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Abstract—In this paper we present an approach to automatic
object annotation. We are given a set of positive images which
all contain a certain object and our goal is to automatically
determine the position of said object in each image. Our approach
first applies a heuristic to identify initial bounding boxes based on
color and gradient features. This heuristic is based on image and
feature statistics. Then, the initial boxes are refined by a latent
structured SVM training algorithm which is based on the CCCP
training algorithm. We show that our approach outperforms
previous work on multiple datasets.

I. INTRODUCTION

In this paper, we address the issue of automatically an-
notating objects of interest by determining their bounding
boxes in images. We only exploit “weak labels”, i.e. binary
image labels which indicate if a desired object is present in
a given training image. In the context of our work, a desired
object is an instance from an object class with relatively low
intra-class variance with regards to a given set of features.
Our goal is to reduce the annotation process from manually
drawing bounding boxes to providing a set of positive images.
Our work builds on previous work of Ries et al. [1] which
we thus use as our baseline. In comparison to this work
we have a number of novel contributions: First, we unify
parameter selection for different feature types in the heuristic
for initial bounding boxes. Second, we enhance the method
by adding the capability to identify (i.e. annotate) multiple
object per image. Third, we propose using a latent structured
Support Vector Machine (SVM) training algorithm for refining
bounding boxes. We require that the following assumptions
hold with regard to the features we use: (1) a negative image set
is provided which is relatively representative for background
of the positive features, and (2) the background of the positive
images is more diverse than the wanted objects themselves.
Random photos usually fulfill the first requirement.

II. RELATED WORK

As mentioned above our work is based on [1] which
is also used as the baseline in our evaluation section. As
local features we use HOG (Histogram of Oriented Gradients)
features [2]. We train our latent structured SVM by an instance
of the CCCP (Convex-concave Procedure) algorithm [3] which
was suggested for latent structured problems in [4]. Our
implementation of the CCCP algorithm is inspired by Zhu et
al. [20]. Testing each possible rectangle within our images is
sped up by computing the dot product of the linear SVM with
integral images analogous to [5].

Fig. 1: Left: result of applying a color model (green pixels), a
HOG model (blue), and their combination (cyan) to an image
of class "Coca Cola brand logo”. Right: initial (cyan) and
final (green) result of our annotation algorithm. Yellow boxes
(mostly covered) are ground truth.

In recent research, the idea of learning from weakly labeled
data has attracted much interest. For instance, in [6] discrim-
inative segment annotations from weakly labeled video are
determined. One of the scenarios is called transductive segment
annotation which denotes finding a common object within
weakly labeled video frames. In [7] the task of annotating
weakly labeled data exploiting a large amount of negative data
is discussed. Also, the concept of Multiple Instance Learning
(for instance used in [8], [9]) is related to our problem.
In another recent work [10], synthetic training examples in
weakly labeled videos are searched using only a few manually
labeled training examples. Another interesting approach [11]
has a similar goal as automatic annotation: by defining an
“objectness” measure, image regions are evaluated for their
probability of showing an interesting object.

III. INITIAL BOUNDING BOX ESTIMATES

Let F be the discrete and finite domain of feature values
of a certain type. We aim to determine a subset Fy,s C F
which consists of positive features, i.e. features indicative
for the wanted object class. An image property which is
independent of the unknown sizes and positions of the object
instances is the binary property f(I) € {0, 1} which indicates
whether image I contains feature f € F at least once. We
can now compute the relative number Pp(f([)) of images in
positive image set P which produce feature f. Analogously,
we determine the probability Py (f(I)) for negative image
set V. Our task is now to determine based on Pp(f(I)) and
Py (f(I)) whether feature f is indicative for the wanted object.
Since P is significantly smaller than N, we can model our



expectation for the number of images in P with f(I) = 1
for a background feature by a normal distribution (which
is an approximated binomial distribution for n > 30) with
0% = py - (1 —pg)n~" where n = |P| is the sample size,
py = Pn(f(I)) the expected relative occurrence frequency of
f(I) in the background, and nzy = nPp(f(I)) the number
of images in P with f(I) = 1. This allows us to determine
positive features by a decision function ¢(f) based on a one-
sided confidence interval on x;:

o(f) =0(zp &[0, pu5 +6¢]) Q)

where §(A) is 1 if A is true and 0 otherwise. Note that we re-
move those features which are relatively less frequently present
in positive images than in negative images (i.c. y < ). All
features for which ¢(f) = 1 form the set of positive [eatures
Fos. In order to merge multiple features, we simply intersect
the sets of positive pixels by a logical AND. The constant
zp determines which (i.e. how many) features are considered
positive. We choose zr (and thus 0y) dynamically for each
feature type, in contrast to the baseline approach [I]. If a
feature type is not discriminative with respect to an object
class, we want a relatively large set Fj,,s. The reason is that
we intersect sets of positive pixels from multiple feature types.
False positive features are therefore less harmful to our model
than false negatives. We consider the “best” feature f* we
observe for feature type F' a good indicator for a feature’s
distinctiveness. The best ("most positive”) feature f* is the
one feature f € F which has the smallest value N (z¢; fif, a]%).
Now let 2}, be the value of zp for which f* is the only feature
included in the interval of ¢(f). The value of our threshold then
depends on oz}, ie. 0 = azjos, where « is an empirical
constant, for which we experimentally determine a = 0.4.
Note that « is an intuitive factor which is independent of the
feature type as opposed to zpg. Fig. 1 illustrates the results
of applying the threshold by showing positive pixels for two
feature types.

