Deriving a Discriminative Color Model for a Given Object
Class from Weakly Labeled Training Data

Christian X. Ries
Augsburg University
Universitatsstr. 6a
86150 Augsburg, Germany

ries@informatik.uni-augsburg.de

ABSTRACT

This paper presents a method for creating a discriminative
color model for a given object class based on color occurrence
statistics. A discriminative color model can be used to clas-
sify individual pixels of images with regards to whether they
may belong to the wanted object. However, in contrast to
existing approaches, we do not exploit pixel-wise object an-
notations but only global negative and positive image labels.
Therefore our approach requires significantly less manual ef-
fort. We quantitatively evaluate the performance of our ap-
proach on two publicly available datasets and compare it to
a baseline approach, which utilizes pixel annotations. The
experimental results show that our approach is on par with
pixel-wise approaches although requiring only a single global
image label.

Categories and Subject Descriptors

H.4 [Information Systems Applications|: Miscellaneous;
[.4.0 [Image Processing and Computer vision]: Gen-
eral

General Terms
Theory
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1. INTRODUCTION

In this paper we introduce a method for learning a dis-
criminative color model for a given object class from weakly
labeled training data. A discriminative color model assigns
a Boolean value to each pixel of a query image indicating
whether the pixel may belong to an object of the given ob-
ject class. Thus, the color model yields a binary map of
positive and negative pixels. One example of such a map
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can be seen in Figure 1 on the right where the binary map
was filled with the original image content for illustration.

Obviously, a discriminative color model can only be cre-
ated for objects, which occur in a limited number of different
color combinations. Therefore we only consider such objects
for the remainder of this paper.

Figure 1: An example result after applying our discrimi-
native color model which was created using weakly labeled
training sets. The image shows an example from the Oxford
Flowers dataset [8] on the left and the pixels detected as
belonging to the flower by our color model on the right.

Color models can be used for pre-filtering images or for
creating regions of interest for more sophisticated classifica-
tion systems. In other words, color models can be useful for
identifying or improving positive training examples among
large datasets for image classification systems. Also, color
models can be used for quickly rejecting unambiguously neg-
ative images prior to applying more sophisticated (and thus
computationally more expensive) classifiers.

The model we present in this paper relies on color occur-
rence statistics and can thus be computed efficiently. It is
straightforward, yet its performance is on par with existing
approaches for almost all of our test classes. Furthermore, to
our knowledge, existing approaches, which are comparable
with regards to complexity, require pixel-wise annotations.
In contrast, our approach only requires positive and nega-
tive image labels for the training set. No hints are given as
to where the objects of interest are in the positive images.

Thus, the major advantage of our approach over existing
approaches is the small amount of manual annotation effort
required. Besides reducing the human effort, our approach is
applicable to situations where annotating images manually is



not acceptable due to the size of the dataset or the contents
of the positive images. Furthermore, pixel-wise annotation
is often a tedious and difficult task and sometimes also error-
prone at the boundary of the objects.

2. RELATED WORK

Discriminative color models, which are usually based on
thresholds either derived from color histograms or paramet-
ric functions such as Gaussian mixtures, are among the ear-
liest concepts in the field of computer vision. Yet they are
still used successfully in several different contexts today. Es-
pecially for detecting and segmenting objects, which have
a constant color scheme such as road signs, discriminative
color models are useful [2, 4, 11].

Discriminative color models can also be applied in order to
efficiently determine regions of interest, which can be used
for video coding [3] or image classification [10]. The latter
two approaches both use a discriminative color model for
detecting human skin, which is a research field where such
models are popular [7, 1, 5]. Skin detection, however, is still
a difficult problem due to the variance of human skin colors.

Jones and Rehg [7] also employ a discriminative color
model to identify human skin in images. Their approach
is based on ground truth labeling of pixels. In the survey
on skin color detection by Vezhnevets et al. [12] Jones and
Rehg’s approach is compared to various other approaches on
skin color detection. It is among the approaches which yield
the best results being only slightly inferior to the maximum
entropy approach by Jedynak et al. [6]). To our knowledge,
the approach by Jones and Rehg is still among the state-
of-the-art methods for creating discriminative color models.
Thus we use their approach as a baseline for evaluating the
results of our approach. Note, however, while the approach
of Jones and Rehg require pixel-wise labeled training images,
we only require a single image label.

