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We study the anisotropy of the response of a two-dimensional electron gas confined 
laterally in elliptic geometry at microwave frequencies. In contrast to circular disks the 
lowest dipole mode is split at zero magnetic field. The resonance positions are 
quantitatively described by electrons oscillating in a homogeneous depolarization field. 
We also observe a polarization-dependent higher harmonic of the fundamental low 
frequency mode. 

Dimensional resonances in a two-dimensional electron 
gas (2DEG) confined to a circular disk have been inten- 
sively investigated since their first observation by Allen et 
al. 1. Small disks containing only few electrons, the so- 
called quantum dots have been studied in InSb- and Si- 
MOS structures 2,3 as well as in GaAs-heterostructures 4,5. 
Comparatively macroscopic systems have been studied in 
GaAs-heterostructures with diameters ranging from about 
d=501.J.m 6,7 up to several mm 8.9. The same type of reso- 
nances has also been observed in the electron layer elec- 
trostatically induced on the surface of liquid helium l°At. 
The high frequency response of such disks can be under- 
stood in classical terms as originally formulated by Max- 
well-Garnett 12. Basically, the carriers oscillate in the de- 
polarization field arising from a displacement from their 
equilibrium positions by an external perturbation. In the 
dipole approximation this is equivalent to the independent 
motion of electrons in a harmonic potential. The reso- 
nance positions are then given by 

oh: = +od2  + (o2/4 + o)2) la  (1) 

where Oo is the plasma frequency at zero magnetic field, 
or, equivalently, m*o~ the curvature of the external poten- 
tial. Eq.(1) equally applies to quantum dots provided the 
external potential is harmoniO 3A4. In a finite magnetic 
field B the resonance splits into two modes which are 
qualitatively different at large B. The high frequency 
mode approaches the cyclotron resonance frequency, inde- 
pendent of the geometry, whereas the low frequency mode 
decreases as 1/(Bd), independent of the effective mass. 
The lower mode is driven by the Hall current perpendic- 
ular to the depolarization field which in effect leads to a 
rotation of the internal fields and currents 15A6 with the fre- 
quency o_. In an anharmonic potential or in inhomoge- 
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neous external fields higher harmonics of the fundamen- 
tal mode (1) can also be excited as has been observed in 
large electron discs on the surface of liquid helium 11. 

If the symmetry of the system is reduced, the degener- 
acy of the resonance (1) at zero magnetic field is lifted. 
This behavior is demonstrated here for a rectangular array 
of elliptic 2D disks in a MBE-grown, modulation-doped 
GaAs/AlGaAs-heterostructure. The Si-doping region in 
the heterostructure is set back from the GaAs/AIGaAs- 
interface by a 20 nm spacer. The dimensions of the 
ellipses are 116l.tm for the major and 401.tm for the minor 
axis, and their periodicity along these axes is 165 and 
701.tm, respectively. The lateral structure is defined by 
standard contact lithography and wet mesa etching. Be- 
fore processing, the sample had an electron concentration 
of ns = 3"1011 cm -2 and a mobility of I.t=5*105 cm2/Vs at 
T=4.2K in the dark. The resonances are studied in the 
millimeter wave regime from 24 to 230 GHz using a 
scalar network analyzer (AB Millimetre). The sample is 
placed into a Ka-band waveguide in the center of a super- 
conducting solenoid at liquid helium temperature. We 
measure the transmitted microwave power as function of 
the magnetic field at fixed frequency in the dark. 

Typical spectra are shown in Fig.1 for polarization 
along the major ("parallel polarization", Fig. 1 a) and minor 
axis ("perpendicular polarization", Fig.lb), respectively. 
From 24 to -55 GHz the resonance positions shift to lower 
magnetic fields with increasing frequency. Between 70 
and 130 GHz an additional resonance is observed in paral- 
lel polarization which also shifts to lower fields with in- 
creasing frequency. In perpendicular polarization no res- 
onances can be identified in this frequency regime and 
only a Drude-like decrease of absorption is seen in the 
transmitted signal. Above -135 GHz the resonance posi- 
tions shift to higher fields with increasing frequency. 
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Fig. 1. Transmitted millimeter wave signal versus the 
magnetic field of 116"40 p.m electron ellipses at T=2K for 

a) parallel polarization (millimeter wave polarized 
along the major axis), ns = 3.4* l0 ta cm -2, 

b) perpendicular polarization (millimeter wave pola- 
rized along the minor axis), ns = 2.8"10 it cm 2. 

The traces are offset for clarity. The different densities 
ns in (a) and (b) are a consequence of two different cool- 
down cycles. Note the different scales in the upper and 
lower part of (b). 

COx2 = 0.,-2p Lx 
(3) 

are the plasma frequencies of the ellipsoid at B=0 for 
polarization parallel and perpendicular to the major axis, 
respectively. In eq.(3) cop is the plasma frequency of the 
homogeneous 3D electron gas. The effective conductivity 
tensor relates the current to the external field rather than to 
the total field E=Eext-LP and hence describes the power 
absorbed from the applied millimeter wave field. The 
components of the (diagonal) depolarization tensor t7 L 

cb K(rl)-E(n) 
g x - a 2 i.12 

c E(q)-(1-'q2)K(rl) 
L y = -  

b q z 

(4) 

represent the influence of the geometry on the depolariza- 
tion field and thus the restoring force when the mobile 
carriers are displaced by the external field with respect to 
the background charge. Here, K and E are complete 
elliptic integrals and rl2=l-b2/a 2 is the eccentricity of the 
ellipse. For c,,b one can introduce the sheet density via ns 
= nV/A where V is the volume and A the projected area of 
the ellipsoid so that 

co2_ 3nseZb K(q)-E(q) 
4ggom*a 2 1-12 

3nse 2 E('q)-(1-TI2)K('rl) 
CO~ - 4Leom*b q2 

(5) 