Since we do not know the number of instances in a
positive image, we iteratively fit Gaussian Mixture models with
k € {1,...,5} components into the set of positive pixels. For
each k, we determine the likelihood of mixture parameters and
find the value of k& for which the largest increase in likelihood
is observed (as long as the increase is larger than an empirically
chosen threshold). We then estimate the i-th bounding box as
centered around (f4; o, its,y) With width and height of 3.20; ,
and 3.20;,, where fi; ;. [liy, 044, and o;, are the mean
values and standard deviations of the i-th Gaussian mixture
component in x- and y-direction, respectively. The enlargement
constant 3.2 proved to be a good choice based on experiments.
We remove bounding boxes with extreme aspect ratios and
merge overlapping boxes into a single larger box.

IV. LATENT STRUCTURED LEARNING FOR BOUNDING
BOX IMPROVEMENT

In this section we explain how we improve our box
estimations by latent structured training. In our case, input
instances are images, and the structured output label space
Y is the space of possible rectangles. Since our initial labels
will in many cases be incorrect, we do not know if a label
describes the actual object position. Thus, we treat the true
object position as an unobservable, i.e. latent, property h; for

cach instance j, initialized by the respective bounding box
from our initial model. Our feature representation ¥(z,y;, hj)
depends on the latent variable h; which is the current estimate
for the object position. We now train a latent structured SVM
with linear kernel and model vector w in order to find optimal
values for our latent variables with decision function

fw(@) = argmax (w,¥(z,y,h)) @
(y,h)EY xH

To solve this task, we minimize the empirical risk on the
training set, which is the average loss A(y;, ¢, h) on the train-
ing data. Like [20], we use the standard binary loss function.
Following [12] and [4], the optimization problem can then be
written as minimizing the difference of two convex functions,
so we can solve it using an instance of the CCCP algorithm [3]
as suggested for solving latent structured problems by Yu
and Joachims [4]. The CCCP algorithm iteratively solves the
optimization problem and updates the latent variables. Upon
termination, the latent variables are then returned by our
algorithm as our final bounding box estimations.

V. IMPLEMENTATION

For our initial model we use two features: pixel colors and
Histograms of Oriented Gradients (HOG) [2]. Following the
method of [1] based on [13], we create a histogram of positive
colors. The correlation between pixels and features is trivial.
The HOG features [2] are extracted on a dense 8 x 8 grid over
multiple scales. We concatenate 2 x 2 HOG cells for each grid
point in order to obtain a more meaningful description, and
cluster the features into 10,000 visual words. Positive pixels
are pixels under patches belonging to positive HOG features.

For the feature representation W(x;,y;, h;) of our training
instances for the CCCP algorithm, we again use the HOG-
based visual words from before as bag-of-words (BOW) his-
togram extracted from rectangle h;. Since HOG features live
on a regular grid, we define a number of reasonable aspect
ratios on up to 17 different image scales. For solving the
optimization problem (finding model vector w) within the
CCCP algorithm , we use the cutting plane algorithm proposed
by Joachims et al. [14] and the solver of SVMLight [15].
Note that the algorithm requires finding the one rectangle
with the maximum score for the current given model vector
w for each negative (raining example which we implement
efficiently based on the technique of efficient sub window
search proposed by Lampert et al. [5].

For determining new values for the latent variables, we
search for the highest scoring rectangles within all positive
images. We ensure that the updated bounding box still has
some small minimum overlap (0.05) with the bounding box
from the initial model preventing predictions of multiple
instances from “moving” towards a single object instance. For
each iteration, we determine the one aspect ratio in terms of
HOG grid cells which describes the majority of instances and
then allow only 1 cell deviation from this ratio. Finally, we
perform three post-processing steps: (1) We search in double-
resolution images for very small instances. (2) On the smallest
scale, we snap detections to the initial positive pixels. (3) We
perform non-maximum suppression.



(d)

Fig. 2: Results from FlickrLogos-32 (a-c), Oxford Flowers (d), and 3D Objects (e) for the initial model (cyan) and the CCCP
algorithm (green). False positives have respective darker colors in (b). Yellow marks the ground truth annotations.