3. CREATING THE COLOR MODEL

In general, a discriminative color model assigns a classi-
fication value h(c) € {0,1} to each color value c of a given
(quantized) color space.

Our color model is computed from color occurrence statis-
tics, which we determine from a set P of positive images (im-
ages containing the wanted object) and a set N of negative
images (images not containing the wanted object). Usually
in practice the set of positive images is significantly smaller
than the set of negative images, since (almost) random im-
ages can be used as negative images while collecting positive
images is often time-consuming. The main idea is to deter-
mine discriminative object colors, which appear significantly
more often in positive images than in negative images, first.
They serve as a seed in a second step, where we use an flood-
fill algorithm to identify pixels of similar colors, which are
spatially close to our seed pixels identified in the first step.

Our approach requires that two assumptions hold:

1. Objects of the desired object class occur in a limited
number of different color schemes.

2. Background areas of positive images must be similar
to the negative images and with respect to color more
diverse than the wanted objects.

The first assumption is an obvious prerequisite since ob-
jects, which can assume many different color schemes, e.g.

cars, cannot be represented by a color model. The second
assumption must hold since we are searching for regularities
among the positive images, which are not present among
the negative images. Furthermore, the negative set must be
reasonably large (i.e. larger than the positive set), since we
need it to estimate a background model, which we want to
be as general as possible. Since the Internet provides a huge
number of publicly available random images and our model
is tolerant to some noise, it is not difficult to provide large
negative (background) sets for many object classes.

3.1 Identifying Distinctive Object Colors

We first determine which colors appear more often in pos-
itive images than we would expect given the number of their
appearances in background images as these colors are likely
to indicate an object of interest. Thus we compute the rel-
ative frequency with which each color ¢ is present in the
positive and negative image set, respectively. Let n = |P|
and m = |N| be the numbers of images in the positive and
negative set, respectively. Then the respective relative oc-
currence frequencies are given by

fr(c) = %k (1)

m@=%m (2)

where k. and k', are the absolute numbers of positive
and negative images, respectively, in which c is present at
a minimum of ¢ pixels for a very small value of € (in our
experiments we simply set € = 0).

We now discriminate two cases:

I. We consider all colors ¢ as background colors (and thus
h'(c) = 0) if they appear at least as frequent in nega-
tive images as in positive images, i.e. if fn(c) > fp(c).
These colors are very likely to be common background
colors, since colors which appear in relatively fewer pos-
itive images than background images are obviously not
indicative of the desired object if our assumptions hold.

II. If a color appears more frequent in positive than neg-
ative images (i.e. fp(c) > fn(c)), it is a candidate
for being a distinctive object color for the object class
of interest. However, it could still represent a back-
ground color, since our positive images also contain
background regions. Thus we probabilistically model
these colors to decide which colors should finally be
considered as distinctive colors for the object class of
interest.

Let P(object|k.) be the probability of observing color ¢
in k. out of n positive images given that c¢ is a candidate
for being a distinctive object color for the object class of in-
terest. Let P(—object|k:) be the opposite probability. The
latter probability is small, if it is unlikely that a color we ob-
served k. times among our n positive images is a background
color. Therefore we compare the ratio of P(object|k.) and
P(—object|k.) against a threshold 7" in order to decide if ¢
is an object color:

P(object|k.) o

P(—object|k.) ®)



Using Bayes’ rule this equation can be written as

P(kc|object) o

P(ke|-object) (4)

with
, 1 — P(object)
P(object)

P(object) is a constant value which we either have to de-
termine empirically or intuitively. We discuss the selection
of P(object) in the section on our method of evaluation.
Next we define the probability distributions P(kc|object)
and P(kc|-object). Thus, we have to model the probability
of observing a color ¢ in k. positive images whereas ¢ is an
object color or non-object color, respectively.

3.1.1 Probability Models

With P(k.|-object) we want to model the probability that
a background color ¢ appears k. times in n positive images.
Recall that we observed c¢ at a rate of fy(c) among the
background images. We assume that our positive images
also contain common background, and N is a representative
set of background images. We thus expect that colors ap-
pearing in N with relative frequency fn(c) appear among
the positive images P with a frequency fp(c) close to fn(c).

