appearance models for arbitrary viewpoints.
For recognizing an object, we derive object hypotheses from
part models and score these hypotheses with global appear-
ance classifiers. Even though only a single synthetic training
procedure without any data set specific retraining or adap-
tion is applied, we achieve results comparable to state-of-the-
art on two different test sets. In contrast to other part-based
approaches, our approach additionally provides approximate
pose estimations for the detected objects. Currently, we use
a labeling tool to manually annotate semantically equivalent
object points; in future work, we will focus on establishing
these points in an unsupervised way and extending the method
to more, potentially non-rigid, object classes.
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