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Abstract—Fast R-CNN is a well-known approach to object
detection which is generally reported to be robust to scale
changes. In this paper we examine the influence of scale within
the detection pipeline in the case of company logo detection.
We demonstrate that Fast R-CNN encounters problems when
handling objects which are significantly smaller than the recep-
tive field of the utilized network. In order to overcome these
difficulties, we propose a saliency-guided multiscale approach
that does not rely on building a full image pyramid. We use
the feature representation computed by Fast R-CNN to directly
classify large objects while at the same time predicting salient
regions which contain small objects with high probability. Only
selected regions are magnified and a new feature representation
for these enlarged regions is calculated. Feature representations
from both scales are used for classification, improving the
detection quality of small objects while keeping the computational
overhead low. Compared to a naive magnification strategy we are
able to retain 79% of the performance gain while only spending
36% of the computation time.

I. INTRODUCTION

Object recognition has made major advances since the
advent of deep convolutional neural networks. With easy
access to large datasets and increasing accuracy and speed
of deep learning methods, commercial interest to exploit these
methods also increases. Company logo detection is one of such
business interests.

On the surface, company logo detection is nothing but a
special case of general object detection. However, there exist
some subtle differences: Unlike general object detection which
has to account for deformable objects and a huge variety of
potential appearances, company logos are comparatively rigid
in appearance and are typically found on planar surfaces which
tends to simplify the detection.

Other factors tend to complicate the detection task. One such
factor is the typical size of the object instance compared (o
the size of the image. Most datasets for object detection, such
as VOC2007 [1] and MSCOCO [2] consist of comparatively
small images. Objects typically occupy a rather large area
compared to the size of the image. For many applications it is
not necessary to detect every small object instance. In order
to analyze a scene it is often only necessary to detect the most
prominent objects.

By contrast, company logos tend not to be the primary
object the photographer intended to depict and just happen
to get recorded in the background along with the scene. This
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means that company logo detection often has to deal with
high-resolution images whose objects usually occupy only a
small fraction of the image area.

In this work we examine some of the problems which
can arise when using the well-know Fast R-CNN approach
to detect such objects. Our contributions are as follows:
(1) We supply updated annotations and evaluation tools for
the task of object detection on FlickrLogos-32 [3], a well-
known dataset for logo retrieval and classification. (2) We
show that small objects are generally detected with a lower
confidence, leading to a poor detection performance, especially
in high-precision applications. (3) We propose and evaluate a
multiscale detection approach which does not rely on building
a full image pyramid.

II. RELATED WORK

R-CNN [4] is a well-known approach for object detection
with deep convolutional neural networks (DCNNG5). It makes
use of network architectures like AlexNet [5] or VGG16 [6]
which initially were conceived for classification tasks. A
common trait among those architectures is an input layer of
fixed dimensions.

Within the R-CNN framework, regions of interest (ROIs) are
identified in an input image. For this purpose, object proposal
algorithms like selective search [7] or edge boxes [8] are used.
Each ROI is resized to fit the input window of a DCNN and
is classified separately. Since the evaluation of a DCNN is a
computationally intensive task, this process can become very
slow, depending on the number of ROIs in the image.

Fast R-CNN tries to speed up this evaluation by taking
advantage of two properties: (1) The ROIs typically overlap
to a large degree (2) The convolutional layers are agnostic to
the input size.

Fast R-CNN takes two inputs: An image and a list of
ROIs. The convolutional layers are casily resized to fit the
dimensions of the input image. On the other hand, the fully
connected layers require an input of fixed size. In order to
solve this problem a ROI-Pooling layer is introduced which
takes as input the feature map of the complete image and
the list of ROIs. For each ROI a corresponding region on the
feature map is calculated and the features are pooled into a
fixed-size representation using max-pooling. The now fixed-
dimensional feature representation for each ROI is then fed
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Fig. 1. Distribution of groundtruth items, true positives and false positives on the FlickrLogos dataset for a given precision of 0.98 using Fast R-CNN trained

on two different scales.

into the fully connected layers for classification. Fast R-CNN
can therefore avoid to compute a new feature representation for
each ROI which would result in much redundant computation
due to the overlapping nature of the ROIs.

A further improvement to this approach is Faster R-CNN [9]
which does not require externally supplied ROIs but generates
them by means of a region proposal network. However, after
these ROIs are generated, the classification pipeline is identical
to Fast R-CNN. In this work we focus solely on the feature
representation associated with the ROIs. As a result we do
not concern ourselves with the source of the region proposals.
For the scope of this work we can regard both approaches as
roughly equivalent and most results obtained for Fast R-CNN
should also apply to Faster R-CNN.

