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Abstract

Three different frame features (color patches, color co-
herence vectors, and gradient histograms) are investigated
for their suitability to recognize recurring video clips in
very large databases. They are evaluated in a real-time pro-
cessing and real-time recognition system. Real-time recog-
nition means that each clip must be recognized one second
after its start. As the experimental results show, only gra-
dient histograms work satisfactorily across different video
material with the same video domain independent param-
eter set. For instance, they are – in contrast to color fea-
tures – not negatively affected by dark frame sequences in
video clips and the live video stream. By means of pre-
computation and subsequent table look-ups, gradient his-
tograms can be implemented such that their computational
costs come very close to that of color features.

1. Introduction

In the recent past several methods for recognizing reoc-
curring video clips (such as commercials) in video streams
have been developed. Most schemes are based on deriv-
ing features from individual video frames, and then search
for feature sequences in live-streams that match one of the
stored feature sequences of the desired video clips.

For real-time recognition in live-streams color features
such as color moments or color histograms are preferred
due to their low computational complexity. On live-streams
frame features must be computed in a fraction of 40ms
(PAL) or 33 ms (NTSC), respectively. In practice, how-
ever, the various color features exhibit some serious defi-
ciencies mainly concerning low intensity (i.e., brightness)
sequences. Video clips with a large fraction of darker
frames cannot be satisfyingly distinguished from each other
mostly due to color quantization effects. Especially in
the case of commercial recognition there is a need for

domain-independent universally working features. Adver-
tisements can be of any style. They may be designed like ac-
tion/horror/romance movies, comics, newscasts, sportscasts
or all other possible genres occurring on TV. They occur in
all kinds of broadcast - from feature movies to MTV. This
clearly requires highly robust features.

It has been shown that edge-based features may improve
video clip recognition over color features [1, 2]. Normally,
however, their computational complexity is at minimum a
magnitude above that of color features. In this work we in-
troduce an edge feature called Gradient Histograms for rec-
ognizing video clips which is almost as fast as the various
investigated color features, but improves significantly the
general precision and recall of video clips across all tested
video genres.

Unlike almost all related work the term ”‘real-time”’ has
a double meaning in our work: (1) the overall processing
time must be faster than 25 fps for PAL videos and (2)
known video clips must be recognized with 1 second (i.e.,
within 25 frames for PAL). All performance numbers are
reported of this case.

Related Work: In our work we study two different color
features: color coherence vectors (CCVs) and color patches
(CPs). CCVs have been introduced by Pass et al. [5] and
applied to commercial detection by Lienhart et al. [3]. CPs
have been described for instance in [1].

CCVs extend a color histogram by splitting it up into
two histograms: One histogram recording the color distri-
bution of so called homogeneous pixels and one histogram
recording the color distribution of so-called inhomogeneous
pixels. The sum of both histograms becomes a plain-vanilla
color histogram. A pixel is regarded as coherent if it be-
longs to a larger region (larger than a certain threshold) of
the same color, while a pixel is regarded as inhomogeneous
otherwise.

CP features measure the coarse color distribution of the
image. The whole image is divided into N ×M subareas,
to each of which the mean intensities are assigned. In dif-



ference to [1] we work in the RGB space with both color
features.

2. Gradient Histograms

Definition: Different edge-based features have been in-
vestigated as sequence fingerprints in the past. Hampapur
and Bolle, for instance, compared a gradient-based analog
to color patches. In addition to the average gradient mag-
nitude they also used higher order moments for each sub-
area [1]. In [2] they use amongst others a gradient direction
histogram of the whole image.

In our work we deal with a combination of these two
variants. Each image is described by a vector of gradient
orientation histograms for each of the N ×M subareas of
an image. This gradient histograms were inspired by the
SIFT feature introduced in [4]. For each image pixel its ori-
entation and magnitude of the gradient is calculated. In the
gradient direction histogram each sample point is weighted
by the gradient magnitude.

Let

I(x) − Grayscale intensity value, I(x) ∈ (0, 255) ,

and

∇I (x) =
(

∂

∂x1
I (x) ,

∂

∂x2
I (x)

)
− the gradient intensity at point x.

