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Abstract. The far-infrared response of electron systems confined in a parabolic 
potential is investigated experimentally. We present recent studies on cyclotron 
resonance, intersubband resonance and hybrid modes using various experimental 
techniques and geometries and compare our experimental findings with 
theoretical results based on a generalization of Kohn's theorem. We also focus on 
the far-infrared spectrum of so-called imperfect parabolic wells with intentionally 
induced deviations from ideal parabolicity. Here, new symmetry-forbidden 
resonances are observed which yield a sensitive test for a theoretical description. 
At finite wavevector, intrasubband plasmonic excitations are also possible. We 
study their dispersion and investigate their interaction with the intersubband 
modes. If  subjected to an in-piane magnetic field, the intrasubband plasmon 
exhibits a strongly anisotropic dispersion which can be directly related to 
so-called one-dimensional piasmons. Due to the simplicity of the confining 
potentials, most of our experimental results can be explained in straightforward 
ways. Many of our results as well as the theoretical descriptions directly apply to 
recent investigations of lateral nanostructures and t h u s  may also serve for a 
better understanding of this rapidly developing field, 

1. Introduction 

The interaction between electron systems in semi- 
conductor quantum well structures and optical fields has 
been studied intensively over the last two decades [l]. 
These studies include intersubband absorption, cyclotron 
resonance in high magnetic fields as well as plasmon 
emission and absorption,. The collective excitation 
spectrum of an electronic system contains valuable 
information as it is one of its most fundamental 
properties. For quasi two-dimensional electron systems 
(QznEs, quantum films) as realized in space-charge layers 
in semiconductors, the study ofplasmonic (intrasubband) 
excitations as well as intersubband transitions has proven 
invaluable in the characterization and understanding of 
these systems [2]. More recently [3], the collective 
excitations in quasi one-dimensional (QIDES, quantum 
wires) [4,5] and quasi zero-dimensional electron systems 
[SI (QonEs, quantum dots) have also attracted much 
attention. This is because in the last few years the 
realization of lateral nanostructures has become possible; 
this has yielded a rapidly .growing field of interest in 
semiconductor physics. On the other hand tremendous 
improvements in semiconductor growth techniques like 

                                                        

molecular beam epitaxy (MBE) nowadays offer the 
possibility to engineer practically every desired kind of 
band structure for semiconductor structures. 

Here we review some of our recent experimental 
results on the far-infrared response of electron systems 
confined in parabolic potentials [7-12, and references 
therein]. The systems investigated are realized in so- 
called parabolic quantum wells (PQW). Originally they 
were proposed as an attempt to realize the theoretical 
construct of jellium by creating a wide, highly mobile 
quasi three-dimensional electron system (Q3DES) [13]. 
Such a system in the presence of strong magnetic fields 
is expected to show interesting and exotic properties: 
depending on the strength of the field, different kinds of 
broken-symmetry ground states like spin density and 
charge density waves or crystallization of the electron 
system in the form of a Wigner crystal have been 
proposed [14, 151. 

Another very attractive feature of an electron system 
in a PQW is the striking similarity of many of its properties 
to those of a QIDES or even a QODES. Many experimental 
results obtained in such nanostructures have in the recent 
past been successfully described in terms of a parabolic 
confining potential [3]. As a matter of fact, early 
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experiments on the FIR response of a PQW [ 16,171 resulted 
in the generalization of Kohn’s theorem [18, 19, 201, 
which subsequently has been used to explain and 
understand many interesting properties of laterally 
confined low-dimensional systems. For these reasons, 
throughout this review article we shall point out the 
similarities and the applicability of our experimental and 
theoretical results to the case of lateral nanostructures 
and give representative examples. 

In section 2 we first give a brief review of some main 
aspects and features of parabolic quantum wells and the 
electron systems under investigation. We briefly discuss 
the fabrication and the characterization of these structures 
and present some fundamentals of the resulting subband 
spectrum. Section 3 is devoted to a short description of 
the generalized Kohn theorem and other existing 
theories that have been used to model our and others’ 
experimental results. In section 4 we present some 
experimental details and describe the sample geometries 
used in our experiments. Section 5 focuses on experi- 
mental results and their discussion. We first present some 
results as obtained in ‘ideal’ PQW to demonstrate the 
connection with Kohn’s theorem and some other 
fundamental theoretical models that have been developed 
in the recent past. We then switch to so-called ‘imperfect’ 
POW, i.e. structures where we intentionally introduce 
some degree of controlled non-parabolicity to study its 
influence on the FIR spectrum. We show that we are able 
to electrically alter specific samples between the ‘perfect’ 
and the ‘imperfect’ state and thus study the influence on, 
for example, non-local interactions which are also very 
important in the interpretation of the FIR response of 
lateral nanostructures. Section 5.3 is devoted to experi- 
ments at finite wavevector in the FIR. Here, we use a 
grating coupler technique to couple to intrasubband 
plasmonic excitations. Using this technique, we gain 
access to the complete collective excitation spectrum at 
small wavevector of an electron slab of finite width, 
resulting in bulk- and surface-like modes with charac- 
teristic dispersion. We study their interaction with the 
intersubband resonances, and by using an in-plane 
magnetic field we investigate the field-induced aniso- 
tropic hand structure of a semiconductor space-charge 
layer. These experiments are very closely related to the 
recent observation of one-dimensional plasmons in 
mesa-etched quantum wires [SI. 

2. Electron systems in parabolic quantum wells 

Besides their application in graded-index semiconductor 
(GRINSCH) lasers, parabolic quantum wells were first 
successfully studied in optical experiments by Miller et 
a/  1211. The typical equally spaced energy spectrum of 
such parabolic structures that has been observed in 
photolumininescence excitation experiments demon- 
strated the possibility of a very precise control of 
molecular beam growth resulting in graded-bandgap 
structures. The parabolic profiles of both the conduction 
and the valence bands have been obtained by properly 
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Figure 1. Schematic diagram of different potential energy 
wells for four different heterostructures, and the 
corresponding electron distributions. The barriers 
surrounding the wells are doped in order to supply 
carriers to t h e  wells. For a narrow square well (a ) ,  the 
electrons are concentrated at the well centre. For a wide 
square well (b). they repel each other a n d  accumulate at 
t h e  two interfaces. To obtain an electron gas with uniform 
density, t h e  well must  be graded parabolically ( c )  to 
compensate for t h i s  electrostatic repulsion, From 
Poisson’s equation, electrons introduced into a parabolic 
well by doping t h e  barriers ( d )  distribute themselves 
uniformly at a density given by t h e  curvature of t h e  
parabola. (From [Z].) 

grading the aluminium content of the ternary AI,Ga, -.As 
alloy. In the range 0 < x < 0.3 the bandgap ofAI,Ga, -.As 
varies nearly linearly with the AI mole fraction such that 
a controlled variation of x leads directly to the desired 
structure. Subsequently, remotely doped PQW have been 
proposed to result in very wide ( W 5 0.6 pm) and highly 
mobile ( / ~ < 3 0 m ’ V - ~ s - ’  ) quasi three-dimensional 
electron systems [13]. The basic idea of these structures 
is to create a conduction band profile E&) in the growth 
direction such that i t  mimics the parabolic potential of 
a uniformly distributed slab of positive charge. 

In figure 1 we depict the basic ideas that led to 
the realization of such structures [22]. In I(a), we 
schematically plot the conduction band profile of a 
conventional narrow rectangular quantum well in a 
remotely doped semiconductor heterostructure. Remote 
doping spatially separates the dopants from the free 
carriers, thus increasing the electron mobility by a 
considerable amount. The width of this confining 
potential is of the order of the de Broglie wavelength of 
the electrons, and the system forms a Q ~ D E S  with 
quantized levels in the growth direction and a free 
dispersion along the heterointerfaces. Figure l(h) depicts 
the situation for a wide rectangular quantum well. The 
resulting self-consistent electron distribution is far from 
being a uniform and wide electron slab. Instead, 
electrostatics leads to a band bending such that chargc 
accumulates near the edges of the well and in general 
two independent QZDES are formed. Such systcms, 
however, are of special interest themselves since here a 



                                        

employed to grow PQW by means of MBE. The goal is a 
graded aluminium profile that can be controlled very 
precisely. In figure 2(a) we show the technique of the 
so-called digital alloy. A short-period (2 nm) superlattice 
of GaAs and AI,,,Ga,,,As is grown such that the duty 
cycle between the two species varies quadratically during 
the growth. The average A1 content is then given by the 
full curve. A prerequisite for this procedure is a very short 
period of the superlattice with thin wells and barriers to 
allow for nearly perfect tunnelling between the wells. In 
figure 2(b) a different, more straightforward technique is 
shown. By varying the crucible temperature of the 
aluminium furnace from, for example T = 1000 "C to 
T =  1300°C one can control the AI flux towards the 
substrate in a quite controlled manner. The problem, 
however, is the large thermal inertia ofthe crucibles which 
makes it difficult to avoid feedback oscillations of the 
growth rate. All the samples presented in this report 
are grown using the digital technique, no important 
differences having been observed due to the superlattice 
structure as compared with 'analogue' samples. The 
actual profile of the A1 mole fraction is not easily 
measured directly. Its general shape is sometimes deduced 
from optical and electrical measurements on the resulting 
structures, followed by a fitting of the data to the 

Flgure 2. Realization of a POW by synthesis of a graded calculations for the desired energy bandgap profile. 
alloy of AI,Ga,.,As with parabolically varying AI mole However, it is very useful, at any rate, to be able to 
fraction x .  Computer-controlled molecular beam epitaxy is calibrate the deposited AI mole fraction verSUS depth in 
used to create either a digital alloy (top) or an analogue a direct way. The usual way is to employ analytical alloy (bottom). The digital alloy is a superlattice consisting 
of GaAs and AI,,,Ga,,,As with a 2 nm period as explained methods like secondary-ion mass spectroscopy (SIMS) 
in t h e  text. (From [ Z Z ] . )  which is, however, quite time-consuming and not 

straightforward. Recently, we presented a technique [24] 
which is simple and reproducible, and has reasonable 
resolution and accuracy. This technique is based on a 
calibration run directly before growth of the actual PQW 
and monitoring the AI flux directly using a fast ion gauge 
scheme. using this method we were able to calibrate our 
grown pQW to within A ~ ~ ,  I 0.01 and to show that oUr 
digital alloy approach produces more accurate parabolic 
profiles than we have been able to produce by analogue 
alloying, 

The parameters of the four different samples investi- 
gated in this report are listed in table 1 where they are 
identified by the wafer number, T~~ different types of 
parabolic quantum wells are used: (i) three pQW with 
different curvatureS and additional vertical sidewalls 
(PB25, PB26 and PB31), and (ii) for comparison one 
PQW (PB48) without vertical sidewalls but with the same 
curvature as PB25. The difference between PB26 and 
PB31 is the higher electron mobility of the latter, leading 
to narrower linewidths in the FIR spectra. Using a 
conduction hand offset between A1,,,GaO,,As and GaAs 
of 65% we find from the relation AEc = 750 meV x X,, 
and equation (1) the values for the quasi charge density 
n+ for the different wells as given in the last row of 
table 1. Ofcourse, many more PQW with other parameters 
have been investigated but the scope of this report is 
perfectly covered by the choice of data and samples as 
presented here. 