IIT. FAST R-CNN ON SMALL OBJECTS

While Fast R-CNN offers a great speedup compared to
R-CNN, the two approaches are not equivalent. The output
neurons of the convolutional layers of a DCNN typically have
a very large receptive field. In the widely used CaffeNet [10]
layout for example, every neuron after the last max-pooling
operation has a receptive field of 195 pixels. For VGG16
[6] — another widely used layout — the receptive field for
the equivalent neurons is even larger, covering 212 pixels. In
both network layouts, the receptive fields of two neighboring
neurons behind the last pooling layer differ only by 32 pixels.
Small objects therefore occupy only a small fraction of the
receptive field, yet they can be perceived by multiple neurons.
This means that in order to to extract meaningful features, the
network has to learn to respond to very localized stimuli while
suppressing most parts of the receptive field.

In the R-CNN framework, small objects manifest them-
selves in a different way. Since all ROIs — no matter how
small they are — are rescaled to a fixed size, small objects will
appear blurred in the input window of the network but always
filling the receptive field of the central neuron of the feature
map.

We argue that the input size plays an important role in the
DCNNSs ability to extract distinctive features which in turn can
improve the detection performance. In order to demonstrate

this property, we evaluate the detection performance of Fast
R-CNN on two differently scaled versions of the FlickrLogos
dataset.

We use region proposals generated through a modified [11]
version of selective search [7] which improves the identifi-
cation of text-based objects. Since selective search is biased
towards large objects, we use a rather larger number of
proposals — up to 8000 bounding box proposals per image
— to minimize the exclusion of small objects at the proposal
stage. As long as the object proposals are able to identify small
object candidates, the nature of the proposals is not particularly
important for our analysis since we are only interested in the
suitability of the corresponding feature representations.

We train and evaluate Fast R-CNN on the original images
(scale 1.0) and magnified versions (scale 2.5) using the same
object proposals for both scales. In doing so, we notice an
increase in mAP from 0.668 to 0.711. In Table I we provide
APs for each individual class while Figure 1 shows the
distribution of true positives and false positives as a function of
the object size. In order to generate this figure, a precision of
0.98 has been chosen. Figure 1 makes it clear that the increase
in performance is due to an improved detection of small
objects and that Fast R-CNN has difficulties detecting small
objects in such a high precision setting. This also suggests that
small object instances are typically detected with a lower score
than large object instances. By scaling up the input images this
problem could be mediated, enabling the detection of smaller
objects with a higher confidence.

Note that object instances with a side length smaller than
120 pixels consistently benefit from an upscaled input image
while for object instances with a side length larger than 120
pixels the detection performance tends to decrease. We argue,
that this is due to the fact that by upscaling the image, large
object instances are magnified beyond the 212 pixel receptive
field of the VGG16 network.

These experiments suggest that while convolutional neural
networks are indeed fairly insensitive to scale, they tend to
work best when objects have approximately the same size as
the receptive field. For completeness, we have also plotted the
number of false positives by size. It can be seen from the plot
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that small logo instances tend to be misclassified more often
than large instances but the total number of false positives
remains largely unaffected by the magnification.

In order to exploit this property for datasets containing large
scale variations, this problem could in theory be mediated by
constructing an image pyramid and running the detection on
multiple scales. However, both memory requirements as well
as computational complexity increase quadratically with the
scaling factor. Therefore, this approach is only viable in cases
where objects occupy a large area of the image, relative to the
image size — which tends not to be the case for company
logo recognition. For comparison, the size of the average
object instance in the popular VOC2007 test set is 33% of
the image side length (measured in sqrt(area)) while for the
FlickrLogos test set it is only 15%.

IV. SELECTIVE MAGNIFICATION

The computational costs of applying a DCNN lead Girshick
et. al [4] to turn away from a traditional sliding window
approach for object detection and towards object proposal
algorithms which allow to evaluate only sclected regions of
interest. Similarly, we propose to only selectively magnify
image regions which are deemed interesting enough to warrant
closer examination.

In order to select ROIs that are likely to contain interesting
structures we train an SVM as a binary classifier to predict
the presence or absence of an object using the feature repre-
sentation that Fast R-CNN provides for each ROI. Typically, a
classifier for object detection has to be quite powerful. It has
to provide a localized response only at object locations and
avoid false detections while at the same time being able to
distinguish multiple object classes from cach other. Since the
objective of our classifier is to only perform a pre-selection
of interesting bounding boxes, we do not necessarily need a
classifier with high precision. Therefore the main requirement
is to reduce the number of bounding boxes to be tested
while not missing any interesting objects. A SVM seems
to be a suitable choice for this task since we only have a
binary classification problem and are able to easily adjust the
threshold to achieve the desired recall.

