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The anisotropy of the effective mass in a wide electron layer confined in a parabolic 
potential well has been determined from plasmon resonance experiments for the case of 
an in plane magnetic field. For this system, the resulting band structure can be described 
in terms of a hybridization of the electrical and the magnetic confinement and free motion 
in the plane of the electron system. The effective mass shows a strong anisotropic 
behavior along the two principal directions with respect to the magnetic field. For a purely 
parabolic confining potential one can derive analytical expressions for this anisotropy 
which are in excellent agreement with the experimental results. Similarities to the 
collective excitation spectra of one-dimensional quantum wires are discussed. 

The collective excitation spectrum of an electronic 
system contains valuable information as it is one of its most 
fundamental properties. For two-dimensional electron 
systems (2DES) as realized in space charge layers in semi- 
conductors the study of plasmonic (intrasubband-) excita- 
tions as well as intersubband-transitions have proven 
invaluable in the characterization and understanding of 
these systems 1. More recently 2, also the collective excita- 
tions in quasi-one-dimensional electron systems (Q1DES, 
quantum wires) 3,4 and quasi-zero-dimensional (QODES, 
quantum dots) 5 have attracted very much attention. On the 
other hand, the collective intersubband-like excitations of 
wide electron layers in so-called parabolic quantum wells 
(PQW) which form a quasi-three-dimensional electron 
system 6..9 (Q3DES) has led to the generalization of 
Kohn's theorem 10. Subsequently, this theorem has been 
very successfully applied to explain many experimental 
observations also on QIDES and QODES. It states that in a 
purely parabolically confined electron system long-wave- 
length radiation couples only to the center of mass coordi- 
nates and its motion. Relative coordinates and thus particu- 
larly electron-electron interactions in such systems do not 
affect the resonance frequency of the observed transitions. 

Here, we report on the investigation of the collective 
excitations of a wide electron system in a PQW at finite 
wave vector9. If such a system is subjected to an in-plane 
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magnetic field the resulting band structure is very closely 
related to the one of a 1D quantum wire in a perpendicular 
magnetic field. The reason is that ID quantum wires in 
most cases can be described in good approximation by an 
external parabolic confining potential. The main advantage 
of a PQW, however, is the exact knowledge of the shape 
of the potential which allows to directly deduce analytical 
expressions for the expected spectrum of the collective 
excitations. Moi'eover, the case of an ideal parabolic 
quantum well in a parallel magnetic field is particularly 
simple and can be quantized in analytical form 11.12. 

Referring the reader to a more detailed description of 
the growth procedure and fundamental properties of a 
PQW in refs. 6.,9, we give here only a short list of the 
parameters for the sample used in the present experiment: 
Our sample is a parabolic AlxGal-xAs quantum well of 
width W=200nm and energetical depth of Al=150meV. It 
has additional vertical sidewalls of height A2 = 75meV. The 
curvature of the parabolic part of the well corresponds to 
the potential of a posit ive background density 
n+=2.2.1016cm -3. On top of the sample we have a 
semitransparent NiCr gate and an Ag grating coupler of 
periodicity a=21zm. Ohmic contacts are made to the electron 
system by alloying In at T--430°C in reducing atmosphere. 
By application of a bias between the gate and the electron 
system 13 we can change the carrier density in the well from 
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NS=0 to NS=2.6-101 lcm-2. The grating coupler provides 
a plasmon wave vector q = 2n/a = n. 106 m- 1. 

As has been shown beforel4,15, a quasi 3DES 
confined in a PQW can support intra-subband excitations 
that for small q resemble the well known surface 
plasmon 16 of a 2DES. Its dispersion is given by 

2 Nse2q c0p = (1) 
2ra p~ ( q )e o 

                                       

where g(q) denotes an effective dielectric constant 
containing sample parameters and geometry, and mp an 
effective plasmon mass. The other symbols have their 
usual meaning. For our sample he0 e __= 15cm -~ , depending 
on the carrier density in the well. The sample is mounted in 
Voigt geometry in the center of a superconducting solenoid 
providing magnetic fields up to 15T parallel to the plane of 
the electron system. It is held at a temperature of T=4.2K. 
The experiment are performed in transmission using a rapid 
scan Fourier transform spectrometer under normal 
incidence of unpolarized far infrared radiation (FIR). 
Experimentally we determine the relative change in 
transmission 