We now turn to a short description of the resulting 
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possibility is given to investigate the properties ofcoupled 
electron systems in great detail 1231. Figure l ( C )  shows 
a sketch of the conduction band profile of a graded PQW. 
Once this structure is remotely doped, the donors release 
electrons into the well which in turn will screen the 
man-made parabolic potential, thus forming the wide and 
nearly h'"ogeneous electron layer shown in figure l(d). 
An undoped layer between the dopants and the well 
reduces ionized impurity scattering and thus enhances 
the electron mobility in the well as for conventional 
heterostructures. The bare man-made parabolic potential 
is equivalent to the potential of a positive charge density 
n+. This fictitious charge is related to the curvature of 
the grown parabola by Poisson's equation, namely 

E E ~  P E c  SZE,A 
(1) ,+ = ~ ~ _ ~  - 

e* az2 e2W2' 
Here E denotes the mean dielectric constant of Al,Ga, _,As, 
A is the energy height of the parabola from its bottom 
to the edges, e is the electronic charge and W the width 
of the grown PQW. 

The curvature of the parabola and thus the fictitious 
charge n+ can be vaned over a wide range by proper 
control of the growth process, Due to the similarity to 
a real existing positive space charge this concept has been 
referred to as 'quasi-doping' in the past [13]. In figure 
2, we show the two basic methods that have been 



                 

Table 1.  Parabolic quantum wells. 

Sample  Type XO X I  X2 Width n+ 
(nm)  ( ~ m - ~ )  

PE25 U 0 0.1 0.3 75 7.4 x 10l6 
U:b 

0 0.2 0.3 200 2.1 x 10l6 
PE26 U: 
PE31 -()-E 0 0.2 0.3 200 2.1 x 10l6 

~ 0.3 130 7.4 x IO” 

xo 

v::a 
PE48 

density distribution and subband spectrum of an electron 
system in such a PQW. Mobile carriers that are introduced 
by remote doping will tend to screen the external 
potential of the positive quasi charge n’, leading to a 
wide and nearly homogeneous electron slab. This 
behaviour is already intuitively clear from figures l(c) 
and ( d ) .  A more detailed description, however, requires 
a self-consistent calculation 1251. There have been many 
different investigations of the self-consistency for the case 
of a PQW and we wish here to review only the basic 
results. For the case of an empty PQW the subband 
spectrum is the one of a harmonic oscillator with a 
characteristic energy 
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(2) ,qo a - (  - h”-..-- ;;*I
which is solely determined by the design and growth of 
the structure under consideration. As the well is filled, 
the electrons distribute themselves to form a wide layer, 
and the resulting conduction hand profile is essentially 
flat over the occupied width of the PQW. Then, the 
single-particle subband spectrum resembles more the one 
of a rectangular quantum well of width W,  leading to 
non-equally spaced subband energies. In first approxi- 
mation these are given by Eon’, with E ,  of the order of 
0.1 to 1 meV, depending on the actual sample. In other 
words, with decreasing carrier density and, related to this, 
with decreasing width of the electron layer, the subband 
energies increase, tending towards the equal spacing of 
the empty well given by equation (2). 

Due to the smallness of the subband energies usually 
more than one subband is occupied for typical carrier 
densities in the wells. This is demonstrated in figure 3, 
where we plot the results of a fully self-consistent 
calculation for the carrier density and the subband 
energies of one of the samples (PB31) investigated. In 
figure 3(a) the calculated carrier densities in the different 
electrical subbands are depicted as a function of the 
applied bias V,  between a metal gate electrode on top of 
the sample surface and the electron system in the well. 
The inset shows schematically the sample geometry used 
in all our experiments. Four indium pellets are alloyed 
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Figure 3. Result of a self-consistent calculation (symbols) 
for the electron densities in the different electrical 
subbands (a )  as well as for t h e  single-particle (Hartree) 
energy levels (b) of a 200 nm wide POW as a function of t h e  
applied gate bias V,. The interpolating curves are guides 
to t h e  eye. With increasing negative bias the well becomes 
depleted while t he  upper subbands depopulate. At the 
same time the subband levels increase in energy. The 
inset shows a typical sample geometry used in our 
experiments. 

to the electron system to form an ohmic contact. The 
gate electrode consists of a thin ( 5  nm) NiCr layer also 
serving as a semitransparent electrode compatible with 
FIR spectroscopy. In addition, on some samples a highly 
conducting Ag grating coupler is deposited on top of the 
gate electrode. This grating coupler is used to couple FIR 
to both inter- and intrasubband collective modes and is 
described in detail in section 4. One sees how with 
increasing negative bias V,  the total carrier density N,,, 
decreases and how at some particular gate voltages the 
electrical subbands become depopulated. At the same 
time the self-consistent Hartree potential adjusts itself 
such that the corresponding subband energies Ej increase 
as a function of decreasing carrier density as expected 
from the above simple arguments. This behaviour is 
shown in figure 3(b), where we plot the calculated 
subband energies Ei - E, as a function of the gate bias. 
Here E, denotes the Fermi level, which is held to be 
E, = 0 in the figure. 

In figure 4 we show the self-consistent potential 
together with the calculated wavefunctions weighted 
by the carrier densities (T(z)Ng’ in the subbands as a 
function of depth in the growth direction z .  The total 
carrier density in this case is y7 = 2.4 x IO”  crf2, 



                                        

single-particle spectrum of a similar structure, as obtained 
in magnetotransport experiments [27J 

DEPTH z(n) 
Figure 4. Self-consistently obtained Hartree potential 
together with the calculated wavefunctions of a POW at 
high well filling. The total wavefunction represents t h e  
nearly uniform electron distribution over in this case 
nearly 100 nm width. At t h e  same time t h e  potential profile 
in th i s  region is nearly flat. 

corresponding to a gate bias of V ,  = 0 V. The total width 
We of the electron slab in this case is close to We = 115 nm 
as expected from the simple relation 

(3) 

For this particular sample and the given carrier density 
three electrical subbands are occupied and the resulting 
total density distribution as well as the conduction band 
profile are nearly flat. Experimentally, the decreasing 
width of the slab as well as the shift of the potential 
minimum and thus the centre of mass of the total 
wavefunction can be determined by, for example, a 
measurement of the gate capacitance as a function of 
the gate bias [ZS]. Also, the subsequent depopulation 
of electrical subbands can be observed using this 
technique. 

3.1. The generalized Kohn theorem 

In a tilted magnetic field experiment similar to that of 
Schlesinger and co-workers and Wieck and co-workers 
[29] to study the resonant interaction of subband and 
Landau levels in a QZDES, the authors of [16] observed 
that the FIR response of the electron system in a PQW is 
governed by a single, well defined frequency very close 
to the plasma frequency of a three-dimensional electron 
system of density n+ which by construction is given by 
wo in equation (1). Initially, this behaviour was inter- 
preted in terms of a successful realization of a highly 
mobile Q~DES. In a celebrated theoretical article, however, 
Brey et al [I91 explained this result by a generalization 
of Kohn’s theorem [18]. It states that in a purely 
parabolically confined electron system long-wavelength 
radiation only couples to the centre of mass coordinates 
and its motion. The reason for this is the decoupling of 
the centre-of-mass modes of the interacting electron 
gas from its internal modes. Relative coordinates and 
thus particularly electron-electron interactions in such 
systems do not affect the resonance frequency of the 
observed transitions. We here briefly review the basic 
idea of the generalized Kohn theorem which has been 
formulated in the recent past by numerous authors. We 
directly follow the work of Yip [20] and use the same 
formalism: suppose an electron system in a three- 
dimensional parabolic confining potential is subjected to 
a magnetic field. Putting A 3 1, the Hamiltonian in this 
case in its most general form can be written as 

l N  m* 
H = - zj’ + - (wzxj’ + + wzzj’) 

2m* j = 1  2 

3. Long-wavelength spectroscopy on parabolically 
confined electron systems 

Shortly after the first successful realization of remotely 
doped PQW some very enlightening initial experiments of 
Karrai and co-workers [ 16,171 stimulated a lot of further 
experimental as well as theoretical work on this subject. 
Subsequently many more interesting features of parabolic 
quantum wells have been investigated both experimentally 
and theoretically. Both (magneto-)transport [26,27] and 
RR investigations [28] yielded a large number of new 
and interesting results which shed some light onto the 
understanding of many fundamental properties of low- 
dimensional electron systems. Here we restrict ourselves 
to a short description of those experiments related to the 
subject of the present report and refer the reader to recent 
review articles on, for example, the investigation of the 

Here, the three-dimensional parabolic potential is 
parametrized in terms of the characteristic frequencies 
mi,  the influence of the magnetic field is included via zj ,  
and electron-electron interaction is included via an 
interaction potential U which depends only on relative 
coordinates (p j  - rx). N represents the total number of 
carriers in the well. Yip now introduces centre of mass 
and relative coordinates of the form 

X‘Z’ x1 - x2 X‘3’ 3 X I  + xz - 2x, (5) 

X“’ = XI + x z  + . . ’ + xN-l - (N - l ) X N  

and similarly for YQ), . . . , Y‘N), Z‘Z’, . . . , Z‘”’, and 
ncZ), . . . , JJ(”. If the following relations are used for the 
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coordinates x j  

and equivalently for y j ,  zj  and zj, it can be shown that 
now the total Hamiltonian can be separated into two 
terms H = Ha + H,,,, where HCM is given by 

1 HCM = - 
2Nm* 2 

and the term Hrel is more complicated but only involves 
the relative coordinates and momenta. Since the external 
magnetic fieldis assumed to be uniform across the sample, 
A@;.) is a linear functional and thus 

1 N e  rl= TVR - - A ( R ) .  
1 C 

It follows that [HCM, H,,,] = 0 and 1") = l'f")l'FrJ. 
The centre of mass and the relative motion thus 

separate and the eigenfrequencies lYcM) are identical to 
those of a single electron in the bare parabolic confining 
potential. The interaction of the electron system with the 
optical field of the long-wavelength FIR is expressed via 
a uniform, time-dependent perturbation 

which leads to 

e 
mc 

HI = - -nA, == HJY) = HJYCM). (9) 

In other words, in a purely (one-dimensional) 
parabolic confining external potential only the frequency 
coo given by equation (2) is observed in a FIR experiment, 
independent of the choice of the electron-electron 
interaction. This mode is of intersubband type and 
represents a sloshing of the whole electron system, 
represented by its centre of mass (CM) in the external 
parabolic potential. Meanwhile, many different experi- 
ments including those on QIDES and QODES have proved 
the validity of this statement [3]. It was shown that the 
generalization of Kohn's theorem indeed holds and that 
the observed intersubband-lie resonance frequency of 
an electron system in a parabolic confining potential is 
independent of electron-electron interactions and thus 
the actual number of carriers in the well. 