We postulate that this is a much easier task for a classifier
than object detection and we argue that this task can be
accomplished with low-quality features as obtained by Fast
R-CNN on small objects. Figure 2 demonstrates the viability
of this approach on the FlickrLogos dataset, showing the per-
centage of bounding boxes classified as positive as a function
of the recall. For this experiment we have selected small object
instances with a side length between 15 and 80 pixels as
well as object proposals with an overlap (as determined by
intersection over union) of at least 0.5. Negative examples are
obtained by sampling selective search boxes which do not have
sufficient overlap with a groundtruth item. We use features
from Fast R-CNN obtained by 1 x 1 and 3 x 3 ROI-Pooling
to train an SVM which is evaluated on corresponding features
from selective search bounding boxes on the test dataset. An
object proposal is counted as a positive example if it possesses
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Fig. 2. Relative number of bounding boxes which are deemed likely to contain
objects by an SVM classifier as a function of the Recall. Only a fraction of
bounding boxes need to be examined more closely. Shown is the performance
of features obtained by 1x1 and 3x3 ROI-Pooling.

Fig. 3. Examples for ROIs selected for magnification. Selected ROIs are
distributed sparsely across the image. (red) Image areas selected for closer
inspection. (blue) Selected ROIs which are overlapping with groundtruth
annotations for small objects (side length < 80 px). (green) Groundtruth
annotations for small objects not covered by any detection.

an intersection over union of at least 0.5 with a groundtruth
item.

Figure 2 clearly shows that the classifier is able to pre-
dict the presence of small object instances quite well while
excluding a large portion of possible ROIs. For example we
can achieve a recall of more than 80% while only retaining
5% of the bounding boxes for closer inspection. Seeming
like a reasonable choice we select 5% of the bounding boxes
as an operating point for further experiments and adjust the
threshold for the SVM accordingly.

Figure 3 shows example images containing a visualization
of the areas which are selected by the SVM for closer
inspection while Figure 4 shows the ROIs contained within
these selected areas. From these two images we can make three
observations: (1) The image area occupied by ROIs classified
as positive is small compared to the full image. (2) ROIs which
are classified as positive are not distributed evenly over the
image but tend to appear in clusters. (3) Image areas which are
deemed interesting by the SVM still contain many overlapping
ROIs, despite their small scale.

Taken together, these observations mean two things: (1)
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Fig. 4. Connected components of overlapping ROIs packed into a min-area
rectangle. On the right, individual bounding boxes are shown. Even small
image areas contain many overlapping object proposals.

Since the computational costs mainly depend on the image
area, partial magnification of the image will, on average, save
computation time compared to magnifying the complete im-
age. (2) Fast R-CNN still offers potential speedups compared
to the R-CNN approach — even on small scales. Based on these
observations we propose the following modified detection
pipeline.

V. DETECTION PIPELINE

As with Fast R-CNN, our network receives an image and a
list of ROIs as input. We split the ROIs into two groups — large
and small — based on the image area they occupy. As Figure
1 suggests, Fast R-CNN begins to have difficultics to reliably
detect structures with a side length smaller than 80 pixels.
We therefore choose a side length of 80 pixels as threshold
to separate the ROIs into these groups. Like Fast R-CNN,
the convolutional layers compute a feature representation for
the complete image while the ROI pooling layer generates a
fixed-length feature representation by mapping the coordinates
of the original ROIs to the corresponding coordinates on the
feature map.

Since we are looking for structures with a side length
smaller than 80 pixels, the spatial extent of the feature rep-
resentation is quite small: When using network architectures
like CaffeNet or VGG16, the resolution of the last feature map
before the ROI pooling is reduced by a factor of 16 compared
to the original image. This reduction factor is used by the
ROI pooling layer to project the ROI from image coordinates
onto the feature map. The spatial extent of the mapped ROI
is then being split into n X n bins, performing a max-pooling
operation for each bin. Because of this conversion, we expect
the relevant features to have a spatial extent of at most 5 pixels.
Because of this, we choose a 3 x 3 ROI pooling, which seems
like a reasonable compromise between spatial information and
the dimensionality of the features for the SVM.

For this purpose, we add a 3 x 3 ROI pooling layer to
the network layout in addition to the 7 x 7 ROI pooling
layer employed by Fast R-CNN for classification. We have
also experimented with 1 X 1 pooling which results in a
feature of only 512 dimensions. However, we found the

feature representation to be significantly inferior to a 3 x 3
representation. This means that for every ROI we obtain two
feature representations of different dimensionality.