_ AT = T(O) - T(N s) (2) 
T T(0) 

which is proportional to the real part of the dynamic 
conductivity 6"(co)of the electron system. The geometry of 
our experiment is depicted in Fig. 1. Here, both principal 
orientations of the plasmon wave vector with respect to the 
magnetic field are already sketched. By rotating the sample 
by rt/2 we can excite surface plasmons with q being either 
parallel or perpendicular to the magnetic field. 
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Fig. 2. Typical spectra as obtained in transmission and 
Voigt geometry for different magnetic fields B. Both cases 
of q being perpendicular (a) and parallel (b) to B are 
depicted. In both experiments we observe three resonances, 
which are related to the intra-subband plasmon at finite 
wave vector (0,q), the inter-subband plasmon at finite wave 
vector (1,q), and the inter-subband plasmon at zero wave 
vector (1,0). The latter is also called plasma shifted 
cyclotron resonance. In (a) the resonance (0,q) has a 
characteristic negative magnetic field dispersion, whereas 
(1,q) and (1,0) follow the dispersion for a magneto-electric 
hybrid excitation as described in the text. In contrast to (a), 
for parallel configuration (0,q) has no magnetic field 
dependence as expected from the simple model (b). 
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Fig, 1. Sketch of the geometry of the experiment. The 
unpolarized far-infrared radiation is incident in y-direction, 
the magnetic field is directing parallel to the electron layer 
(x-y-plane). The plasmon wave vector q is defined by use 
of a metal grating on top of the sample, and can direct either 
parallel or perpendicular to the magnetic field. 

Typical spectra for both orientations of the plasmon 
wave vector with respect to the magnetic field are shown in 
Fig. 2. Here, we plot the observed relative change in 
transmission vs. energy for different magnetic fields. In 
perpendicular geometry, i.e. the plasmon wave vector 
being normal to the magnetic field (Fig.2a) we observe 
basically three resonances. The lower frequency mode 
(O0,q around 16cm -1 at low B is identified with the surface 
plasmon and exhibits a negative dispersion with the 
magnetic field, which is a unique feature of an edge 
magnetoplasmon type of oscillation 17,18. The higher 
frequency modes £01,q and ¢-01,0 are the grating coupler 



                

induced intersubband-type excitation 9 and the plasma 
shifted cyclotron resonanceT,8 at q=0, respectively. The 
oscillator strength of the latter is zero for zero magnetic 
field and then increases as the field increases 8, which can 
be clearly seen in the figure. This excitation is formally 
identical to the magneto-electric subband hybrid in a 1D 
quantum wire. For parallel geometry (Fig. 2b), we also 
observe three oscillations, but tO0,q now has no significant 
magnetic field dependence. This striking difference 
contains information about the magnetic field induced 
anisotropy of the effective band structure that we like to 
discuss in this Communication. 

Using the coordinate system of Fig.1 and omitting the 
spin, the initial eigenenergy equation for a PQW subjected 
to an in-plane magnetic field reads 12 

[2m--m~--g(~ + eA) 2 + m ' 2 2 °  y.2]V = El// (3, 

where m * to~. o / 2 characterizes the parabolic potential in 
growth (y-) direction. This frequency is given by the bare 
external potential of the PQW and due to Kohn's theorem 
independent of the number of electrons in the well. It has 
been shown before 6-.10 that this frequency ~1,0 for q--0 is 
solely determined by the curvature of the external parabolic 
potential and is given by 

to2 .. 8A~ (4) 
1,0 = W2m, 

where A1 is the energetical height of the parabolic part of 
the potential, and W its width in confining direction. At 
finite wave vector q, the mode exhibits a dispersion 14,15 
which is determined by the quantity qd, d being the width 
of the electron system in the direction of confinement: 

tO 2 
Off = --1,o (1 + e -2~) (5) 

l,q 2 " 