3.2. Imperfect parabolic quantum wells 

So far we have been dealing with electrons in ideal 
parabolic confining potentials. Here, the generalized 
Kohn theorem is directly applicable. No real system, 
however. can be regarded as being completely ideal. First, 
no artificial potential is inlinitely deep; in other words, 
at some finite energies there must be a cut-off where 
parabolicity is no longer maintained. Secondly, there 
might be some unintentionally induced non-parabolic 
terms in the potential which are related to some 
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imperfection during the growth of the structures. Even 
more serious is the situation for quantum wires and dots 
where the parabolic model is certainly only valid in first 
order. Thus, it is highly desirable to gain some insight 
into the behaviour and FIR response of electron systems 
which are confined in 'imperfect' parabolic potentials. 
As far as MBE-grown quantum wells are concerned we 
have the possibility to tailor any kind of desired band 
structure artificially and thus are able to intentionally 
induce a certain degree of non-parabolicity [9,30]. These 
structures may then also serve to a better understanding 
of many properties of quantum dots and wires where the 
confming potential is not exactly known a priori. Early 
experimental results on such samples, which will be 
addressed in section 5, have indeed triggered a lot of 
valuable theoretical work on the subject ofimperfect PQW 
such that we now are in the pleasant situation of also 
having some knowledge about the properties of nearly 
parabolic confining potentials, where Kohn's theorem is 
no longer strictly applicable. Most interesting is the fact 
that in such systems symmetry-forbidden transitions can 
be observed which occur due to non-local interactions 
in the electron system. Such calculations have been 
performed by using either a hydrodynamic approach 
[31] or a fully self-consistent calculation in a random 
phase approximation (RPA) framework [32-351. In 
section 5 we shall directly apply the results of the existing 
theories to our experimental findings and also give more 
details of the models that have been developed and used 
in the past. 

3.3. Finite wavevector 
A very interesting subject of investigation is the collective 
excitation spectrum of electron systems at finite wave- 
vector q. Here, the coupling of FJR to intrasubband 
plasmons also becomes possible [ll, 12, 36, 371. These 
are collective modes of charge density oscillation with 
surface excitation character. For QZDES there exists a 
whole library of literature on those modes which has 
proved invaluable to the understanding of the collective 
spectrum of low-dimensional systems [2]. More recently, 
the collective excitation spectrum of QiDEs has also 
attracted very much attention. Demel and co-workers 
[5] succeeded in the observation of so-called one- 
dimensional plasmons which represent a charge density 
oscillation along the free direction of a quantum wire. A 
very characteristic magnetic field dispersion of these 
modes has been observed which indicates the edge- 
excitation character of such collective modes. On the 
other hand, the resonant coupling between intra- and 
intersubband collective excitation is also of great interest 
since here much information on the dynamic behaviour 
of low-dimensional electron systems can be obtained. 
Such coupling was first observed by Oelting and 
co-workers [38] for a ZDES in an elegant experiment after 
it has been theoretically predicted by Das Sarma [39]. 
More recently Li and Das Sarma [40] as well as 
Gold and Ghazali [41] focused on the interaction of 
1D intersubband resonances with ID intrasubband 



                                        

plasmons. Here a resonant interaction is more likely than 
in the 2D case, since for typical sample parameters both 
modes are energetically of approximately the same size. 

For a Q3DES of finite width a strict separation of 
surface and bulk character of the plasma modes is no 
longer possible once the thickness of the electron slab 
becomes comparable with the inverse of the wavevector 
of the excitation. Then strong mode coupling occurs, 
leading to a characteristic dispersion of the modes. In a 
PQW one has the possibility of changing both the carrier 
density in the well and the effective width of the electron 
slab, which makes it afavourable subject for very detailed 
investigation of these interesting facts. 

4. Experimental remarks 

All our experiments are performed in transmission using 
a rapid scan Fourier transform spectrometer (Bruker IFS 
113) connected to a low-temperature ( T z 2 K )  and 
high-magnetic-field ( B  I 15 T) system. The samples 
under investigation are mounted on a sample stage 
centred in the superconducting solenoid and providing 
the possibility of tilting the sample with respect to the 
magnetic field direction (0 0 I n/2). Usually, unpolar- 
ized FIR is normally incidept, so that we can investigate 
all configurations between Faraday (0 = 0) and Voigt 
(0 = 4 2 )  geometry. A thin NiCr layer on top of the 
sample serves as a semitransparent gate electrode and In 
pellets are alloyed to the electron system to provide ohmic 
contacts. Application of a negative bias V, between the 
gate electrode and the electron system tends to deplete 
the well as already mentioned in section 2. Experi- 
mentally, we determine the relative change in trans- 
mission -AT/T = (T(0) - T(Ns)/T(0) which is pro- 
portional to the real part of the effective conductivity 
Z(w) of the system, depending on the actual polarization 
used in the experiment [42]. T(0) is the transmission of 
the sample with the well being completely depleted, T(NJ 
the transmission at iinite carrier densities. A silicon 
composite bolometer held at T =  2 K is used to detect 
the transmitted radiation. On some samples silver grating 
couplers have also been prepared using either standard 
optical lithography or holographic techniques for the 
shorter-period gratings. The periodicities of the grating 
couplers used in our experiments vary between a = 6 pn 
and a = 0.8 /rm to provide both the necessary z component 
of the FIR to couple directly to intersubband-like 
excitations as well as the finite q = 2x/a for the surface 
(intrasubband) plasmon experiments [2]. The sample 
substrate is wedged to about 3" to avoid disturbing 
interference effects on the transmission spectra. 

5. Experimental results and discussion 

5.1. Ideal parabolic quantum wells 
In this section we shall concentrate on a review of the 
FIR response of what we call 'ideal' PQW, i.e. quantum 

wells with no intentionally induced deviation from 
parabolicity. Such samples are represented by PB26, 
a 200nm wide PQW, where the A1 mole fraction was 
varied during growth between x = 0 in the centre to 
x = 0.2 at the edges and with additional vertical 
sidewalls up to x = 0.3, and a 130 nm wide PQW (PB48) 
with x going from zero to x = 0.3 at the edges. 
For PB26 this corresponds to a curvature of the parabola 
which simulates a positive background charge of n+ = 
2.1 x 1OI6 leading to an expected characteristic 
energy of hw, = 5.8 meV 1 41 cm-'. For PB48 we 
expect from growh hw, = 10.7 meV 1 86 cm-'. The 
sheet carrier density of both samples at V, = 0 V is 
about Ns = 3 x 10" cm-', the electron mobility for 
both samples is of the order of p = 15 mz V-' s-'. 

We first present the results of tilted magnetic field 
experiments, i.e. where coupling to the intersuhband-like 
mode is achieved by a resonant coupling of the cyclotron 
resonance (CR) w, = eB/m* to the sloshing mode of the 
centre of mass wg. For an ideal PQW, due to Kohn's 
theorem only this mode couples to the CR in a tilted 
magneticfield [19]. In this case the theoretical description 
of the interaction is particularly simple and can be treated 
like the coupling of two harmonic oscillators of frequencies 
w, and U,. The tilt angle enters the problem via the 
normal and parallel projections of the CR. namely 
wc,x = w, sin 0 and we,: = w, cos 0. This problem was 
treated originally by Maan [43] and independently by 
Merlin [44]. The result is the occurrence of a mode 
anticrossing between the two resonances if the magnetic 
field is varied such that wo and w, energetically 
degenerate. The resonance positions in this case are given 
by the simple expression 

w t  = &(U: +a;) i ;Jw: + 0; + 2w;(w:,, - &). 
(10) 

For harmonic oscillators the resulting gap due to the 
anticrossing is solely determined by the tilt angle, whereas 
for more complicated potential profiles in general the 
appropriate matrix elements are involved. The oscillator 
strengths of both CM modes are also very easily calculated 

f -1 + - 2 ( f Y  + fW 
( u ~ , ~  cos n + wc,z sin a)' 

( w , , ~  sin n + roc,= cos 
2 w-  

where the angle of rotation n is given by 

2wc,yw%L 
(4 + 4, - a&) tan 2n = 

For low magnetic fields a- has the character of the 
cyclotron resonance, whereas w+ represents an inter- 
subband-like mode. The situation is reversed for high 
magnetic fields. and in the magnetic field regime where 
both modes are energetically degenerate, they exchange 
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Figure 5. Calculated resonance positions of the modes w+ 
and CO- according to equation (10) for a parabolic well 
subjected to a tilted magnetic fieid. Due to mode coupling 
the degeneracy between the two modes is lifted as soon 
as the tilt angle 0 between the sample normal and the 
magnetic field direction is non-zero. For two coupled 
harmonic oscillators, the resulting gap between the two 
lines is solely determined by the tilt angle. 

oscillator strength. The results of equations (10) and 
(11) are depicted in figure 5, where we plot the 
resonance positions of w+ as a function of the total 
magnetic field in units of a,, and tilt angles of 0 = 0, 
20 and 45". For 0 # 0, the degeneracy between the two 
modes is lifted, resulting in a characteristic anticrossing 
of the two lines. 

A typical example for the mode anticrossing at a very 
small tilt angle is given in figure 6, where we show a 
series of observed cyclotron resonance lines for sample 
PB26 at different magnetic fields between B = 2.5 T 
and B = 4.0 T using small magnetic field steps of 
AB = 0.05 T. Clearly one observes the region of inter- 
action resulting in a strong modulation of the CR 
lineshape. At B = Bo x 3.5 T and w = wo zz 46 cm-' 
there is a sharp dip in the envelope-of the spectra, 
reflecting the exchange of oscillator strength and the 
anticrossing of both lines involved. The small tilt angle 
in this case is only given by the wedge angle of the sample, 
namely 0 x 3". Even here, clearly aninteraction between 
the CR and the sloshmg mode of the centre of mass of 
the electron system is detectable, although the two modes 
are not yet strictly separated. 

In figure 7 we depict the result of a tilted field 
experiment on sample PB48 for three different tilt angles. 
The symbols represent the extracted resonance positions 
and the full curves are the result of a calculation according 
to equation (10). For all three experiments the same 
parameters have been used as given in the inset of the 
figure. The agreement between our experimental results 
and the simple model Calculation is nearly perfect for all 
three angles investigated. The small but reproducible 
deviations between theory and experiment at higher 
magnetic fields are due to band non-parabolicity, which 
has not been included in the calculation. 
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Figure 6. Experimentally obtained spectra of the cyclotron 
resonance in a PQW in a tilted magnetic field. The tilt angle 
in this case is very small (0 = 3') such that a splitting of 
both lines according to equation (10) is not yet achieved. 
Nevertheless, a sharp dip in the envelope of the spectrum 
indicates the region of anticrossing between the two lines 
and allows for an exact determination of the resonance 
condition. 
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Figure 7. Experimentally obtained resonance positions for 
three different tilted fieid experiments as a function of the 
total magnetic field strength B. With increasing tiit angle 
the mode anticrossing becomes more pronounced, leading 
to a well defined separation of the two lines. The full 
curvesarethe resultofacalculation according to equation 
(10) using m* = 0.07m0 and hu0 2 86 cm-' for all three 
measurements. Thus, the experimental data are perfectly 
described within the simple model of two coupled 
harmonic oscillators. 