All features obtained from the 7x 7 ROI-Pooling are directly
classified using the standard Fast R-CNN pipeline. For small
ROIs, we use the additional 3 x 3 feature representation as
input for an SVM in order to predict a score, which in
the following we call the ’objectness’ of the ROI — not to
be confused with the generic objectness measure developed
by [12]. Similarly to [12] a high ’objectness’ score indicates
a high probability of the ROI containing an object of interest.

ROIs which are classified as positive by the SVM tend to
overlap and form clusters in the original image. The clusters
of ROIs are fed into a rectangle packing algorithm. From this
rectangle packing, a new image is compiled by copying the
corresponding image patches from the original image. This
packed image is magnified and run through the Fast R-CNN
pipeline a second time, computing a new feature representa-
tion. The detections from the second pass are mapped back
into the original image and combined with the detections
from the first pass. Detection results from both passes jointly
undergo post-processing, such as bounding box regression and
non-maximum suppression.

Using this approach, we arc able to avoid upsampling
the complete image while processing small object instances
on a scale which is suitable for the receptive field of the
network and preserving much of the speed of the Fast R-CNN
approach.

VI. PACKING SMALL OBJECTS

In order to keep data transfers between host and GPU
memory to a minimum we want to pack all image regions
deemed interesting by the SVM into a single new image.
Since the computational costs of applying the DCNN is mainly
dependent on the area of the image, we use a simple rectangle
packing algorithm to find a packing which (approximately)
minimizes the image area.

This is done in four steps: (1) The ROIs classified as positive
by the SVM tend to overlap strongly. We identify connected
components of overlapping ROIs. Each component is treated
as a single entity in a rectangular image patch to be packed.
(2) By tightly cutting out image patches, we risk to loose
important image information. For this reason, each image
patch is padded. We found 50 pixels to be sufficient. (3) A
rectangle packing algorithm is run to identify the minimum
area arrangement for the padded image patches. (4) Based
on this arrangement, a new image is created by copying the
corresponding image patches from the original image.

Finding an exact solution to the minimum area packing
problem is NP-hard [13]. However, several efficient heuristics
exist which tend to yield good approximations. The rectangle
packing algorithm we use is an implementation of the method
described by [13].

A quantitative evaluation of the average reduction in image
area is given in Figure 5. The average reduction factor f was
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Fig. 5. Average reduction in image area through rectangle packing as a

function of the recall. Computational effort is most prominently influenced
by image area. Therefore, most of the detection performance can be retained
while only requiring a fraction of the computation.

calculated on the logosonly subset of the FlickrLogos test set
and is given by:

1 N ANn
f:N;A_n (1)

where N is the number of images in the test set, A, is the
area of the n-th image and A, the area of the packed n-th
image. In case of an image in which the SVM does not mark
any ROI for closer inspection A,, = 0.

An example output of this algorithm when applied to one
of the example images in Figure 3 is shown in Figure 4.

VII. EVALUATION

In order to evaluate the detection performance on small
objects we use the well-known FlickrLogos-32 dataset [3].
This dataset has originally been conceived for logo classi-
fication and image retrieval. We supply an evaluation script
for object detection as well as new annotations for the object
instances resolving previous problems with images containing
multiple conflicting logo classes. Additionally, missing anno-
tations have been fixed and new classes have been added.
Company logos often consist of both a text and a symbol
component. Both components often appear separate from each
other. Where applicable, the annotations of product logos have
been split into separate classes for the text and the symbol
component. The set of images itself has not changed but the
division of images into training set and test set has changed to
allow for a balanced partition of the newly annotated classes.

For all our experiments, we use a modified [11] version of
selective search [7]) as our object proposal algorithm. We filter
object proposals with a side length smaller than 15 pixels and
place a limit of max. 8000 bounding boxes per image. This
rather large number has been chosen since object proposals
by selective search are biased towards large objects. Since we
are studying the feature representation of small objects we are
not primarily concerned about the source or quantity of object
proposals. We simply want to make sure that small objects are
not already excluded at the proposal stage.

In Table I we compare the results of three experiments:
(A) represents our baseline for which we evaluate the default
Fast R-CNN approach on FlickrLogos-47 for input images
which were not scaled in any way. In (B) we scale up the
whole images by a factor of s = 2.5 for both training and
testing. In (C) we use the original images as input to our
modified detection pipeline only magnifying selected image
patches. The packed image patches selected by the SVM are
upscaled by a factor of s = 2.5. The SVM is tuned for a
recall of r = 0.9 which on average results in packed images
which occupy only 10% of their original area. We use the
same object proposals for all our experiments.