The magnitude of gradient ∇I (x)

Mg (x) =

√(
∂I (x)
∂x1

)2

+
(

∂I (x)
∂x2

)2

(1)

and orientation

Θg (x) = arctan


∂I (x)
∂x2

∂I (x)
∂x2

 (2)

are calculated by using pixel differences as gradient approx-
imation

∂I (x)
∂x1

≈ I (x1 + 1, x2)− I (x1 − 1, x2) , (3)

∂I (x)
∂x2

≈ I (x1, x2 + 1)− I (x1, x2 − 1) . (4)

Thus, we use the following discrete representation for in-
tensity gradient magnitude and orientation:

mg =
√
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2
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θg = arctan
(
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)
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For histogram evaluation we divide the whole image into
N ×M subareas Inm with

Inm (x1, x2) = I (x1, x2) (7)

with

x1 = Xn, . . . , Xn + Hn − 1,

x2 = Ym, . . . , Ym + Wm − 1

(Xn, Ym) − first sample point of image part Inm,

Hn − height of Inm,

Wm − width of Inm,

n = 1, . . . , N,

m = 1, . . . ,M,

over each of which we accumulate gradient magnitude val-
ues in K bins, covering the range of possible gradient ori-
entation.
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with
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{
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0 else,
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We measure the distance between two images I1 and I2

with the L1-Norm

DGH (I1, I2) =
1
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The size of the gradient histogram fingerprint is N×M×K
values Hk

nm.



Reduction of fingerprint size: Due to Equations 8 and
9 we deal with normalized histograms, i.e., gradient his-
tograms whose component values sum up to 1 (L1-norm).
The component values are naturally represented by floating
point numbers resulting in relatively large feature vectors.
For real-time search in large databases smaller feature sizes
are preferred. Therefore we map all floating point values to
1-byte integer values.

Empirical analysis shows that the fingerprint values
Hk

nm are not uniformly distributed in (0, 1). Especially
values near 1 are very unlikely to be observed and can
be lumped up into one value. To keep computational
mapping cost low we apply a linear mapping from range
(0, L) → (0, 255), L ∈ (0, 1) with saturation at the higher
bound. Thus, we use a scaling which maps only the lower
values near 0, i. e. the interval (0, L), to the destination
interval; all values greater than L are assigned to the highest
value 255. The concrete choice of L depends on the values
of N , M , and K. With the use of 1-byte integer values we
can reduce the fingerprint size to a quarter of its former size.

Reduction of computational costs: The computation of
edge-based features is normally more than 10 times more
time consuming than the computation of color-based fea-
tures. According to Eqs. 5 and 6 we deal with the square
root for the gradient magnitude and the really expensive arc
tangent function for the estimation of the gradient orienta-
tions. To circumvent the repeatedly evaluation of such com-
plex functions the use of look-up tables is a proper alterna-
tive. In our case we work on a discrete and limited range of
values represented by all possible differences of two 1-byte
unsigned integer values. That means both of our two argu-
ments in Eqs. 5 and 6 are in the range (−255, 255), and a
511 × 511 - table for each of the possible difference value
pairs is sufficient for holding all correct values. Moreover,
we include the estimation of the bin number of the orienta-
tion histogram in our look-up table. In result, we completely
avoid the computation of the arc tangent - after building the
look-up table - and estimation of the orientation histogram
bin directly through a table look-up. By the this technique
the computation of the gradient histogram is accelerate by
more than a factor of 10 on current Dual-Core processor
machines. We want to point out that size of the look-up
table can be reduced by quantizing all possible difference
values of two 1-byte integers to fewer bits.

3. Experiments

For our investigations we deal with two MPEG-2 test
videos of different properties: one 4-hour NTSC video
(720x480) from US television (431,540 frames) and one
approximately 3-hour PAL video (720x576) from UK
(281,896 frames). Both videos differ not only in their TV

standard, but also in their content and visual fidelity. Be-
cause these differences impact the recognition results, we
need to discuss the characteristics of our test videos in more
detail: The US test video contains a mixture of news, sports,
movies and commercials, whereas the UK test video is
taken from SkySports TV. The main part of the video are
sports news paused by commercial blocks. Visually the UK
video is of inferior quality and of higher average intensity
(brightness) compared to the US video. Commercials are
mostly separated by hard cuts and one-frame dissolves in
the UK video, whereas in the US video commercials are
mostly separated by a couple of black frames. As we will
see the various tested frame features exhibit different sensi-
tivity to these individual differences of the two test videos.
Figure 1 and Figure 2 show four sample frames from the
UK and USA video.

Figure 1. Sample frames from the UK video.

Figure 2. Sample frames from the US video.