In other words, we assume that NV is a representative set
of background images. Thus if we obtain a relative color
occurrence frequency fn(c), we expect to observe a similar
frequency among any set of n images containing background.
Therefore n- fn(c) is our expected value for k. (because this
implies that fp(c) = fn(c)). The variance we want to allow
depends on the size of the positive set of images since the
smaller the positive set, the more relative deviation can be
explained by the disparity of the two image sets’ respective
sizes.

We model P(k.|—-object) using a binomial distribution
b(ke;m, fn(c)) with expectation Elkc|—object] = n - fn(c)
and variance Var[k.|-object] = n- fn(c)-(1— fn(c)). Hence
the probability P(kc|—object) of ¢ being observed k. times
among the positive images and being a background color is
given by

o =T (5)

P (ke|mobject) = (,Z) SN (@) (1= fn(e)" R (6)

Note that the maximum value and variance of this distri-
bution depends on the value of fx(c). For small and large
values of fn(c) we obtain distributions with higher maxi-
mum probabilities and lower variances compared to distri-
butions with fx(c) close to 0.5. Intuitively, we however
want the probability value to only depend on the difference
between fn(c) and fp(c) and not on the actual value of
fn(c). Thus, we enforce the same shape for all distribu-
tions, i.e. we use the same maximum probability value and
variance for each value of fy(c) by shifting the distribution
for fn(c) = 0.5 to the respective expected value n - fn(c).
P(kc|—object) is shown in Figure 2 for a positive set size
of n = 40 and observed relative occurrence frequencies of
fn(c) = 0.5 and fn(c) = 0.75.

As illustrated in Figure 2, P(kc|—object) is large if the
relative number of positive images in which color ¢ appears
is similar to the relative number of negative images in which
color ¢ appears. Thus we obtain large values for P(k.|—-object)
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Figure 2: Visualization of our model for P(k.|—-object) for
n = 40 and example relative frequencies on N of fn(c) = 0.5
(red) and fn(c) = 0.75 (yellow). Note that both distribu-
tions have the same maximum probability and variance.

for colors whose appearance in positive images can be ex-
plained by their frequent appearance in background.

If, however, the relative number of positive images in
which color ¢ occurs is significantly larger than the number of
negative images in which c occurs, the value of P(k.|—object)
will decline. Intuitively this reflects the fact that color c is
unlikely to appear in a significantly higher relative num-
ber among positive images than among background images
if it is a background color. As a consequence we can de-
duce that color ¢ is an object color if inequation 4 holds,
since inequation 4 becomes true if P(k.|—object) is below
0 x P(kc|object). Note that P(kc|—object) will also decline
if fp(c) is significantly smaller than fx(c). However, this sit-
uation is already covered by case I, which already excludes
colors which appear less often than expected. This is indi-
cated by the brighter bars in Figure 2.

For P(k.|object) we do not have an estimation of the rela-
tive frequency from a larger set as is the case for P(k.|—object).
Therefore we define a model for P(k.|object) which simply
assigns high probabilities to all colors which appear in pos-
itive images and thus we use a constant value which only
depends on n.

3.1.2 Initial Color Model

Combining the cases I. and II. yields the following decision
rules that define the initial color model h’(c):

if fn(c) > fr(c):
h'(c) = 0 (7)
if fa(e) < fr(c):

P(kc|object) o
P(k.|—object) (8)

0 otherwise

) 1if
h'(c) =

Thus each color ¢ whose relative frequency of appearance
is higher among negative images than among positive images
is considered a non-object color since it appears less often
in positive images than expected.

If the relative frequency is higher in positive images, we
determine the ratio between the probabilities P(k.|object)



and P(kc|—object) for the number k. of positive images con-
taining c¢. Recall that according to our definition P(k.|object)
is constant for a given n.

Note that our initial decision rules may exclude colors
which actually belong to the desired object if the same color
appears in many background images or only on a few object
instances. However, we are only interested in colors which
are indicative of the object and at the same time do not
regularly appear on random images which do not include
the object. We try to reduce this effect by adding spatially
and chromatically related colors as explained in the next
section.