In figure 8 we show the result of the tilted field 
experiment for PB48 at a tilt angle of 0 = 23" together 
with the amplitude of the observed resonances which has 
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Figure 8. Experimentally obtained resonance positions 
(full symbols) of a tilted field experiment at GI = 23" 
together with the result of a calculation (full curves) 
according to equation (IO). Also shown are t h e  extracted 
intensities (open symbols) normalized to the one obtained 
in a normal magnetic field, which are proportional to the 
oscillator strength if the linewidth does not change 
significantly over the magnetic field range shown. The 
broken curves are t he  resuit of equation ( l i ) ,  assuming 
unpolarized far-infrared radiation and normal incidence. 

been normalized to the one of the CR in perpendicular 
magnetic fields. Taking the width of the resonance fixed, 
which is justified here, this quantity is proportional to 
the oscillator strength. The broken curves represent the 
prediction in the simple harmonic oscillator picture as 
givenin equation (1 1). At low magnetic fields in particular 
there exists a quite large scatter around the expected 
value for the oscillator strength. This we believe is caused 
by effects arising from the population and depopulation 
of different subbands in the system: the different spatial 
extent of the wavefunctions in different subbands leads 
to the occurrence of an 'artificial non-parabolicity' [7], 
resulting in a superposition of different CR lines which 
then may complicate the proper evaluation of the 
oscillator strength. Also, the effective electron mass m* 
turns out to be a function of position in the well. These 
effects, as well as those of subband depopulation and 
intersubband scattering, however, are beyond the scope 
of the present report and will be discussed elsewhere. 

Under the extreme condition of an in-plane magnetic 
field (0 = go", Voigt geometry), only w +  is observable. 
The electrical and the magnetic confinements act in the 
same direction and the CR hybridizes with the oscillation 
in the bare potential as represented by we For small 
magnetic fields, electrical quantization is stronger than 
magnetic quantization and the observed resonance 
frequency is close to oo. For higher magnetic fields 
magnetic quantization becomes dominant and the 
observed resonance approaches a,. In a well with perfect 
parabolicity this resonance is a discrete excitation 
that is split off from the continuum of inter-Landau 
level transitions by collective polarization effects. The 
resonance position and the oscillator strength of the 
hybrid mode are then given by 
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Here, it is interesting to note that exactly the same 
magnetic field dispersion is expected and in fact observed 
for quantum wires (QIDES) with parabolic conftnement in- 
a perpendicular magnetic field [3], so that our PQW in 
Voigt geometry may serve as a perfect model system for 
the investigations of such QIDES. The result of such an 
experiment on a PQW is shown in figure 9, where we plot 
the extracted resonance position together with the 
amplitude of the line for sample PB26. Again, it has been 
normalized to that of the CR in Faraday geometry. The 
symbols represent the experimental results, and the 
curves are the result of .the calculation according to 
equation (12). The origin of the large deviation of the 
measured oscillator strength from the expected value 
above B = 12 Tis not yet known. For the geometry of this 
experiment and the related FIR polarization the oscillator 
strength vanishes for B -f 0. Using a grating coupler 
technique, however, we are able to follow the resonance 
down to B = 0. 

An example of such a direct observation of the 
intersubband-like sloshing mode of a PQW [9]  is given 
in figure 10. Here, we plot the result of a grating 
coupler-induced resonance for sample PB26 for three 
different gate voltages V, and correspondingly three 
different carrier densities in the well. To induce longi- 
tudinal electric components in the FIR radiation that 
are transmitted through the sample parallel to the 
growth direction we use a 70nm thick Ag grating 
coupler of periodicity d = 6 pm that is deposited in 
addition to the semitransparent NiCr gate electrode on 
top of the sample. Although the carrier density in the 
well is changed from Ns = 2.5 x 10" cm-* at 5 = 0 V 
down to Ns = 1.6 x 10" cm-' at V, = -0.3 V, the 
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Figure IO. Grating-coupier-induced intersubband-like 
resonance (sloshing mode) of a 200 n m  wide POW (PB26) 
for three different gate voltages V, or carrier densities Ns, 
respectively. Although the density has been changed from 
Ns = 2.5 x 10" cm-' down to Ns = 1.6 x 10" cm-' the 
resonance position does not change, in agreement with 
Kohn's theorem. The svectra have been taken at zero 
magnetic field. 

position of the grating coupler-induced resonance is not 
changed. The decrease of the carrier density, however, is 
reflected in a reduced oscillator strength, as can be seen 
in figure 10. The exact amplitude of the observed 
resonance depends not only on the dynamic conductivity 
a,(o), and thus on the carrier density Ns, but also on 
the efficiency of the grating coupler used in the experiment. 
For this reason, we cannot directly compare different 
spectra obtained for different samples and grating 
couplers. 

The resonance positions of the intersubband-like 
sloshing mode in sample PB26 as obtained from all the 
different experimental techniques are summarized in 
figure 11 as a function of the gate bias V,. Different 
symbols represent the results of different experiments as 
given in the inset. The lower panel offigure 11 shows the 
change in width of the electron layer confined in the 
parabolic well as a function of gate bias. Although this 
width is changed by approximately a factor of four, no 
significant change of the resonance position is observed. 
However, there is a small but reproducible scatter of the 
data around the expected values of oo E 46.9 an-' 
which is indicated by a thin horizontal line in the figure. 
Within the resolution of the experiments this scatter is 
independent of the way that it is obtained, indicating an 
intrinsic origin. We believe that it is the result of a 
sensitive test of the local curvature of the PQW around 
the potential minimum. Such small changes in the 
curvature of an "&grown PQw cannot be completely 
excluded and have in fact been observed in different 
experiments and direct measurements [45]. Application 
of a negative gate bias shifts the potential minimum 
deeper into the sample such that a specific gate bias is 
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Figure 11. Resonance energy of the absorption of a POW 
as obtained using three different techniques as indicated 
in the inset versus the gate bias or the carrier density, 
respectively (top). The thin horizontal line indicates the 
natural frequency of the respective well (PB26) as 
expected from the growth alone. There is  a small but 
reproducible scatter of the experimentally obtained 
positions around the expected value, which we attribute to 
a sensitive test to the local curvature of the well. The 
bottom panel sketches the change in carrier density or 
equivalentlythe widthoftheelectron siabwith gate bias [22]. 

related to a possible slightly different local curvature. 
This assumption appears to be justified by the fact that 
the scatter becomes larger once the width of the electron 
slab is reduced: the wider the electron system, the less 
important short-range fluctuations of the actual curvature 
of the PQW become and vice versa. Since the positions of 
the resonances crucially depend on the actual shape of 
the bare potential, small deviations from a constant 
curvature have a large impact on the resonance positions. 

In a theoretical analysis of the spectrum of 'imperfect 
parabolic quantum wells', Brey and co-workers [32] 
studied the infiuence of small additional quartic terms 
A, in the potentia1 as a measure for deviations from 
parabolicity. They found that such a correction is quite 
effective in shifting the absorption line. For example, a 
positive A, causes a convex parabolic correction to the 
nearly uniform charge distribution produced by the 
parabolic potential alone. This leads to an additional 
confinement of the carriers and thus to an increase of the 
resonance position. A negative Aq, however, induces an 
additional concave parabolic component, leading to a 
spreading of the charge as compared with the ideal 
parabola and thus to a reduction of the resonance 
position. A rough estimate yields that a shift of the 
absorption line by 5% can be caused by quartic 
contributions to the potential of the order of Aq/Ap 4 0.1 
where Ap denotes the parabolic coefficient of the 
potential. In other words, although we cannot state 
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definitely that the observed resonance position does not 
depend on the gate bias V,, we have strong indication 
that it does not depend on the actual carrier density in 
the well in accordance with Kohn's theorem. 

5.2. Imperfect parabolic quantum wells 
In the last section we saw that for electron systems 
confined in purely parabolic potentials the generalized 
Kohn theorem is applicable. Purely parabolic confining 
potentials, however, do not exist in reality. There are two 
major sources for deviations from parabolicity: 

(i) No real potential is infinitely deep. For the special 
case of PQW this is equivalent with the finite height of 
the AlGaAs barriers enclosing the quantum well. In other 
words, the finite size of the system under consideration 
in principle violates the theorem. We will refer to this 
source of deviation as finite size effects. 

(ii) There might be some unintentional small devia'- 
tions in the curvature of the mE-grown parabola. In 
first-order approximation those deviations may be 
considered in a series expansion of the confining 
potential. These effects will be referred to as higher-order 
effects. 

Both (i) and (ii) are not only restricted to the case of an 
mE-grown PQW: finite size effects certainly occur in all 
kind of man-made potential profiles. The question only 
reduces to a comparison of relevant energy scales, like, 
for example, the ratio of the Fermi energy to the height 
of the potential. Effects arising from higher orders in the 
confining potential (ii) are the mpst universal approach 
to model deviations from parabolicity. Self-consistent 
calculations for quantum wires [46] show that, indepen- 
dent of the way of preparing such wires (electrostatically 
or by deep mesa etching), the resulting confining potential 
is somewhere in between a parabola and a rectangular 
quantum well. Such a potential then can be modelled by 
a parabola plus additional higher-order terms. 

To study the influence of deviations from perfect 
parabolicity, and thus from the validity range of the 
generalized Kohn theorem, parabolic quantum wells 
seem to be a nearly perfect tool. Unlike the case of 
quantum wires or dots the external confining potential 
can be tailored in a very precise and controlled way 
during the growth of the structure. Moreover, optical 
experiments on imperfect parabolic quantum wells can 
yield information not only about the extent to which the 
confining potential deviates from perfect parabolicity, 
hut also-for small deviations-about the forbidden 
excitation of an ideal system [31]. Here we present the 
experimental results obtained in a structure (PB25) where 
we intentionally induced a certain degree of non- 
parabolicity to study its influence on the FIR spectrum. 
Moreover, the sample has been designed such that we 
can electrically tune the degree of deviation and switch 
between different limiting cases. The sample is a nominally 
75 nm wide PQW with A = 75 meV, having vertical side- 
walls which are 150 meV high. The curvature of PB25 is 
chosen such that we expect the bare harmonic oscillator 
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Figure 12. Results of a self-consistent calculation for the 
sample PB25 (W = 75 nm, A = 75 meV). Both the 
self-consistent potential and the resulting charge 
distribution N(z) = ~; /V~1<,1*  are depicted as functions of 
depth z. The centre of the PQW is located z = 0. Note the 
considerable shift of t h e  electron distribution with 
increasing negative gate bias. In (a)-we show the situation 
for t he  completely filled well, (b) depicts intermediate 
filling, whereas in (c) the well is nearly depleted and 
strongly asymmetric [SI. 

frequency to be w o  U 86 cm-'. The result of a self- 
consistent potential and subband calculation for this 
sample is shown in figure 12, where we plot the self- 
consistent potential together with the total wavefunction 
as a function of depth for three different gate voltages or 
carrier densities in the well. The gate electrode is situated 
at the left-hand side, the substrate at the right-hand side. 
In figure IZ(a), the well is nearly completely filled at a 
carrier density close to,N, = 5 x 10" cm-' at V, = 0 V. 
Here, the vertical sidewalls will certainly influence the 
finite size effects as mentioned above. For intermediate 
carrier densities or well fillings the wavefunction is 
located in the purely parabolic part of the confining 
potential and we expect the sample to behave like a 
'normal' PQW. This situation is shown in figure 12(b) for 
a carrier density of Ns = 3 x 10" cm-' at V, = -0.4 V. 
For very low carrier density or very negative gate bias 
(figure 12(c)) close to total depletion of the well we expect 
that the resulting self-consistent potential looks more like 
a half-parabola, thus containing strong higher-order co- 
efficients in the curvature. In this case only one electrical 
subband remains occupied, leaving the system in the 
electrical quantum limit. In figure 13 we depict the 
single-particle subband energies and the resulting subband 
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Figure 13. Self-consistent subband energies (a) and 
carrier densities (6) for the sample PB25. At high well 
filling up to three electrical subbands are occupied. 

population for sample PB25 as obtained from self- 
consistent calculations. This calculated single-particle 
band structure and subband filling has been shown 
before to be very close to reality, since in various 
(magneto-) transport experiments we can directly com- 
pare it with our experimental results [27]. 

