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ABSTRACT 

 
The web and image repositories such as Fickr™ are the 

largest image databases in the world. There are billions of 
images on the web, and hundreds of million high-quality 
images in image repositories. Currently, these images are 
indexed based on manually-entered tags and individual and 
group usage patterns. In this work we explore a third 
information dimension: image features. We explore 
probabilistic latent semantic analysis (pLSA) in order to 
infer which visual patterns describe each object. We build 
models that connect words and image features, and use 
content features and tags to find similar images. We 
demonstrate that image features using gray-scale salient 
points and an aspect model based on pLSA outperforms a 
conventional word-frequency model as well as refined 
color-histrogram approach on an image-similarity task. 
 

Index Terms— large scale image retrieval, probabilistic 
semantic analysis, color coherence vectors.  
 

1. INTRODUCTION 
The usage of Probabilistic Latent Semantic Analysis (pLSA) 
[4] — a statistical technique to derive hidden concepts from 
data — has recently become very popular in the image 
domain. So far, pLSA has only been applied to relatively 
small, carefully selected image databases ranging from a 
few hundred to a few thousand images [2][8]. In this paper 
we study pLSA on a large-scale, real-world image database 
for improving image retrieval based on image similarity as 
perceived by humans. Our work centers around finding 
visual “words” that are typical for the various kinds of 
aspects an image can show. 

One of the largest image repositories on the web is Flickr™. 
For this work we have download 253,460 images that were 
tagged with at least one out of the 23 tags listed in Table 11. 
These words where grouped into 12 categories for our 
image-retrieval task. The resulting image database was not 

                                                
1 These images were selected from all public Flickr images 
uploaded prior to 8 Sep. 2006 and labeled with one of the 
following tags: sanfrancisco, beach, tokyo and geotagged. 

cleaned nor pre-processed in any way to increase 
consistency. 

Since these tags are provided by the creators of the pictures 
with unknown intensions, the techniques we investigate 
must be able to tolerate — from a pure visual similarity 
standpoint — a significant fraction of incorrect labels. A 
good example, for instance, are the images tagged 
“Christmas” in Flickr. Only a very small fraction of the 
images depict a religious event (as one might expect). 
Instead the tag mostly denotes the time and date of creation. 
Thus thousands of vacation and party photos pop up with no 
real common theme. The ambiguity of tags makes image 
retrieval more difficult. 

On this real-world database we explore two questions: 
(1) Does it matters how visual words are created? We 

compare three different techniques: (a) random selection, 
(b) clustering random subsets, and (c) clustering tag-
based subsets. 

(2) Does pLSA outperform a simple word-occurrence 
statistic? How does pLSA on grayscale SIFT [5] features 
compare to well-known global color-retrieval techniques 
such as color-coherence vectors [9]? 

 

Category # OR list of tags # of image 
1 wildlife animal animals cat cats 30476 
2 dog dogs 26119 
3 bird birds 21279 
4 flower flowers 28816 
5 graffiti 22318 
6 sign signs 14488 
7 surf surfing 29998 
8 night 33999 
9 food 19582 

10 building buildings 17303 
11 goldengate goldengatebridge 24362 
12 baseball 12390 

 Total # of Images (Note images 
may have multiple tags) 

253,460 

Table 1: The image database and its 12 categories 



We evaluate these different retrieval configurations purely 
based on image similarity as perceived by a number of users 
without any special context knowledge. 

 
2. DERIVING VISUAL WORDS 

pLSA was originally derived in the context of document 
retrieval, where words are the elementary parts of a 
document. For images — our visual documents — we need 
comparable elementary parts we call visual words. 

In this work we use the popular SIFT features [5] to find 
salient visual parts in each image. SIFT features are 
calculated in a two-step process: First, a sparse set of salient 
areas in an image are determined and described by position, 
scale, and orientation. Then for each salient point we derive 
a 128-dimensional edge-based feature vector to describe the 
unique grayscale content of that salient area in a scale- and 
orientation-invariant manner.  

Since SIFT feature vectors can take on almost every value in 
128

! , we wish to find a small set of representative feature 
vectors to become our visual words. Thus the problem of 
deriving visual words is as follows:  

Given 
� a set of images I={di} with |I| = IN = # of images 
� a set of feature F={fl} with |F| = FN = # of features (here 

128-dim. SIFT features) derived from IN images 
� a set C = {cr} of image categories (see Table 1) with |C| 

= CN categories in total (here CN =12) 
derive a vocabulary V = {vj} of |V| = VN visual words. 