3.2 Identifying Object Color by Adding Spa-
tially and Chromatically Related Colors

So far, our initial color model k' is only suitable for iden-
tifying pixels, which with high probability are located on
objects of interest. However, the set of identified pixels will
by no means cover the entire objects. Thus, the color model
cannot yet be used to ’segment’ the objects of interest as a
standard color model would do. Thus, based on our seed
pixels we need to identify, which other pixels might belong
to wanted objects. These pixels should be neighbors of dis-
tinctive colors as identified by h’. Therefore, we will apply
a flood-fill algorithm, which is seeded at pixels with object
colors detected by h' in all images of P.

In detail, we first determine the set P of all pixels p in all
images of P whose color ¢, is distinctive for the object class:

P = {plh(cp) = 1} )

Outliers are removed by applying a median filter to each
image’s binary map obtained by applying h'(c). Now let
N(p) be the 4—neighborhood of pixel p in its respective im-
age. We define N'(p) as the pixels p’ from the neighborhood
of p which do not deviate more than a given threshold @,
from the color of p in any color channel i:

N'(p) = {p' € N(p)|Vi : |c:;,/ —c| <0} (10)

where ¢}, is the value of the ith channel of color c,. We
conservatively define 6,; = 5 for all color channels 4 in our
experiments. Note that N'(p) only includes pixels which are
both, chromatically and spatialy close to pixels for which we
can safely assume that they ae part of the wanted object.
After determining the pixels of N'(p) in each image of P we
include them in ‘B:

F=pu (N0 (11)

pPEP

We repeat this procedure until 8 does not grow anymore.
Note that in further iterations, we keep the color ¢, of the
pixel p from the original set P in equation 11. Thus, all
pixels we add to ¥ may not deviate too much from colors
found by our initial model. This way we prevent "leaking”
into background across smooth object borders. As a re-
sult we obtain regions of similarly colored pixels, which we
consider object pixels and thus positive examples. We use
these regions to compute two color histograms, which repre-
sent P(c|object) and P(c|—object) as suggested in [7]. Since
we consider pixels as positive or negative examples now (as
opposed to whole images as in the previous subsection), we

can simply use relative frequencies to define these condi-
tional probabilities:

P(clobject) = 0" |{p € Blc, = ¢} (12)
P(c|-object) = ny'[{p € Pncp = ¢} (13)

where np and nn are the sums of all histogram bin values
of the respective histograms and Py are all pixels in all
images of N.

Analogous to the previous subsection (see equations 3 and
4), we decide whether a color ¢ belongs to the object by the
following inequation:

P(c|object) 11— P(object)
P(c|—-object) P(object)

The prior P(object) is the probability that any given pixel
is part of the object and thus also depends on the size of the
object in the image. Again, this value has to be determined
empirically. In the evaluation section below we set T" = 1
for creating the ROC curves.

Evaluating equation 14 for each color c¢ yields our final
object color model h:

(14)

¢ P(c|object)

h(c) = P(c|-object) (15)
0 otherwise
with
o_1T. 1 — P(object) (16)

P(object)

Now we can decide whether a pixel is likely to belong to
the wanted objects.

4. EXPERIMENTAL EVALUATION

In this section we first determine the color space param-
eters of our approach and then compare its accuracy to the
baseline model.

4.1 Evaluation on Logos Dataset

For our first set of experiments we use the FlickrLogos-
32 [9] dataset. This dataset consists of 32 sets of images
containing brand logos. Each set contains 70 images showing
an instance of a logo of the same brand. However, almost
every image also features background. In some images the
brand logo is not even featured very prominently. We pick 6
of the 32 classes for which we reckon that the brand logo has
a fairly constant color scheme: "DHL”, "Coca Cola”, "Ksso”,
?Aldi”, "Pepsi”, "Shell”. Figure 3 shows a few sample images
of the sets we have chosen.