An experimental spectrum for this ‘imperfect’ sample 
as obtained using the grating coupler technique is shown 
in figure 14. Here, we plot the relative change -in 
transmission versus FIR frequency for different gate 
voltages 5. Capacitance-voltage measurements on the 
same sample reveal a threshold voltage of V’ = -1.2 V 
for complete depletion. Trace A has been recorded after 
illuminating the sample at V8 = 0 V for some seconds 
with an IR light emitting diode, thus increasing the carrier 
concentration via the persistent photoeffect. Trace B is 
taken at a gate bias of 5 = +0.6 V and after illumina- 
tion, which further increases Ns. The exact values for the 
densities at A and B, however, have not been determined 
in the experiment. From an analysis of the oscillator 
strength of the resonance, N,(B) is estimated to be about 
6 x 10“ cm-’. As can be seen from the figure, in this 
special sample the electron system not only absorbs at 
the frequency of the bare harmonic potential, but side 
lines appear in the spectrum. The main line, however, 
remains quite unaffected throughout the range of camer 
densities shown, indicating the rigidity of Kohn’s theorem 
even for this highly perturbed sample. 

The influence of non-parabolic contributions to the 
well potential, as listed above, has recently been discussed 
in considerable detail by Brey and co-workers [32]. They 
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Figure 14. Experimentally obtained grating-couplier- 
induced spectra for sample PE25 The relative change in 
transmission is shown for different gate voltages V, and 
carrier densities Ns. Traces A and B have been taken 
after a short illumination of the sample (VJA) = 0 V, 
V,(B) = f0.6 V), which still increases Ns in the well. In 
limits of both high and low electron concentration 
deviations from the harmonic oscillator picture are 
observed, manifesting themselves in the occurrence of 
additional lines [9]. 

calculate the IR absorption of ‘imperfect’ parabolic wells 
using the local density approximation for a PQW similar 
to the ones we use in our experiments. For comparison, 
in figure 15 we replot the result of Brey et al for 
a completely iilled well, where finite size effects become 
important, together with trace B from figure 14. The 
amplitude of the main line of the calculation has been 
normalized to the experimental one. Clearly all essential 
features of the experiment are reproduced in the calcula- 
tion, although the liewidths and the exact position of 
the satellite structure differ slightly. This is believed to 
be caused by the fact that the parameters of the sample 
assumed in the calculation are not exactly identical with 
ours and that a phenomenological scattering time t has 
been used in the calculation. According to Brey et nl, for 
a well-filling q = Ns/(n+ W) % 1, the perturbation has 
two main effects on the IR absorption of a PQW. First, the 
additional confinement leads to a slight shift of the main 
absorption line to a higher frequency, and secondly, small 
satellites begin to appear, reflecting the coupling of light 
to the intemal oscillations of the electron system. As can 
be seen in figure 14, this crossover is clearly discernible 
from our data At high q two lines are clearly observed. 
The one of smaller oscillator strength and of higher 
frequency disappears with decreasing Ns. At intermediate 
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Figure 15. Comparison of the experimentally obtained 
resonances of trace B in figure 14 with those calculated by 
Brey et alfor a completely filled paw. The sidelines are 
due to internal oscillations of the electron system caused 
by the finite width of the well. All essential features of the 
experiment are reproduced i n  the calculation of the 
far-infrared absorption. The deviations are believed to 
occur owing to differences in the sample parameters in 
both cases and the uncertainty of the exact filling factor q 
in the experiment [9]. 
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Figure 16. Experimentally obtained spectra for sample 
PB25 at high well filling in tilted magnetic fields 
6 T  5 B 5 15 T. The tilt angle between the sample normal 
andthedirectionofthe magneticfield i s 0  = 23PL-!uetothe 
intentionally induced deviations from 'ideal parabolicity' 
new lines which are not present in an 'ideal' POW are 
observed within the gap between the two centre of mass 
modes m+ and U - .  

                                        

densities only one resonance is observed until at low Ns 
the system begins to feel the strong deformation of the 
potential associated with the vertical confining sidewall 
(cf figure 12(c)). Here, the model of the harmonic 
oscillator is certainly not valid any more, and as a 
consequence additional resonances appear. 

Experiments in a tilted magnetic field confirm this 
observation. Here, we make use of the effect of a certain 
'contrast enhancement' in such types of measurements: 
Although the oscillator strengths of the additional lines 
may be quite small compared with the main line, their 
existence may lead to a resonant interaction between 
these modes and the cyclotron resonance similar to that 
for a perfect well. Typical examples of such tilted field 
experiments for sample PB25 at different gate bias 
V, and camer density Ns,  respectively, are given in 
figures 16 to 19 for a series of magnetic fields. Here, we 
depict a series of FIR spectra obtained for a tilt angle of 
0 = 23" between the sample normal and the magnetic 
field direction. The spectra shown cover the upper 
magnetic field range between B = 6 T and B = 15 T. The 
most remarkable feature here is the occurrence of 
additional small lines in the gap between the ca-like and 
the IsR-(intersubband-like p1asmon)like modes, which are 
not present in ideal parabolic wells (cffigures 7,s and 9). 
The more the well is disturbed from ideal parabolicity, 
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Figure 17. Experimentally obtained spectra for sample 
PE25 at intermediate well filling in tilted magnetic fields 
6 T 5 B 2 15T. Note the occurrence of a strong 
additional line between the two centre of mass modes, 
indicating strong deviations from ideal parabolicity. Also 
note the broadening and decrease in intensity of the upper 
CM modes around B = IZT, indicating the Onset of an 
additional anticrossing. 
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Figure 18. Experimentally obtained spectra for sample 
PE25 at even lower well filling in tilted magnetic fields 
6 T  5 B 5 15T. The anticrossing, as already indicated in 
figure 17, now has become stronger such that a new line 
splitting can be clearly resolved. 

the more those additional lines gain in importance. 
In figure 17 three distinct lines appear and the onset 
of a new anticrossing around B = 12T is observed, 
being reflected in a strong broadening of the m-like 
line U+ at around 16Ocm-'. This anticrossing is 
clearly resolved in the spectra of figures 18 and 19, taken 
at quite a low carrier density and a strongly deformed 
potential profile, respectively. Here, the major anti- 
crossing between the CR- and the ISR-like sloshing modes 
is shifted upwards in frequency, such that the centre of 
the gap occurs at considerably higher energies than in 
the unperturbed case. In figure 20 we summarize all the 
resonance positions as obtained under different experi- 
mental conditions and different well fillings or carrier 
densities. The harmonic oscillator coupling as derived in 
equation (IO) is still applicable to figure 20(u), of course 
not considering the additional lines within the gap. This 
can be regarded as an indication that with decreasing 
carrier density, or equivalently a more deformed potential 
profile, the mode character significantly changes and 
self-consistency as well as the appropriate matrix 
elements ofthe problem have to be considered to describe 
the interaction. 

A first approach to explain the extra modes occurring 
in our experiments has been recently carried out by 
Dempsey and Halperin [31] using a classical hydro- 
dynamic model to describe the magnetoplasma excita- 
tions in a PQW. The electron system confined in the well 

228 

W 
0 za 
!i 
5 
2 aa 
I- 
i 
W a 

50 100 150 200 2 
WAVE NUMBER (cm-1) 

0 

Figure 19. Experimentally obtained spectra for sample 
PE25 at very low well filling in tilted magnetic fields 
6 T  5 5 5 15T. The strong asymmetry of the confining 
potential (cf figure 12) completely changes the observed 
spectra with respect to those of figure 16. The simple 
harmonic oscillator picture is by no means applicable 
under these experimental conditions. 

in this case is treated as a classical charge fluid with an 
internal pressure p proportional to a density N - No, 
where N is the density of the electrons and N, a density 
at which the pressure vanishes. Linearizing the dynamical 
equations and neglecting retardation effects, they cal- 
culate the dispersion of the magnetoplasmon frequencies 
as a function of an in-plane wavevector q. Applied to our 
experiment, i.e. for small in-plane q, they show that at 
least for the case of a completely filled PQW (q U 1) where 
finite size effects become important, this model gives 
an impression of the character of the internal modes of 
the electron system. Those excitations may be regarded 
as 'standing-wave'-like bulk magnetoplasmons with an 
integral number of wavelengths within the electron slab 
of width We. Thus no longer are only two harmonic 
oscillators coupled in a tilted field experiment but now 
one has to take into account the pressure-driven internal 
oscillations of the electron slab. Such non-local inter- 
action effects are well known for homogeneous 3DES and 
?DES. They arise from the inherent finite compressibility 
of the Fermi gas, the 'Fermi pressure', and lead to 
corrections for the squared plasma frequency. For an 
ideal three-dimensional system, the frequencies of these 
oscillations are then given by 
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Figure 20. Summary  of all the experimentally obtained 
resonance positions from the tilted field experiment on 
sample PE25 for different well fillings or gate voltages. 
With decreasing carrier density the spectra deviate more 
and more from the prediction of the simple harmonic 
oscillator picture as represented by equation (10). 
Additional lines besides the CM modes appear and the 
whole spectrum is shifled towards higher energies, 
indicating a 'stiffening' of the confining potential. 

where uF denotes the Fermi velocity of the electrons of the 
'natural' density n+ in the well. For a strictly two- 
dimensional system, the prefactor 3/5 in equation (13) 
has to be replaced by 3/4 [47]. Such non-local effects 
become important at small plasmon wavelengths or 
correspondingly high values of q. A well known and 
famous manifestation of it is observed if photons are 
incident on a boundary of a semi-infinite  DES. Here it is 
manifested in a coupling of the incident transverse 
photons with longitudinal plasmons [48]. Also related 
to this is the problem of the widely discussed 'additional 
boundary conditions' (ABC) [49]. A similar non-local 
interaction has recently also been observed in ODES 
[2, 61. For the case of our PQW, the different branches 

of the coupled system now can be written as 

on* = [${(mi + o: + df) 
5 c(w; +U: + d,y - 40:,=(4 + ~ ; ) l y p .  