Finding the structure in such a large set of data (millions of 
images, thousands of salient points per image) is 
computationally expensive. We investigate three ways to 
determine the VN visual words and we will evaluate their 
utility later in this paper: 
(v1) Random: Select all VN sample features randomly from 

the set F of all features. 
(v2) K-means clustering (with subselection): Randomly 

select SN sample features from the set F of all features. 
Apply K-means clustering to each set of SN samples to 
derive (VN /CN) visual words. Perform this subselection 
CN times. In total this will result in CN * (VN /CN) = VN 
visual words.  

(v3) Tag subselection: For each of the CN categories derive 
(VN/CN) visual words by means of K-means clustering 
by randomly sampling SN sample features from images 
in each category only. In total this will result in CN * 
(VN /CN) = VN visual words. 

Method (v2) is the approach commonly used in image 
retrieval [2][8]. Since K-means clustering is 
computationally expensive (quadratic in the number of 

samples and the number of clusters), it is more efficient to 
break up (CN * SN) samples into CN subsets of SN samples 
and find VN/CN clusters from this subset instead of 
determining all VN clusters on the entire set of (CN * SN) 
samples directly. For our 12 categories (CN = 12) the 
speedup is CN * CN = 144 times. 

The rational behind method (v3) is to explore whether the 
tags in the database provide useful information for deriving 
visual words. Within each category the images should be 
less diverse and thus make it easier for K-means clustering 
to find the dominant visual words. The better the visual 
words, the better pLSA should work and thus improve 
retrieval. Concepts that have no representative visual words 
cannot be learned. 

The random method (v1) is added to answer the question 
whether K-means clustering is necessary at all.  The answer 
to this question has a few important implications: Firstly, 
clustering is often the slowest part of the learning algorithm. 
If it can be skipped without harm, it would greatly reduce 
the computational complexity. Secondly, if clustering is not 
necessary, the set of visual vocabulary can easily be 
extended any time needed by additional random samples.   

In each experiment we derived 12 * 200 = 2400 visual 
words that are used to describe each image in our database. 
In Section 4 we will compare these three methods based on 
their similarity retrieval results in user studies. 

 
3. MEASURING IMAGE SIMILARITY 

3.1 Term-Document Matrix 
Using the visual vocabulary V, each feature fl of F can be 
quantized by its most similar feature vector in V. Thus we 
represent each image di as an image document consisting of 
L instances of the visual words {w1,…,wL}, wp�V . 

Given the collection of IN image documents I={di} with FN  
visual words W = {wj} from the vocabulary V and given that 
we ignore the sequential ordering of the word occurrences in 
the images (the so-called bag-of-word model), the image 
data can be summarized by an 

NN
VI ! matrix of visual 

word occurrence counts N = (n(di,vj))ij, where n(di,vj) 
specifies the number of times the word vj occurred in 
document d i. The resulting table is called the term-
document matrix (see Figure 1).  

Note by normalizing each document vector to 1 using the 
L1-norm, the document vector of di becomes the estimated 
mass probability distribution P(vj |di). 

The similarity between two documents can be calculated 
using the cosine metric between two document vectors a=di 



and b=dp. The cosine metric between to vector a and b is 
defined as 

ba

ba
ba

!

><
=

,
),(CSMetric

 

It is commonly used in text retrieval [1]. 

 

 

Figure 1: Term-document matrix 

 
3.2 pLSA 
Each L1-normalized row in the term-document matrix 
describes the distribution of the visual words in each 
document, i.e., P(vj|di). 

The idea of pLSA is to introduce a mediator known as 
aspects or concepts between the document and the words. 
Thus, every word occurring in a document is generated by 
an unobservable aspect variable zk leading to the following 
generative model for the document vector [4]: 
(1) Pick a document di with prior probability P(di) 
(2) Select a latent concept zk with probability P(zk|di) 
(3) Generate a word vj with probability P(vj|zk) 
An important aspect of this model is that word occurrences 
are conditionally independent from the document given the 
unobservable aspects. Thus 
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In addition, every document is modeled as consisting of one 
or more aspects. This is very natural since images consist of 
multiple objects and thus multiple aspects in different image 
areas. pLSA can model this fact very efficiently. For 
instance, an image with a lion and jeep — each object 
described by a set of SIFT features — might be described by 
two hidden aspects ‘lion’ and ‘jeep’. Dependent on the 
aspects the probabilities of each visual word vj is different.   