We use the given partitioning of 10, 30, and 30 images
for the training set, validation set, and test set, respectively.
The FlickrLogos-32 dataset also provides a set of negative
images, which do not contain any logos. We use 3,000 nega-
tive images for training and 1,000 negative images for test-
ing. Note that we evaluate our approach pixel-wise on the
test images, thus the number of test examples is reasonably
large. For the following experiments we use the training
and validation set combined to create the color model as de-
scribed in the previous section and compute our results on
the test sets. Thus, we have a positive training set per brand
logo of n = 40 and a negative training set of m = 3000 im-
ages. The test sets consists of 30 logos per brand and 1000



Figure 3: Sample training images for the 6 logo classes we
have used from the FlickrLogos-32 dataset [9].

negative images. For evaluating the quality of our color
model we manually label the pixels, which belong to the lo-
gos, in the test images. Thus, for each pixel p we have a
ground truth label t(p) € {0,1}.

4.1.1 Method of Evaluation

For all of the following experiments on the FlickrLogos-32
dataset we use the same method of evaluation:

We measure the effectiveness of our approach by con-
structing a ROC curve over the threshold . We obtain the
true positive (TP) rate for each tested threshold value from
the pixel-wise annotations. Note that for each pixel of each
negative image p € Py we know that ¢(p) = 0 since the
negative images never show a logo. Therefore we use the
negative images to determine the false positive (FP) rate.
We do not count FP among positive images since the logos
are often found on surfaces of the same color as the logo
(e.g. billboards, wrappings, or vehicles), which were anno-
tated as not belonging to the logo. Thus, the annotation in
positive images is ambiguous regarding negative pixels since
the logos were simply annotated as narrowly as possible.

As we do not exploit any additional information, we have
to empirically choose an appropriate value for 6’ in for-
mula 8. Since the magnitude of the conditional probabil-
ity values depends on the “uniqueness” of the positive colors
and is thus class-specific, it is difficult to select a universal
threshold. We therefore set 6’ (by adjusting 7" in formula 5)
to the 97%-quantile of all colors for the given class, which
does not depend on the magnitude of the probability val-
ues. We use this relatively restrictive threshold, since we
only want the most unique colors as seeds for the flood-fill
algorithm explained in section 3.2.

4.1.2 Comparison of Color Spaces and Numbers of
Bins

We first compare the performances of our model in three
different color spaces: RGB, HSV, and YCbCr. For this
experiment, we divide each color channel into 16 equally
sized bins.

As a baseline approach, we also implement the approach
of Jones and Rehg [7], which follows equations 12 to 16.
However, for the baseline, the set of positive pixels B are
manually annotated pixels which are used to deduce rela-
tive frequencies p(c|object) and P(c|-object)for positive and
negative colors, respectively. Based on these frequencies, the
Bayesian model of equation is used. Since the baseline ap-
proach is based on pixel-wise ground truth (except for some
inaccuracies of the manual annotations), we consider it a
reasonable reference.

——RGB_i6avg
— — baseline RGB_16 avg
HSV_16 avg

baseline HSV_16 avg
16 avy

(a) Color spaces (b) # bins per channel
Figure 4: Average ROC curves over all six logo classes over
0 for (a) three different color spaces; (b) three different num-
bers of bins per channel in YCbCr color space.

We compute an average ROC curve over all 6 logo classes
by simply averaging the respective TP and FP values over
all classes for each value of 8. The average ROC curves for
RGB, HSV, and YcbCr color spaces are shown in Figure 4a
as well as the corresponding ROC curves for the average
results of the baseline approach.

The difference between our approach with the best color
space and the baseline approaches for all color spaces is
roughly the same. On average the YCbCr color space, how-
ever, yields the best results among the examined color spaces.
Thus, we conduct all remaining experiments in the YCbCr
color space.

After determining the best color space, we evaluate differ-
ent numbers of bins per channel. The resulting ROC curves
are shown in Figure 4b. We compare results for 8, 16, and
32 bins. According to the ROC curves, the results are sim-
ilar for all numbers of bins. Using 16 bins however yields
a slightly better curve than using 8 bins and the result for
32 bins is arguably superior to the results for 16 bins. using
16 bins yields a slightly better curve than using 8 bins and
the result for 32 bins is arguably superior to the results for
16 bins. Thus we use 32 bins per channel for the following
experiments.

4.1.3 Comparison to Baseline of Each Class

After determining the color space configuration, we exam-
ine the performance of our approach on each of our 6 logo
classes. As a consequence of the previous experiments we use
the YCbCr color space and 32 bins per color channel. We
conduct the same experiment as described above. However,
instead of averaging the ROC curves, we now determine the
ROC curve for each class separately. The results are shown
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Figure 5: ROC curves over 0 for our approach (solid line)
compared to the baseline approach [7] (dashed line) in the
YCbCr color space for 32 bins per channel. (a) - (f) show
the results for each of our logo classes.

in Figure 5. Again we include the results of the baseline
approach in each graph.