(14) 
Here, o, again denotes the z component of the cyclotron 
frequency whereas the other symbols have meanings 
as defined above. It is'important to note that only the 
modes with n = 0 (CM modes) exhibit a non-zero dipole 
moment. For symmetry reasons, only these modes should 
be observable in a FIR transmission experiment. The 
presence of a gate bias, however, may break this 
symmetry such that symmetry-forbidden resonances also 
are detectable in our experiments. 

The result of the calculation is shown in figure 21, 
where we plot the first five internal modes together with 
the experimental data as extracted from figure 20(a). The 
thin curves represent the interaction of the Fermi- 
pressure-driven internal oscillations and the cyclotron 
resonance, whereas the thick curves are the centre of mass 
modes as discussed above. The only parameters necessary 
to make the comparison are wo and We, which are known 
independently. Given 'the simplicity of the model, the 
agreement between the calculation and the experiment 
is remarkable. It suggests quite strongly that the actual 
modes excited in the experiment are closely related to 
the magnetoplasmon modes as obtained in the simple 
hydrodynamic approach. In principle, the hydrodynamic 
calculations should give good results for plasmon-like 
modes in systems with large, slowly varying electron 
density, as long as the wavelength of the excitation is 
large compared with the interparticle spacing [31]. 

There are, however, some differences between the 
results of this model and the real experimental data which 
cannot be explained within this framework. For instance, 
the model does not predict resonances above the CR-like 
mode below the point of anticrossing, whereas the 

- 160 
E 
7 
s 120 > g 80 
w 

40 PB25 Vg=OV @=23' 

0 2 4 ' 6  8 10 12 14 16 
MAGNETIC FIELD B (T) 

Figure 21. Comparison of the theoretical results (curves) 
obtained employing a classical hydrodynamic approach 
[31] and our experimental data corresponding to figure 16 
(symbols). The additional curves in the calculation are 
caused by non-local interactions driven by t h e  Fermi 
pressure and resulting in the occurrence of internal 
oscillations of the electron slab. 
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experiment exhibits a quite strong line that slowly levels 
off with decreasing magnetic field. Furthermore, the 
agreement between the result of the hydrodynamic model 
and the experiment becomes worse if the carrier density 
in the well is considerably reduced as compared with the 
5 = 0 V case. Also for different tilt angles, and especially 
for 0 = go", the agreement between model and experi- 
ment is unsatisfactory [31]. 

The collective excitations in a PQW can be regarded 
as representing something in between the true plasmonic 
collective excitation of a pure 3D system and the 
intersubband transitions of a pure ZDES, where self- 
consistent screening leads to an upward shift of the 
already large transition energies. In a parabolic well the 
smallness of the self-consistent single-particle energies as 
compared with the characteristic energy of' the bare 
potential strongly mixes the intersubband transitions, 
forming collective excitations that occur at much higher 
energies, and all the plasmon energy arises from the 
coherent polarization of the electronic system. This 
strong mixing, together with the self-consistent screening, 
requires a fully self-consistent calculation of the mode 
spectrum taking into account not only the centre of mass 
modes. Such calculations have been recently carried out 
also by Dempsey and Halperin [33-351 using a self- 
consistent field approach in local density approximation 
(LDA-SCF) and, for comparison, also in random phase 
approximation (RPA). The calculated spectra using both 
methods, however, only differ by a few per cent in the 
resonance positions. This indicates that in a PQW 
exciton-like effects (at least those calculated using a 
zero-field local exchange potential) are small in com- 
parison with depolarization effects [33, 341. This is very 
different from the situation in quasi 2D systems, where 
depolarization- and exciton-like effects are known to be 
of the same order of magnitude. Experiments that are 
sensitive to these contributions, like Raman scattering 
using polarized and depolarized geometries, certainly 
promise to be very interesting for a better understanding 
of the underlying mechanisms. 

In their calculations, Dempsey and Halperin chose 
well parameters to match our real experiments for the 
sister samples PB25 (hard vertical sidewalls) and PB48 
(same curvature but no vertical sidewalls) and find 
excellent quantitative agreement over a wide range of 
magnetic field strengths and carrier densities in the wells. 
Referring the reader to a detailed description of the 
calculation method in the original articles [33-351, we 
here restrict ourselves to giving only the essential results. 

We start with a description of the spectra of PB25 at 
a gate bias of V, = 0 V as shown in figures 16,20(a) and 
21. The most prominent feature as compared with the 
spectrum of an 'ideal' PQW is the occurrence of two extra 
peaks between the centre of mass modes, which are only 
little changed with respect to the 'ideal' well PB48. A 
direct comparison of both samples is shown in figure 22, 
where we plot the measured resonance positions for both 
samples and identical experimental conditions. Full 
symbols represent the result for the 'imperfect' well PB25 
and the open circles those for the 'ideal' well PB48. 
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Figure 22. Direct comparison of t h e  extracted resonance 
positions obtained in a tilted field experiment for two 
different PQW with the same curvature. In PB25, however, 
the parabola is truncated by additional vertical sidewalls, 
leading to the occurrence of additional lines and a slight 
energetical increase of the low-energy CM mode. The 
experimental conditions for both samples are the same. 

As can be seen, the major differences are the extra peaks 
and a slight energy decrease of the CM mode w -  for the 
perturbed sample. The upper CM modes U +  are nearly 
indistinguishable for both samples. 

Dempsey and Halperin accurately reproduced the 
extra peaks that are observed in the experiment as well 
as some additional lines and anticrossings by just taking 
into account the finite size of the well. However, since 
self-consistent screening strongly mixes the intersubband 
transitions, it is in general very demanding to associate 
those peaks in the spectrum with particular transitions. 
One special case is the upper extra peak in the gap 
between the cM-like modes. To account for the occurrence 
of this second extra peak, especially at high magnetic 
fields, Dempsey and Halperin [34] had to include effects 
that arise from the finite temperature of the experiment. 
In a T = 0 calculation this peak, which is associated with 
the 1 + 4 intersubband transition, disappears above 
B = 10.5 T due to a magnetic depopulation of the E, 
subband. Since the single-particle subband separations, 
however, are so small in a PQW, there is a reasonable 
occupation of the E, subband even at low temperatures. 
This occupation has a strong effect on the absorption 
spectrum leading, for example, to the occurrence of the 
upper extra peak in the spectrum. 

The result of Dempsey and Halperin's RFA calcula- 
tion together with our experimental data is shown in 
figure 23. The dots are the calculated resonance positions 
with their sue being proportional to the calculated 
oscillator strength. The boxes are our experimental data. 
As can be seen, the agreement is close to being perfect 
as far as the resonance positions are concerned. Also the 
behaviour of the oscillator strength is calculated quite 
perfectly as can be seen from figure 16. Given the results 
of the calculations, the authors also calculated the spectra 
for a strongly biased PQW, where the electric-field-induced 
asymmetry becomes the dominant effect on the absorption 
spectrum. This i s  shown in figure 24, where again both the 
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Figure 23. Comparison of the result of a fully 
self-consistent calculation (dots) as described in the text 
[33, 341 and our experimentally obtained resonance 
positions (boxes). The area of the dots is proportional to 
the oscillator strength of the respective lines. The  inset 
depicts the corresponding ground state electron density 
(full curve, left-hand scale) and self-consistent potential 
(broken curve, right-hand scale) at B = 12T. (from [34] 
with permission.) 
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Figure 24. Comparison between the calculation of [34] 
(dots) and our experimental results for the partially 
depopulated well PE25 at a gate bias of V, = -0.7 V 
(cf figures 18 and 20(d)). Even for this strongly 
symmetry-broken case the agreement between the 
calculation and our experimental result is excellent. The 
inset depicts the corresponding ground state electron 
density (fuli curve, left-hand scale) and the self-consistent 
potential (broken curve, right-hand scale) at B = 12T. 
(From [34] with permission.) 

calculated and the experimental resonance positions are 
shown together for a gate bias of V ,  = -0.7 V (cf figure 
IS), leading to a linear potential gradient of 205 meV 
across the well. The inset shows the calculated ground- 
state density and self-consistent potential under these 
conditions. It is interesting to note that charge accumula- 
tion at the edge of the well leads to a maximum electron 
density that is more than 1.5 times larger than the 
‘natural’ density n+ given by equation (1). 

So far we have considered the experiments at tilted 
magnetic fields where the coupling of the CR to the centre 
of mass and the internal oscillations of the PQW led to 
the occurrence of a quite complicated absorption 
spectrum. For in-plane magnetic fields also, there are 
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Figure 25. Experimental spectra for sample PE25 for 
V, = 0 V and Ns = 5 x 10” cm-2 in Voigt geometry (cf 
figure 9). The magnetic field B is directed along the plane 
of the POW, using normally incident unpolarized FIR. The 
most striking fact is the occurrence of two lines instead of 
the single mode of the plasma-shifted CR in an ‘ideal’ POW. 

strong deviations from the ‘ideal’ case. This is a very 
interesting result, sinceit can directly be compared wi thm 
investigations of quantum wires, where the confining 
potential is not exactly known. An example for the in- 
plane spectrum of the ‘imperfect’ PQW PB2S is given in 
figure 25. The corresponding squared resonance positions 
versus the squared magnetic field for two different carrier 
densities in the well are shown in figures 26(a) and (b), 
respectively. The most striking fact is that now two 
resonances are observed which are well separated at low 
magnetic fields and merge at high magnetic fields at the 
position of the ’unperturbed’ hybrid resonance of a PQW 
in Voigt geometry (see, for example, figure 9). The 
oscillator strengths of the two resonances vanish for 
B + 0 with the low-energy resonance disappearing 
earlier. It is interesting to note that, for low magnetic 
fields, the observed transitions as a function of the 
magnetic field can be described by 0 N Jm. A 
similar behaviour has very recently also been observed 
in FIR studies of 1D quantum wires [SO]. There, the 
magnetoelectric hybrid mode exhibited a splitting at 
around R =$&I&, which was attributed to a non-local 
effect arising from non-parabolic terms in the confining 
potential. It is interesting to note that this higher- 
frequency & as well as the apparent mode crossing at 
R m f i nc  corresponds to the situation where w0 = U,. 
This is exactly the condition at which the density ofstates 
in a PQW in a parallel magnetic field changes from quasi 
2D behaviour at low magnetic fields towards quasi 1D 
behaviour in high magnetic fields [60]. 