We learn the unobservable probability distributions P(zk|di) 
and P(vj|zk) from the data using the Expectation-
Maximization-Algorithm (EM-Algorithm) [3][4]: 
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Given a new test image dtest, we estimate the aspect 
probabilities, similar to above, from the observed words.  
The only difference is that the learned conditional word 
distributions P(vj|zk) are never updated. 
The similarity between two documents is calculated using 
the cosine metric between two the two aspect vectors a= 
(P(zk|di))k and b= (P(zk|dp)) k.  We model the collection of 
visual words with 48 aspects in total — analogous to a 48-
mixture Gaussian mixture model. 
3.3 Color Coherence Vectors 
As a baseline for comparison we use one of the best 
traditional global color features: Color Coherence Vectors 
(CCVs) [9]. It is computed by first quantizing each pixel’s 
color by using the 2 most significant bits per color channel, 
resulting in only 64 possible different color values. Then, 
for each pixel we measure the area connected (with an 8-
neighborhood) of the same quantized color. If the area is 
above a threshold (usually 1% of the pixel count in the 
image), then the pixel is added to the “coherent” histogram, 
otherwise to the “incoherent” color histogram. Combining 
both histograms results in a 128-dimensional vector. 
Dissimilarity between two CCV vectors a and b is 
computed based on the L1-norm. 
 

4. EXPERIMENTAL RESULTS 
Performance Metric: For evaluation we selected randomly 
5 query images from each of our 12 categories, i.e., 60 
query images in total. Then, for each query image each 
retrieval technique was used to return the top 20 most 
similar images. In each of the three experiments below, 
three rival techniques were compared based on the 
judgments of a number of users: For each query, the 
retrieval results (top 20 images, tiled 5 by 4 on a sheet of 
paper) for the three techniques under comparison were 
shown to the user. The user had to put the results from each 
query image into an order from best to worst retrieval result. 
The technique with the best retrieval result received 2 
points, the second best 1 point, and the worst 0 points. We 
computed the average score for each technique over the 60 
samples queries to assign a single performance number. The 
technique with the highest score obviously performs best.  



Exp. 1: In this experiment we compared the three visual 
word extraction techniques (v1), (v2), and (v3) against each 
other by using the document vectors from the term-
document matrix with the cosine metric for similarity 
retrieval. Figure 2a shows the average scores for 8 different 
subjects. 

Exp. 2: In this experiment we compared the three visual 
word extraction techniques (v1), (v2), and (v3) against each 
other by using the aspect vectors of the image documents 
with the cosine metric for similarity retrieval. Figure 2b 
shows the average scores for 8 different subjects. 

In both of these experiments deriving visual words using 
plain clustering produced the best results. Selecting visual 
words completely at random is computationally cheap, and 
should work well asymptotically, but not evidently at this 
level.  We are surprised that deriving specific visual words 
based on category subsets did not produce an overall 
benefit, but an informal analysis suggests that these 
category-specific words helped for a category like dogs.  

Exp. 3: In our final experiment we compared the random-
subset visual word selection approaches that won from 
Exp.1 (cosine metric of word histograms) and Exp. 2 
(cosine metric of pLSA histograms) to a baseline using 
CCV features. This test is difficult for subjects because in 
such a large database the matches in a color space are at first 
glance identical to the query. It is only when the picture is 
studied does one realizes that the objects shown are so 
different. This is especially true when we look color 
similarity with our full 2.5M image database.  

The results of this test are shown in Figure 2c. Seven 
subjects judged that images found by using a cosine metric 
in pLSA space are more similar to the query image than a 
direct comparison in word space, or the baseline CCV 
approach. Much like it does in text-based retrieval, 
calculating similarity in subspace formed by the aspect 
model gives better results. 

5. CONCLUSION 
In this paper we have shown that the aspect model, using an 
approach like pLSA, is as important for image-retrieval as it 
is for text-retrieval [1]. The aspect model learns the 
probability of each visual word given an unobserved aspect.  
We have extended Bosch’s work [2] by showing that pLSA 
improves performance on a similarity task. The 
dimensionality reduction due to an aspect model is 
important as we go to larger databases. 

In future work we want to verify our results with a larger 
number of subjects, and we want to test the similarity on the 
full 2.5M image database. 
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Figure 2: Results from the three experiments: a) cosine similarity on word-histogram feature, b) cosine similarity on 
pLSA, and c) comparing best cosine methods with CCV baseline algorithm. 

 