Overall, our approach is on par with the baseline for all
classes except for "Aldi” despite using significantly less prior
knowledge. Note that Aldi is the most difficult logo class
since the logo consists of four different main colors and is
backlit in some images which produces yet another color
scheme. However, since we do not want to use any domain-
specific knowledge, we do not adjust our parameters for in-
dividual classes

Interestingly, both the baseline and our approach work
best for the class "DHL” which is due to the fact that the
DHL logo usually contains bright yellow which is quite un-
common in background images. This is also true for the
class ”Shell” which however has more difficult training im-
ages which often include large background areas while the
logo is very small. However, the baseline approach which is
capable of omitting the background of positive images dur-
ing training due to pixel-wise annotations still does not work
significantly better.

Figure 6 shows two example test images for each logo class
and the resulting image after removing all pixels which are

classified as negative by the color model. For these examples
we chose p(object) = 0.1 (and T' = 1) in equation 4.1.2.
Most of the non-logo pixels are removed correctly in the
resulting images. However, pixels which have the same color
as the logo obviously cannot be excluded by a color model.
Since we set our parameters conservatively, we also miss
some logo pixels, especially for the "Aldi” class.

Figure 6: Example results for all 6 logo classes. Negative
pixels were replaced by black pixels in the right image of
each pair.

4.1.4 Combined Object Classes

In this section we evaluate the effect of violating the as-
sumption that the object has only one distinct color scheme.
In these experiments we thus simulate classes for which this
assumption is not true, i.e. we combine two objects into one
class which is equivalent to the case of differently colored
instances of one object class.

We thus create new positive image sets by combining the
positive training and validation images of two different logos
and learn a color model for the new set. We then apply this
model to test images of each individual logo for evaluation.
We only combine logos where at least one color is exclusive
to one of the two classes. Figure 7 shows the results for each
of our pair wise combinations on each of the individual test
sets. For comparison we also plot the performances of the
color model which was created only with training images of
the tested class (i.e. the light blue curves in Figure 7 are
identical to the curves in Figure 5). Thus we can determine
the impact of mixing the training images in comparison to
using only training images of a single class.

For the combination of "DHL” and ”Aldi”, the combined
model’s performance is inferior to the "DHL” model’s perfor-
mance on the "DHL” test set (see Figure 7a). On the "Aldi”
test set however, the combined model yields a similar result
as the individual ”Aldi” model (see Figure 7b). Intuitively
this is not surprising since the "DHL” logo consists of colors
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Figure 7: Results for combined logo classes. All results are
for 32 bins in YCDbCr color space.

which are similar to colors of the ”Aldi” logo. Thus the re-
sults on the "Aldi” test set are only marginally affected. The
”Aldi” logo, however, features a number of additional colors
which are not present in the "DIL” logo and therefore the
false positive rate on the "DHL” test images increases. Anal-
ogous observations can be made for the combined model of
?Coca Cola” and "Pepsi”.

In our final pair of classes we combine ”Shell” and ”Esso”
which is the only combination where each logo has an exclu-
sive color which is not part of the other logo. Consequently,
for both test sets the combined model’s performance is infe-
rior to the respective individual model’s performance. This
is due to the fact that for each experiment the combined
model contains a color which is not part of the respective
logo and thus the false alarm ratio is increased.

In general, combining logos apparently results in an in-
creasing false alarm rate when the combined model is used
to detect the respective logo, which consists of fewer differ-
ent colors. This is not surprising since adding images fea-
turing another logo to the training set increases the number
of different positive colors, which replace redundant positive
colors of the individual logos.

In summary, we can conclude that the wanted object class

does not necessarily have to feature the exact same color
scheme in each training image, however, the number of dif-
ferently colored instances should be reasonably small.