The essential result of Dempsey and Halperin’s 
calculation using a sell-consistent-field formalism intro- 
duced by Ando [l, 511 is the occurrence of a band of 
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Figure 26. Squared resonance positions for PB25 at two 
different gate voltages versus the square of the in-plane 
magnetic field E .  The simple harmonic oscillator picture 
predicts the full line, representing the plasma-shifted CR 
as observed in an 'ideal' POW. Note that in (6) the upper 
mode intersects the energy axis with a slope 
approxlmateiy given by 2w: as described in the text. 

transitions instead of the sharp line (cf equation (12)) 
predicted for an 'ideal' well. The interesting fact is that 
the oscillator strengths of the single transitions forming 
a continuum are not distributed symmetrically among 
these lines. At low magnetic fields, where the electrical 
quantization is governing the system, the oscillator 
strength is peaked at the upper edge of the continuum, 
then moves towards the lower edge until for high 
magnetic fields both maxima merge. For very large 
magnetic fields a single line representing the cyclotron 
resonance is recovered. The point at which the oscillator 
strength is equal for both lines, again corresponds 
to a magnetic field, at which L2 x $U), or coo =-ao., 
respectively. This behaviour is shown in figure 27(a) 
taken from [35], where the calculated resonance posi- 
tions and oscillator strengths (dots) together with 
our experimental data (boxes) at a gate bias of V, = 0 V 
are shown. In figure 27(b), the calculated spectrum 
assuming a phenomenological scattering time I [35] 
is plotted for comparison. Although the calculated 
resonance positions match the data of our experi- 
ment, we do not really observe the crossover of oscillator 
strength. Also, there are two well defined resonances in 
the experimental spectra, whereas the calculation gives 
a more or less broad continuum with non-symmetrically 
distributed oscillator strength. This discrepancy between 
calculation and experiment as well as the physical origin 
of the interesting anticrossing at w0 = U), still remains to 
be solved by future investigations. 
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Figure 27. (a) Comparison of the result of a fully 
self-consistent calculation (dots) as described in the text 
[33, 341 and our experimentally obtained resonance 
positions (boxes) in Volgt geometry. A s  compared with an 
'ideal' system the single line of the plasma-shitted CR is 
now broadened into a 'continuum, with asymmetrically 
distributed oscillator strength. The area of the dots is 
proportional to the oscillator strength of the respective 
lines. (b) Calculated spectra for the resonances of (a). 
A phenomenological scattering time has been used to 
model the absorption lines. (From [35] with permission.) 

5.3. Finite wavevector experiments 
So far we have been considering the response of a 
parabolically conhed electron system to long-wavelength 
radiation at very small or vanishing wavevector. Now 
we would like to expand our investigations to the regime 
of finite q which is achieved using shorter-period grating 
couplers. First we present some experimental findings on 
the complete dispersion of an electron slab of finite width 
which is comparable to q-' of the grating coupler. In 
this context we demonstrate that we are able to excite a 
whole set of elementary excitations of the system, which 
are more or less strongly coupled. By the possibility of 
electrically varying the thickness of the electron slab, and 
thus in some sense also of changing its dimensionality, 
we gain access to many fundamental properties of the 
collective excitation spectrum of an electron system of 
finite width. As we have discussed in great detail before, 
the intersubband transitions correspond to charge 
density oscillations parallel to the direction of confine- 
ment and there is a collective mode associated with them, 
called the intersubband plasmon. For the special case of 



                                        

an 'ideal' PQW, Kohn's theorem states that this mode is 
the only one observable in long-wavelength spectroscopy. 
It represents a 'sloshing' of the whole ensemble of 
electrons like a rigid system and can be represented by 
the motion of the centre of mass alone. 

On the other hand, the collective modes associated 
with the charge density oscillations perpendicular to the 
direction of the confinement, i.e. along the 'free'direction 
of the electron slab, are associated with so-called 
intrasubband plasmons. In a homogeneous infinite 
plasma these excitations are non-radiative modes in the 
sense that the spectrum is restricted to the region below 
the light line, i.e. q > w/c (taking into account retardation 
also at small w and q). Thus no direct coupling with 
radiation is possible. To couple the plasmon with an 
electromagnetic wave the latter has to be transformed in 
a proper way in order to generate a spatially modulated 
electric field. An effective way to do so is to use grating 
couplers, which consist of periodic stripes (periodicity U) 

of high- and low-conductivity materials?. Then the 
incident field, which has a homogeneous E ,  component 
only, is shortened in the high-conductivity regions of the 
grating. In the near field of the grating, however, the 
electromagnetic fields are spatially modulated and consist 
of a series of Fourier components. 

m 
e(x, t) = (e:, 0, e) exp[i(q:x - wr)] (15) 

n = - m  

with q: = n(2xju). Fourier components with this wave- 
vector can couple to the plasmons if they satisfy their 
dispersion relation [52]. In a local and strictly two- 
dimensional treatment, where the wavelength of the 
excitation is taken to be much larger than the thickness 
of the electron system, this dispersion of the intrasubband 
plasmon reads [53] 

Here. Ns again denotes the areal carrier density, E an 
effective dielectric function including screening and mp a 
plasmonic effective mass. It is also important that in the 
near field of the grating z components of the electric 
field are induced. which in turn can be used to excite 
the intersubband-like resonances as discussed in the 
previous section. The effectiveness of a grating coupler 
to couple to both modes. however, depends crucially on 
its design. For instance, the nth Fourier component of 
the fields decays with depth like exp(--q",z) for qx 9 w/c. 
Thus the distance of the grating from the electron system 
should be small relative to its periodicity, which should 
be small itself to couple to high-frequency plasmons. 
Hence, for the special case of a PQW we are somewhat 
restricted in the choice of the grating coupler, since here, 
apart from the width of the electron system itself, the 
wells are usually buried quite deep below the sample. 

?In principle, any periodic modulation of the dielectric properties in 
the vicinity of the electron system, for example a modulation of the 
system itself, Causes a grating coupler effect. 
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Figure 28. Calculated B = 0 uniform-slab dispersion of the 
collective modes for a POW as a function of qW, using a 
classical hydrodynamic model [31]. Both bulk-like 
(0 > U,,) and surface-like (U < wo) excitations can be 
excited. The surface-like modes degenerate at w = 
for large q. If the slab width is comparable to q-', a 
strict separation of the mode characters is no longer 
possible. 

Nevertheless, the existence of such surface-plasmon 
modes on PQW has recently been demonstrated experi- 
mentally [36, 371 and their dispersion has been shown 
to follow equation (16). 

The complete excitation spectrum of an electron slab 
of finite width as realized in PQW has been treated in the 
hydrodynamic model by Dempsey and Halperin C311. It 
is shown in figure 28, where we depict the calculated 
resonance energies as a function of q We. Here, W, again 
denotes the thickness of the electron slab under con- 
sideration. The modes with w(q) > wo represent bulk-like 
excitations, which can be related to Fermi-driven internal 
oscillations of the system as already discussed in the 
previous section. They exhibit a small positive dispersion 
ccq' as is expected for a 3D bulk plasmon. The two 
remaining modes with w(q) c wo are surface-like excita- 
tions, the lower one being related to the 2D plasmon as 
described by equation (16) for vanishing thickness. Here 
it becomes evident that the finite thickness of the electron 
system certainly has to be included in a theoretical 
description of the mode character and becomes very 
important if q We approaches unity [54]. 

The experiments presented in this section are per- 
formed on sample PB31, a 200 nm wide PQW grown as a 
sister sample to PB26. It has been designed to exhibit a 
natural resonance frequency ofo, N 47 cm-'. The major 
difference compared with PB26 is the considerably higher 
electron mobility of the order of 3 x lo5 cm' V-' S-'. 
The carrier density of this sample can be varied between 
Ns = 2.6 x 10'' cm-' at t$ = +0.2 V and Ns = 0 at 
V, = - 1.3 V. The experiments presented here were 
performed using a 2 pm period Ag grating deposited on 
top of a 6 nm thick semitransparent NiCr gate electrode. 
Thus, in our experiments qW, < 0.3 for all gate voltages 
5, by which the thickness of the layer can be varied 
according to equation (3). The result of such an 
experiment is shown in figure 29. Here we plot the 
extracted resonance positions at B = 0 as a function 
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Figure 29. Experimentally obtained resonance positions of 
the collective mode spectrum for sample PB31 as a 
function of the carrier density Ns or slab width. A 2 $m 
periodicity grating coupler has been deposited on top of 
the sample surface to provide the necessary z component 
of the FIR to couple to the intersubband-like mode and 
also to provide a wavevector q to couple to the 
intrasubband plasmon. The lines are the result of the 
classical hydrodynamic model [31] whereas the full 
circles represent our experimental data. 

of the carrier density Ns in the sample, which according 
to equation (3) reflects the thickness of the electron 
system. The full lines in the figure are the result of the 
hydrodynamic model for comparison. For low carrier 
densities only two resonances are 0bserved;representing 
the surface-like modes at finite wavevector q. For higher 
carrier density the first bulk-like plasma mode can also 
be resolved. The natural frequency wo of the well has 
been fitted to wo 45 cm-l, which is in good agreement 
with the one expected from growth. The deviations 
between the model and the data, especially at high filling 
of the well, are believed to be related to the uncertainty 
in the actual width of the electron system, which is simply 
taken from equation (3). At high well fillings an increase 
of the carrier density is reflected in an additional charge 
accumulation near the edges of the well rather than in a 
further increase of the electronic width. This is also 
indicated by the fact that the disagreement only occurs 
at positive bias and by the occurrence of the (symmetry- 
forbidden) bulk mode. It should be noted that this mode 
spectrum has been observed in the past also on thin metal 
films, where the characteristic energies of course are three 
orders of magnitude higher [ 5 5 ] .  

We have seen that in a wide PQW the inter- and 
intrasubband plasma oscillations are energetically of the 
same order of magnitude. Thus, PQW represent a nearly 
perfect system to experimentally investigate the mutual 
interaction between the two types of collective excitations. 
Resonant interaction of surface plasmons and inter- 
subband resonances was first calculated by Das Sarma 
[39] employing a random phase approximation frame in 
a two-band model, and later by Li and Das Sarma [40], 
and by Gold and Ghazali [41J Experimentally, it has 
been observed before by Oelting and co-workers [38] for 
the case of a ZDES on silicon MOS structures. For a ZDFS 
confined in a triangular potential well, however, the 
intersubband-resonance energies are usually much larger 
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than those of intrasubband plasmons for experimentally 
accessible grating periods and carrier densities such that 
the coupling is only a second-order effect and leads, for 
instance, to deviations from equation (16) for large 
wavevectors q. By application of uniaxial stress, how- 
ever, the authors of [38] succeeded in tuning and 
energetically matching the resonance frequencies. Con- 
sequently, they observed resonant interaction between 
the two excitations and obtained qualitative agreement 
with the calculation of Das Sarma [39]. From equation 
(16) we expect the surface-plasmon resonance to occur 
at fiw, = 19 crr-' for vg = 0 V if we use an effective 
dielectric constant of E = 13 and m, = 0.07 m,. Since 
there is a small uncertainty for the actual curvature of a 
PQW for a given sample, we determine wo independently 
for the same sample but before the preparation of the 
grating, employing tilted field experiments at q = 0, 
resulting in hw, U 44 2 cm-'. We wish to point 
out again that for q # 0 a strict separation of the modes 
is no longer possible, since for a finite width of the slab 
both can have both surface and bulk character. Since we 
are not able to make both modes degenerate in energy 
by application of agate bias alone, we use a perpendicular 
magnetic field B to tune the intrasubband plasmon 
energy. Here, the effect of the cyclotron motion on the 
surface plasmon leads to the well known classical 
expression for the magnetoplasmon excitation [56] 

(17) w i p  = 0: + Up. 2 

The mode character of the surface plasmon, however, is 
not changed by the magnetic field. 