The US video contains 152 manually detected commer-
cials, intros/outros, and previews (in the following all test
sequences are called commercials), 97 of them are differ-
ent. We take one sample of each of the 97 commercials as
query for building our database, even if there is no dupli-
cate in the video, because one critical point for color-based



features is precision. We do not want to get false alarms.
So, we test against all entries in our database. The query set
of the UK video consists of 65 distinctive test sequences;
including all duplicates we found 104 commercials.

We use the approximate substring matching algorithm
described in Lienhart et al. [3] for finding similar video
sequences: We construct a fingerprint of each commercial
by calculating important features per frame and then
represent a commercial’s fingerprint as a sequence of these
features. We call the representation of the value of a feature
a character, the domain of possible values an alphabet, and
the sequence of characters a string. Approximate substring
matching then solves the following problem: Given a
query string A of length P and a (much) longer subject
string B of length N , the approximate substring matching
finds the substring of B that aligns with A with minimal
substitutions, deletions and insertions of characters [6].
A cost of 1 is assigned to deletions and insertions, while
the cost of substitutions is based on the distance between
both feature vectors under comparison. We need to design
a feature distance function there similar frames have a
distance less than 1, and arbitrarily selected frames should
have a distance value greater than 1. All distance values
above 1 are saturated to 1. To meet these requirements
we use a scaled L1-Norm as our feature distance function,
because Eqn. 10 gives much too small values (always less
equal 1). The minimal number of substitutions, deletions
and insertions transforming A into the best matching
substring of B is called the minimal distance D between
A and B. Two fingerprint sequences A and B are regarded
as identical if the minimal distance D normalized by the
query length P between query string A and subject string
B does not exceed the threshold tstringDist.

For the computation of the three different frame features
the parameters are listed in the following: We downscale
video frames to half the resolution 360 × 240 for NTSC,
and 360× 288 for PAL, respectively, in order to reduce the
computing time.

Color Coherence Vector (CCV): We take the two most
significant bits of each RGB color component for creating
the histograms of the coherent and incoherent pixels. A
pixel is regarded as coherent, if the region of the color it
belongs to is greater than 1% of the whole image. Finger-
print size is 2 × 23B (B = 2 - number of significant bits).
For measuring the distance between two color coherence
vectors V (I) we use the L1-Norm normalized by its com-
ponents

DCCV (I1, I2) =
1

23B+1

23B+1∑
n=1

|Vn (I1)− Vn (I2)|
Vn (I1) + Vn (I2) + 1

.

(11)

The distance from Eq. 11 is multiplied by 10, so that the
scaled function approximately meets the requirements by
the approximative substring algorithm, that non-matching
frames have a distance greater than 1.

Color Patches (CP): The CP features operates on
N ×M subareas as the GH features do too. It is formed by
the averaged RGB color intensities Cnm (C ∈ (R,G,B)
on these subareas. The notation concerning these subareas
follows Equation 7. The whole CP feature C (I) has a size
of 3 × N ×M , and we measure the distance between two
vectors with the L1-Norm

DCP (I1, I2) =
1

3NM
∗

∑
C∈(R,G,B)

N∑
n=1

M∑
m=1

|Cnm (I1)− Cnm (I2)| . (12)

For our experiments we use N = M = 8 and divide the
distance from Eq. 12 by 80.

Gradient Histograms (GH): For the GH features we
take the same spatial resolution, i. e. N = M = 8. We set
the number of bins of the GH to 8. Experiments yield for
N = M = K = 8 to a value L = 0.2 for mapping to 1-byte
integer values. So, we only differentiate Hk

nm values in the
range (0, 0.2), all values greater than 0.2 are considered to
be equal. We need to modify our distance function to meet
the requirements of the approximative substring algorithm
and divide values from Eq. 10 by 12, which gives us the best
results.

4. Results

Quality: Based on the manually labeled ground truth
of our test videos we compute the performance measures
recall R and precision P :

R =
positive matches

all relevant sequences
, (13)

P =
positive matches

all found sequences
. (14)

We define a found sequence as a positive match, if the esti-
mated end position does not differ more than 5 frames from
the actual end position. Although we have tested with every
single replication of each commercial for statistical evalua-
tion we limit the test sequence ensemble to only one repre-
sentative for each commercial. We only take into account
the worst case for each one, i. e. only the test sequence
which gives the lowest recall factor among all representa-
tives of this commercial.