Table I reports the APs for each individual class, the mAP
and the average execution time per image. We can observe
that (B) improves the overall detection performance by 4.3
points which represents an increase in performance relative
to (A) by 6.4%. Similarly, (C) improves the overall detection
performance by 3.4 points which represents an increase in
performance relative to (A) by 5.0%.

From a comparison of the individual APs it is evident
that nearly all individual classes can potentially benefit from
upscaling the images, the only exceptions being the classes
"'BMW’, "Google’ and "HP’. This can be partly explained
by the fact that ' BMW’ and ’Google’ are outliers when
comparing the average object size between classes. In both
classes the average sidelength of an object is unusually large.
Even without any magnification the average object in these
classes is close to filling the receptive field of the network.

However, the gain in overall detection performance of (B)
comes at the cost of greatly increased execution time per
image. Relative to (A) the increase in execution time is 245%.
Our approach of selectively upscaling ROIs is able to achieve a
mAP which is close to the performance of (B) but at a greatly
reduced average execution time per image. Relative to (A) the
execution only increases by 25%. All timing experiments were
conducted on a Quadro K6000 GPU with 12 GB of memory.

In Figure 6 we plot the average object instance size against
the change in AP for each class. Unsurprisingly, small objects
tend to benefit more strongly from magnification than large
objects.

Another interesting observation can be made if we follow
the regression lines to the point where objects are so large that
no improvements through magnification are to be expected.
This point coincides well with our observation from Figure 1
that DCNNs have trouble detection objects which are larger
than the receptive field of the network (which in the case of
VGG16 is 212 pixels) and further supports our hypothesis that
DCNNs work most effectively when the object is scaled in
such a way that it approximately fills the receptive field of a
neuron on the feature map.

VIII. CONCLUSION

We have shown that the detection performance of Fast R-
CNN depends on the scale of the objects. Larger objects tend
to be classified more confidently than small object instances,
leading to problems in high-precision applications. We have
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TABLE 1
PERFORMANCE ON THE FLICKRLOGOS DATASET.

Adidas  Adidas . Becks Becks Carlsberg ~ Carlsberg  Chimay  Chimay Coca-  Corona
symbol text Aldi Apple symbol text BMW symbol text symbol text cola symbol
A 539 24.0 64.4 79.0 70.7 55.0 79.1 59.6 52.5 842 72.2 56.2 77.0
B 57.2 41.9 74.8 84.0 74.5 58.6 77.1 61.4 58.4 85.4 70.0 58.4 85.2
C 61.1 34.1 80.9 84.9 75.6 57.4 78.6 63.7 56.4 84.9 76.2 58.5 82.7
Corona Erdinger  Erdinger Esso Esso . Fosters  Fosters Guiness
text DHL symbol text symbol text Fedex Ferrari Ford symbol text Google symbol
A 79.0 59.5 922 84.8 83.7 13.8 75.5 94.9 81.4 72.8 70.1 73.7 75.5
B 80.4 75.0 95.7 88.4 84.5 15.6 78.1 95.0 85.2 78.9 73.0 63.4 78.5
C 78.8 63.1 95.3 82.2 85.2 14.0 71.5 95.4 82.6 75.3 67.5 71.8 83.0
Guiness Hein- . nVidia nVidia  Paulaner Paulaner Pepsi Pepsi Ritter- Singha
text eken HP Milka symbol text symbol text symbol text sport Shell symbol
A 57.0 454 74.9 49.2 573 19.4 82.8 39.4 35.1 18.2 61.8 80.2 88.8
B 56.7 68.2 73.1 63.0 61.1 31.8 85.5 41.7 42.7 22.6 71.4 88.9 93.4
C 58.5 59.3 71.4 58.8 67.0 27.4 85.1 339 36.0 16.7 74.2 89.4 89.9
Singha Star- Stellart. Stellart. o Tsingt. Tsingt. .
text bucks symbol text Texaco symbol text ups mAP tme
A 81.5 76.3 88.5 88.0 79.9 76.4 70.5 85.3 66.8 0.82s
B 72.1 84.4 90.6 90.3 83.9 78.8 73.0 92.0 71.1 2.83s
C 81.7 74.8 88.3 87.7 89.6 82.9 73.2 86.0 70.2 1.03s
Change in AP vs. avg. object size to express our gratitude for their help in re-annotating the
2 ! . ! N ! ? FlickrLogos dataset.
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