Taking A = -(By,0,0) and separating the variables in the 
usual way one obtains form (3) 

~m * dy 2 t- ~2 f(y)=/~f(~) (6) 

where f~2 = to~v + toc 2 is the effective hybrid frequency, 
= Y - Y0 with yo= hkxt0 c / m * f22. The resulting energy 

dispersion then turns out to be given by 

~2k2 032 h2~  
E hf2(n + 1 / 2 ) + 2  * '-m r i2" j ~  + 2 m *  (7) 
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This dispersion describes a harmonic oscillator-like quan- 
tization in the confining direction of the parabolic potential 
with a characteristic frequency f~, representing the inter- 
subband-type collective excitation that obeys Kohn's 
theorem. The free motion in the plane of the Q3DES is 
represented by the quasi-momenta k x and k z. Eq. (7) has 
exactly the same form for a 1DES in parabolic 
approximation (quantum wire) if one replaces the term 
containing k z by a 2D subband energy, since it is also 
confined in this direction. The term containing k x is then 
related to so-called one-dimensional plasmons propagating 
along the wire 4. The hybrid oscillator term is governed by 
the 1D intersubband plasmon. The interesting fact for a 
PQW, however, is the occurrence of an anisotropic band 
structure in the plane of the electron system with respect to 
the direction of the magnetic field. The same anisotropy has 
been observed before, although as a much weaker effect, 
for high quality 2DES on GaAs/AIGaAs heterostruc- 
tures 19. The theoretical description in that case, however, 
is rather complex and not straightforward 20. Using eq. (7) 
one can define a very simple expression for the effective 
mass for a PQW and the geometry under consideration 

2 
m±:=m*(l+t°--~cq )t0~. and m l : = m *  (g) 

in the plane of the electron system. The subscript symbols 
for m* indicate the direction with respect to the magnetic 
field. With increasing magnetic field the 'perpendicular' 
effective mass increases quadratically. The effective mass 
parallel to the magnetic field, respectively, remains 
unaltered and is given by m*. Using this expression for the 
plasmon mass we obtain the magnetic field dispersion of 
the surface plasmon. 

co 2, ( q ~ )  = co~ 1 + 2 _ 2 • ~. c°1,,) ; c00.v( q i ) = cop (9) 

The result is shown in Fig. 3, where we plot the ex- 
tracted resonance positions of t, O0,q for both principal 
orientations of q as a function of the magnetic field. For 
high magnetic fields (B>3T) we are not able to follow the 
negative dispersion of tt~0.q (q,)  since we are approaching 
the noise limit of our spectrometer close to 10era "1. The 
magnetic field independent resonance 0)0.q for q II B, 
however, does not deviate significandy from its low field 
behavior up to B=15 T. This part of the data has been 
omitted in the plot for clarity. Note that no fit parameter has 
been used since all quantities can be measured independent- 
ly. From cyclotron resonanceT,8 in Voigt-geometry one can 
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Hg.3. Resonance positions as extracted from Fig. 2 for 
both orientations of the plasmon wave vector q with respect 
to B. They reflect the magnetic field induced anisotropy of 
the plasmon mass. Symbols represent the experimental 
data, whereas the solid lines are the result of the simple 
model as described in the text. The parameters used are 
given in the inset. 

extract m*. Plasmon resonance experiments 14 in Faraday 
geometry, i.e. the magnetic field directing normal to the 
sample surface are used to extract (t)0.q. The q=0 resonance 
(Ol,0 can be determined by tilted field experiments 3,6,8, 
where no grating coupler is needed to exite it. 

In summary, we have investigated the collective 
excitations of a parabolically confined electron system 
subjected to a magnetic field perpendicular to the gradient 
of the confinement. The magnetic field induces a strong 
anisotropy of the effective band structure, which is 
reflected in the magnetic field dispersion of a finite q 
plasmon parallel to the electron layer. The resulting band 
structure is formally identical to the one of a IDES as 
confined in a quantum wire in harmonic approximation. 
The orientation where q is normal to the magnetic field 
results in an edge magneto-plasmon type excitation that in a 
1DES is propagating along the wire and usually is referred 
to as a 1D plasmon. 
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