From (2) we obtain the resonance positions (for c0"~,l) as 
function of the magnetic field: 

To explain the resonance positions quantitatively, we 
model the 2D electron ellipses as thin 3D ellipsoids with 
thickness 2c and semimajor and semiminor axes a and b 
and neglect electrostatic coupling between different 
ellipses. In such a system the effective conductivity tensor 
is readily obtained by solving the classical equations of 
motion: 

(Yef f  = 
icone2/m * 

( CO2-032 + i co/X ) ( CO2-CO2 + i co/'Q-CO20a2c 

(c0:-o~+ico/z -icococ ] 
x ~. icococ CO2-0)2+ico/~ J. (2) 

~ =  2 : : +{(co2+%2+co2)2/4_co2 (COx+0Jy+COc)/2- 4 }  1/2. (6) 

In Fig.2 we compare experimentally observed frequen- 
cies in their dependence on the magnetic field with calcu- 
lated ones for both polarizations. For the case of parallel 
polarization the best fit to the resonance positions ac- 
cording to eq.(6) is obtained with cox/2~ = 63 GHz and 
coy/2r~=140 GHz using an appropriate effective mass of 
m*=0.069me. With the experimentally determined density 
ns = 3.4"1011cm2 and the dielectric constant for the half 
space, ~=(eGaas+l)/2=6.8, eq. (5) yields cox/2X=64 GHz 
and C0y/2~=143 GHz well consistent with the above val- 
ues. The density is obtained from Shubnikov-de Haas 
oscillations visible in the microwave signal for lower fre- 
quencies at T=2K. Thermal cycling of the sample between 
the two different polarization measurements is the origin 
of the somewhat lower density ns=2.8* 101 tcm2 that is ob- 
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Fig.2. Resonance positions of the traces displayed in 
Fig. 1. The lines are fits according to eq.(6), for the parallel 
(---) and perpendicular (--)  geometry, respectively, with 
fit parameters given in the text. 

tained for the measurements in perpendicular polarization. 
This results in lower plasma frequencies mx/2rc=59 GHz 
and my/2n=130 GHz, values that are both in good agree- 
ment with eq.(5). 

At zero magnetic field only the mode with the same po- 
larization as the incident radiation is excited. This is diffe- 
rent in a finite magnetic field, since the modes are no 
longer linearly polarized. The oscillator strength of the in- 
dividual modes, however, still depends on the polariza- 
tion. This can be seen in the transmission traces of Fig.l, 
particularly for the lower mode. For polarization along the 
major axis the signal of the lower mode is considerably 
stronger than for polarization along the minor axis. 

For the low frequency branch the resonance positions 
at higher magnetic fields are seen to be higher than eq.(6) 
suggests. This feature has been observed for circular disks 
before 6 and reveals the limits of the ellipsoidal model, 
whose main disadvantage is the implicit assumption of a 
nonuniform sheet density. 

As mentioned above a further resonance appears in par- 
allel polarization, We interpret this mode as a higher har- 
monic with respect to the "radial" mode index. Modes 
with higher azimuthal index are not excited in an external 
dipole field. Similar excitations have been observed in cir- 
cular electron discs on the surface of liquid helium 11. In 
the elliptic system this mode is also no longer degenerate 
at B=0, and we here observe its low frequency branch 
which (at B=0) is also polarized along the major axis. At 
finite magnetic fields this resonance should in principle be 
observable in the "wrong" polarization as well, but is pre- 
sumably too weak to be seen here. Hence for perpendicu- 
lar polarization the signal only exhibits a Drude-like tail in 
the frequency regime between COx/2rc and my/2n. The mag- 
netic field dependence of the harmonic mode is, however, 

different from the analogous circular mode. Presently, we 
have no quantitative theory of such modes in the elliptic 
case. However, we expect the upper branch of this higher 
harmonic to be well above c0y/2rc and therefore not acces- 
sible to our present experimental setup. At high magnetic 
fields the response of the system should be isotropic with 
m.-O~xO~y/C0c and o~+=mc to leading order in foe, i.e. the 
ellipse then behaves equivalently to a circular disk with 
plasma frequency mo=(C0xmy) t& 

In conclusion we have observed plasma resonances of 
elliptic 2D electron disks in the millimeter wave regime. 
In contrast to geometries with fourfold symmetry the low- 
est dipole modes are no longer degenerate at zero mag- 
netic field. Their values agree well with the classical 
Maxwell-Garnett theory tz with the system modelled as 
uncoupled thin 3D ellipsoids. This indicates that electro- 
static coupling of the elliptic disks is not important here. 
At higher magnetic fields the resonance positions of the 
low frequency mode deviate from the ellipsoidal model. 
Here a truly 2D calculation would be more appropriate. 
The anisotropy of the response is seen as a dependence of 
the signal strength of the low frequency mode on the po- 
larization. Above the fundamental low frequency mode 
the system shows a second branch of polarization- 
dependent resonances which shift to lower magnetic fields 
with increasing frequency. In analogy to the spectrum 
observed in circular disks we believe this mode to be a 
higher harmonic with respect to the radial mode index, 
generalized to the elliptic geometry. 
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