VI. EVALUATION

We evaluate our method on 3 publicly available datasets:
FlickrLogos-32 [16], Oxford 17 Flowers [17], and 3D Ob-
ject Categories [18]. Oxford 17 Flowers and a subset of
FlickrLogos-32 were already used in the baseline work of [1].
We assess performance by overlap-recall (OR) plots which
show which ratio of object instances (i.e. recall or ratio of
true positive detections) are detected at a certain overlap
with ground truth rectangles. The CCCP algorithm always
used 1000 negative images from the negative class of the
FlickrLogos-32 dataset. Since we detect multiple objects per
image, we also state the average absolute number of false
positive rectangles per image (not to be confused with a
relative false positive rate) as “avg. # FP” in the legend of
each plot. A few example results are given in Fig. 1 and
Fig. 2. Fig. 2a, 2b, and 2e show examples where the CCCP
algorithm finds a better bounding box than the initial model.
Also, a false positive detection is shown in Fig. 2b (dark cyan
for initial model, dark green for CCCP). Figures 2c¢ and 2d
show examples where the CCCP algorithm fails to improve the
detections. In figure 2c¢, the CCCP algorithm returns a partial
detection, while in 2d the bounding box is too large.

For our first experiment we select the same six logo classes
as the baseline approach [1]. Our results are shown in Fig. 4
where the baseline is depicted by a dashed black curve. For
most classes the baseline is outperformed significantly by the
initial model (cyan line), except for "DHL” where it is roughly
on par with regards to area under the curve. For all classes
except “Pepsi” and Shell” the results after using the CCCP
algorithm (green line) are better than the initial model. The
average number of false positive rectangles of 0.33 over all
six classes is slightly higher than the baseline with 0.305,
which estimates only one rectangle per image. We also test
our approach on the remaining 26 classes of FlickrLogos-32
and combined the results into one curve in Fig. 4a. The CCCP
algorithm only slightly improves the results compared to the
initial model. However, only for 7 classes, the initial model
yields better results due to the tendency of CCCP to converge
towards partial, but more distinctive objects. One example for
this issue is shown in Fig. 2c. Note that the CCCP algorithm
still finds a distinct object which all positive images have in
common. In another experiment we evaluate the usefulness
of automatic object annotation for a logo recognition system
based on k-nn classification of the top-k retrieval results [19].
Each query image is classified by performing a majority voting
among the top k retrieved images. We create the reference
database either by extracting RootSIFT features (1) from full
images, (2) from the regions determined by our method, or (3)
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Fig. 3: OR curves for six logo classes used in [1].

from the regions obtained by manual labeling.Table I states
the average recall of the k-nn classifier over all logo classes.
Note that the database also has non-logo images which may
also affect the recall of a k-nn classifier. Our bounding boxes
improve the performance compared to retrieval on full images
and is slightly inferior to manual annotations.

Alike the baseline approach we also use the Oxford 17
Flowers dataset [17]. For our initial color model we use
the images of all other flower classes as negative sct. For
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I k[ L[ 31 5 [ 7 9]
full images | 0.82 | 0.81 | 0.79 | 0.78 | 0.77

our boxes | 0.86 | 0.84 | 0.83 | 0.82 | 0.81

human annotations | 0.87 | 0.85 | 0.85 | 0.84 | 0.84

TABLE I: Average recall of k-nn classification on retricval
results for FlickrLogos-32.

the HOG features and CCCP algorithm we use the negative
set of the FlickrLogos-32 dataset. Our results are shown in
figure 4b. Interestingly, the CCCP algorithm does not improve
the results beyond the initial model and is even slightly below
the baseline. Note, however, that the baseline uses a manually
chosen aspect ratio. Also, HOG is not a suitable feature for
flowers (let alone as BOW) and the requirement that the
background is more diverse than the object is not often met.

For our final experiment we use the 3D Object Cate-
gories [18] dataset. Each class consists of ten different objects
in front of different backgrounds. We pick a subset of 150
images with roughly similar viewpoints for each of the ten
object classes. Our OR curve over all instances from all ten
classes is shown in Fig. 4c. The CCCP algorithm improves the
overlap with the ground truth, since unlike the Oxford Flowers
dataset, the objects have more distinct gradients. An example
result for the class “stapler” is given in Fig. 2e.

VII. CONCLUSION AND FUTURE WORK

We have presented an approach to automatic object anno-
tation from weak image labels. We initially estimate sets of
positive features of two different types and estimate multiple
bounding boxes per positive image. We then use a latent SVM
learning algorithm (namely the CCCP algorithm) to refine
the bounding box estimations based on BoW histograms. In
our experiments we show that our initial model outperforms
previous work and in many cases the CCCP algorithm further
improves results.. Even though there is still room for im-
provement, our results are promising given the limited amount
information we exploit. In future work we could consider
additional features for our learning algorithm in order to
exploit information complementary to color and HOG. Also,
our approach still has a few empirical static constants which
should be selected adaptively. Experiments show that we would
obtain better results for some classes by using class-optimized
parameters.
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