4.2 Evaluation on Flowers Dataset

The final dataset we use for evaluation is a subset of the
Oxford Flowers dataset[8] which consists of 17 flower classes
with 80 images each. As the previous experiment suggests,
our approach is capable of creating models for differently
colored objects to some extent. However, it is still not de-
signed for objects which appear in a large number of different
color schemes, so we only use the 15 classes form the Flower
dataset for which the respective flowers does not appear in
4 or more differently colored variants (which is the case for
"Iris” and "Crocus”). Note that some of the remaining classes
still feature flowers, which occur in varying colors in different
images, e.g. "Pansy” or "Fritillary”. Since we feel that the
flower dataset is similar to the logo dataset with regards to
the nature of the wanted objects, we again use the YCbCr
color space with 32 bins per channel for our experiments.

Some of the images are annotated pixel-wise, so we can
use them to train the baseline approach and evaluate our
method as described above. However, for some classes only
very few images were annotated. We thus skip two classes
which feature no or only very few annotated images. Overall,
a total of 13 classes which are usable for our experiments
remain.

For creating our model, we again use all annotated train-
ing and validation images of the respective class as positive
images. We do not use images without annotations, since we
cannot use them for creating the baseline. Thus the num-
bers of training images available for the individual sets vary
from 20 to 53. Since the flower dataset does not contain a
negative set, we simply use all images from all classes except
the positive class as negative training images.

We conduct the same experiments as for the logos (see
section 4.1.1 for details) to obtain TP and FP values for
each class. However, since the flowers are annotated un-
ambiguously, we can compute the FP on the background
of the positive test images. Again, the number of test im-
ages varies between 8 and 20 due to the limited number of
available annotations.

For clarity we do not show all individual ROC curves but
the equal error rate for each flower class. The equal error
rate corresponds to the point on the ROC curve for which
the false positive rate is equal (or closest) to the false neg-
ative rate. Figure 8 shows the error rates compared to the
error rates of the baseline approach. Also, one example re-
sult for the flower class "Tigerlily” is shown in Figure 1.

For most classes the error rate of our method is compa-
rable to the error rate of the baseline. The most significant
exception is class 2 for which our model apparently does not
work. This is due to the fact that this class has almost no
diversity in the background of the different images, which
violates our assumption that the wanted object must be the
most prominent common feature of the positive images. If
parts of the background, however, are more similar across
training images than the actual objects, our model prefers
background colors over object colors.

Also for the other classes, the baseline is superior. How-
ever, the difference is not as significant, so our results are
satisfying considering the fact that the baseline uses manual
annotations.
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Figure 8: Equal error rates for the 13 classes used from the
flower dataset.

Also note that many flower classes are very similar and
almost identical regarding the color scheme. Therefore ob-
ject colors in some cases appear in a considerable number of
background images. Yet a little amount of noise among the
negative images apparently does not affect the performance
of our approach, which further eases providing negative sets
in practice.

5. CONCLUSION AND FUTURE WORK

In this paper we have proposed a straightforward method
to create a discriminative color model for a given object
class from global image labels. The main advantage of our
model over comparable approaches is that we do not require
manual annotations of positive pixels.

In our experiments we have shown that our approach is
roughly on par with or slightly below a baseline approach
on the majority of our test classes. Given the fact that the
baseline approach is based on pixel-wise annotation, this is
a satisfactory result since our approach only requires posi-
tive and negative labels for the training images, which can
be provided with significantly less human effort. We also
showed that our approach still yields acceptable results in
the face of two different positive objects simulating the case
of objects, which occur in (a few) different colors. Still we
found that the object should not appear in a large number
of different colors.

Besides reducing human annotation effort, our method
is particularly useful for situations where thorough manual
annotation is undesirable due to the number or the nature
of the positive images.

Currently our approach is a basic way to create a color
model, which does not exploit any information except for
global image labels, which still leaves room for improve-
ments. Without requiring further previous knowledge, a
more sophisticated model could for example be based on dis-
cretized n-tuples of colors obtained from connected groups
of pixels instead of single color values from single pixels. An-
other possible extension is the exploitation of shape infor-
mation we obtain from blobs of positive pixels, which might
help identifying certain object classes.

Another interesting direction for future work is adjusting
the method for more intra-class variance in order to create
models for objects which may appear in a somewhat larger
number of differently colored instances. Note that this would
implicitly alleviate one of the strong assumptions which are
required to hold for our method.
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