Fig. 3 and 4 show the recall-to-precision graph for the US
and the UK video, respectively. We can recognize strong
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Figure 3. Recall-precision graph for different
fingerprints of 97 US commercials.

differences between all three types of fingerprints, espe-
cially for the US video.

The color patches feature consistently gives good recall
values, but comes with very low precision for the US video.
Most problems are caused by relatively dark commercials
of low intensity, mostly due to the letterbox format adopted
wide screen film sequences. In our US test video for 10
out of our the 97 analyzed commercials the Color Patches
fingerprint produces false alarms due to the above-named
reasons. Additionally, in the US video commercials are of-
ten separated by black frames which could be accidentally
misrecognized as parts of very dark sequences. For the UK
video the Color Patches fingerprint works almost flawlessly.
Thus, CP fingerprints allow retrieval of all commercials, but
with a high risk of false matches for very dark sequences
such they might show up more frequently in videos of more
diverse content than the UK test video.

With the color coherence vector we are not able to catch
all occurring commercials in the US video, but with mod-
erate recall values we reach acceptable precision. Never-
theless, the US video provides some difficulties for color
based features. However, with the same scaling of the dis-
tance function (Eq. 11) we get unsatisfactory results for the
UK video. A scaling factor of 10 reduces the recall up to
50%. If we use a factor of 6 we get comparable results
with the color patches and the gradient histogram finger-
prints. But different scaling factor for different video con-
tent are an indication for instability of this feature. Thus,
CCV fingerprints are not appropriate for domain-free video
clip recognition.

The gradient histogram algorithm gives excellent recall
values at decent precision values across both test videos.
False matches are limited to matches of similar spots with
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Figure 4. Recall-precision graph for different
fingerprints of 65 UK commercials.

identical scenes, but of significantly different duration. For
instance, one commercial is a shorter version of the other.
Due to the real-time recognition requirement which de-
mands to recognize a commercial within one second (i.e.,
the first 25 and 30 features of each PAL and NTSC commer-
cial, respectively), such partly identical commercials cannot
be distinguished. They can only be separated by search for
the whole fingerprint against the video, not just the finger-
print of the first second. However this was not done in this
evaluation.

Note that precision is influenced by the fact that we also
search for sequences which have no duplicates in the test
video. These queries may also contribute to the false posi-
tive, but not to the true positive matches, resulting in a low-
ered precision.

Overall the gradient histogram fingerprint was the most
stable method, not only resulting in comparable results for
both of our test videos, but also regarding the choice of the
threshold parameter. We reach identical results for the UK
video for thresholds in the range from 0.4 . . . 0.8.

Figures 5 and 6 show the recall and precision for
different threshold values tstringDist for the US and the
UK video. The relative stability of the gradient histogram
feature can be clearly seen.

Computational Costs: Table 1 shows computational
resources needed by the different fingerprint methods. The
average feature computation time and its vector size per
frame for the UK video are given on an AMD Athlon X2
4400+. The color coherence vector has fewer components
than the gradient histogram vector, however required 4-
byte integer values instead of just 1-byte values. The color
patches fingerprint is the fastest method, followed by the
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Figure 5. Recall vs. precision in dependence
on threshold tstringDist for the US video.

color coherence vector, but the computation of our edge
based feature is only 3-4 times slower than that of the color
based feature and it is usable for real time applications.

Feature Time Feature
[ms] size [bytes]

Color Patches (CP) 3.0 196
Color Coherence Vector (CCV) 3.9 512
Gradient Histogram (GH) 11.4 512
Gradient Histogram (slow) 23.3 512

Table 1. Avg. feature computation time and its
vector size (per frame) for the UK video. GH
(slow) gives the time for the GH code without
the use of a look-up table.

5. Conclusion

In this work we compared three different frame-features
for real-time video clip recognition: color patches, color
coherence vectors, and gradient histograms. The edge-
based gradient histograms outperformed CCVs and CPs,
and worked with the same parameters with both of our
two different test videos. The performance of color-based
features, however, was dependent on the type and style of
video. Gradient histograms combine the spatial information
provided by the image partition into subareas with the infor-
mation about the type of gradients represented by the orien-
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Figure 6. Recall vs. precision in dependence
on the threshold tstringDist for the UK video.

tation histograms and are thus an improvement over the two
gradient-based features used in [1] and [2]. Gradient his-
tograms provide detailed information about the image struc-
ture. Therefore, we could not verify the doubts mentioned
by Hampapur et al. [1] about mismatching frames with plain
background and limited text.
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