In figure 30 we present a typical set of spectra as 
obtained experimentally for a gate bias of V, = 0 V. 
In this case according to figure 3 at least two electrical 
subbands are occupied. We depict the relative change in 
transmission - AT/T as a function of energy for different 
magnetic field values B. For low magnetic fields one 
observes three absorption lines, which we identify 
as cyclotron resonance (cR), intrasubband magneto- 
plasmon (MP) and intersubband-like plasmon (ISR), 
respectively. With increasing magnetic field both the CR 
and the M P  shift to higher energies according to the above 
magnetic field dispersion. For B FZ 2.8 T, however, 
resonant interaction of MP and ISR is observed, as reflected 
in an anticrossing behaviour. 

Figure 31 depicts the extracted resonance positions 
for all three modes as a function of magnetic field and 
for three different gate voltages or carrier densities in the 
well. The full lines are the result of Das Sarma's 
calculation [39], which we will address below in detail. 
From the figure it can be seen that the strength of the 
resonant interaction between the intra- and the inter- 
subband collective modes, represented by an anticrossing 
gap, obviously depends on the number of carriers or the 
gate bias. For low carrier density, there is-within the 
resolution of our experiment-nearly no anticrossing of 
the two modes observable. Increasing the gate bias, how- 
ever, opens a gap between the two lines, which becomes 
larger with increasing carrier density. The intrasubband 
plasmon frequency w, (which is identical to wMp for 



                                        

I CR ' 
1 

OlzzL&l 0 3.4 
25 30 35 40 45 $0 55 

WAVE NUMBER (cm-') 

Figure 30. Typical set of spectra as obtained on a 200 nm 
wide Paw (PB31) with a 2 pm grating coupler. We plot the 
relative change in transmission as a function of the FIR 
energy for different magnetic fields. The spectra have 
been vertically offset for clarity. At low as well as at high 
magnetic fields three lines are observed which are 
interpreted in terms of cyclotron resonance (cR), 
intrasubband magnetopiasmon (MP) and intersubband 
plasmon (IsR). Around E z 2.8T the intra- and the 
intersubband modes interact resonantly, whereas the CR 
remains unaffected. 

B -* 0) increases with increasing carrier density Ns, as 
expected from equation (16). The parameters wo,p,i given 
in the inset are the result of a fit to the data, according 
to the two-band model originally derived for a DES by 
Das Sarma [39]. Using his terms, the interaction of the 
surface (intrasubband)-plasmon U,, and an intersubband 
mode w2, leads to an expression for the coupled modes 

(18) 
For a two-dimensional space-charge layer hw,, = 
( E ; ,  + W;)'" denotes the depolarization shifted inter- 
subband resonance frequency with 

(19) 

w 2  f - L  - Z { ( d l  + mi) k [(ail - ai), + 4~:]"~}. 

w, = (2NsE2,~12,2(q + o))1/2. 
For a PQW, the description is much simpler since Kohn's 
theorem states that wZ1 = oo. The frequency 

wi = (2N:EZl[u,,,2(q -+ 0)12/m}"2 (20) 
determines the strength of the coupling, where E,, is the 
self-consistent subband spacing and vijkl the matrix 
elements for Coulomb interaction between the modes ij 
and kl in subbands 1 and 2, respectively. For a symmetric 
potential well this matrix element turns out to be strictly 
zero for arbitrary q if i + j + k + I is an odd number. 
Therefore. the two-band model predicts no mode 
coupling to occur for our PQW. If, however, more than 
one occupied electrical subband and some asymmetry of 
the potential are taken into account, this is no longer 
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Figure 31. (a)  Experimentally obtained resonance 
positions of an experiment as shown in figure 30, but for 
lower carrier density Ns. in this case presumably only the 
lowest electrical subband is occupied and the confining 
potential is symmetric. Within the resolution of our 
experiment no resonant interaction between the inter- and 
intrasubband plasmons is observed, which is in agreement 
with equation (20). (b) Resonance positions as obtained 
from the spectra of figure 30. The full  circles are the 
experimental results whereas the curves are the resuit of 
the calculation involving Das Sarma's two-band model 
[39] for all three modes. Clearly a resonant coupling of 
the intra- and intersubband-like modes is observed and 
results in an anticrossing of the two modes. To obtain best 
agreement between theory and experiment the parameters 
as listed in the figure have been used. (c) For comparison: 
the same result for a more positive gate bias 
corresponding to a higher electron concentration with at 
least three occupied subbands. In th i s  case the mode 
coupling is strongly enhanced as compared with (a) and 
(b) and the two-band model no longer holds. 

true. Employing a more sophisticated three-band model, 
Li and Das Sarma have shown [40] that in this case the 
mode coupling indeed recovers due to the interaction of 
the intrasubband excitation in the different occupied 
subbands with the respective intersubband modes. Since 
we are tuning the intrasubband plasmon via the magnetic 
field as described above, wp in equation (18) has to be 
replaced by wMP. and due to the validity of Kohn's 
theorem wZ1 by wo, leading to 
w 2  -1 i - 2{(&q) + o?cP(~, Ns, E ) )  

4 'l/2 k C(&q) - w % P ( ~ ,  Ns, E))' + 4w; 1 }. (21) 
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This result is shown as full curves in figure 31, where 
we plot it together with the extracted resonance positions 
for all three modes as a function of the magnetic field E .  
Experimentally, special care was taken not to tilt the 
magnetic field with respect to the normal of the PQW 
layer since this leads to an additional coupling of the cx 
and the ISR modes, as has been discussed in the previous 
sections and which would unnecessarily complicate the 
study presented here. No such signature is observed in 
our data. Hence we are sure that the resonant anticrossing 
between M P  and ISR is solely determined by the Coulomb 
coupling of the two modes. Using the above-mentioned 
two-band model for simplicity, the coupling is expressed 
in terms of hi as indicated in the insets to obtain 
optimum agreement with our data. The grating coupler- 
induced intersubband resonance in this case has, due to 
its dispersion, a somethwat lower value than the one we 
extract from q = 0 experiments on the same sample, 
namely w,(q) zz 41 cm-’. 

In figure 31(a), where the system is in the electrical 
quantum limit, i.e. when only one subband is occupied, 
we do not observe a resonant interaction between the 
two modes at all. Here, the two-band model for a 
symmetric potential should hold. Moreover, self-consistent 
calculations show that in this case the confining potential 
is essentially symmetric. Thus, according to Das Sarma, 
no coupling is expected. For 6 = 0, two or even three 
subbands are occupied but the potential should be still 
rather symmetric. Here, although not strictly applicable, 
the data are perfectly reproduced by equation (20), using 
a coupling constant of wi = 14 cm-’. This value should 
be compared with a future theoretical calculation for a 
parabolically confined electron system which is not 
available to date. 

For even higher well filling up to four subbands are 
occupied, and the symmetry of the potential is certainly 
reduced. This could already be deduced from figure 29, 
where at large positive bias a symmetry-forbidden 
bulk-like plasmon has been observed. In this case, the 
resonant interaction is largest, and the simple two-band 
model is no longer applicable. This is indicated by the 
had agreement between the calculation and the experi- 
mental data. Up to now we have not been able to recover 
the predicted mode coupling by breaking the symmetry 
of the confining potential by application of a very large 
negative bias. This should occur, since in a non-symmetric 
potential the matrix element v1 112 is not necessarily zero. 
The main reason is the very small oscillator strength of 
the resonances at low carrier density, which makes the 
detection of a mode anticrossing very difficult. In 
principle this could be overcome by using a PQW with a 
back-electrode such that the well can be biased without 
significantly changing the carrier density. 

The unique subbdnd spectrum that results if the PQW 
is subjected to an in-plane magnetic field, namely the 
hybridization of the cyclotron resonance frequency and 
the ‘natural’ frequency wo arising from the constant 
curvature of a PQW, leads to the observation of a single 
well defined frequency (‘plasma-shifted CR’) given by 
equation(12).Thishasbeendiscussedindetailinsection5.1. 
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There, we also mentioned the striking similarity of 
this hybrid mode to the one which is often referred to as 
‘one-dimensional intersubband resonance’ as it is observed 
in a quantum wire subjected to a perpendicular magnetic 
field. At finite wavevector, intrasubband-like excitations 
are also possible, as has been discussed above for the 
case of a PQW. The same is true for a IDES as realized 
by a quantum wire. Here, so-called one-dimensional 
plasmons can propagate along the free direction of the 
wire, i.e. normal to the direction of the confinement. 
Recently, Demel and co-workers [5] succeeded in the 
observation of such ID plasmons by investigating the 
magnetic field dispersion of this mode at finite q. They 
produced deep mesa-etched quantum wires with an 
additional metal grating coupler on top of them. As in a 
DES, the grating coupler allows coupling to internal 
excitations of the system with the same q. If subjected to 
a magnetic field, these modes exhibit a very characteristic 
negative magnetic field dispersion, indicating the edge- 
excitation character of this plasmon [57, 581. The 
similarity of the band structure of a PQW to a IDES in 
parabolic approximation led us to the investigation of 
such 1D edge plasmons in our samples. As has been 
shown above, the magnetic-field-induced hand structures 
of both a PQw and a IDES are quite similar, if the magnetic 
confinement and the electrical confinement act in the 
same direction. Thus, our experiments have to be carried 
out using in-plane fields. At linite q, as achieved using 
the grating coupler technique, we expect to observe three 
different collective modes: 

(i) The plasma-shifted cyclotron resonance as dis- 
cussed in section 5.1, which can be excited by means 
of the coupling of the CR to the well frequency U,,. 
This hybrid mode is a q = 0 excitation and shows a 
characteristic behaviour of the oscillator strength as a 
function of the magnetic field given by equation (12) 
(cf figure 9). 

(ii) The surface-like excitation at finite q, which can 
be regarded as the grating-coupler-excited intersubband 
plasmon (dimensional resonance) driven by the z 
component of the FIR electric field. Since it is directly 
excited, the oscillator strength of this mode is non-zero 
at zero magnetic field and, due to its q dispersion, 
it has a somewhat lower resonance energy than (i) 
(cf figures 28, 29). 

(iii) The intrasubband surface plasmon which can be 
related to the 2D plasmon if the thickness of the electron 
slab is small compared with q-’ (cf equation (16)). This 
mode is driven by the x component of the electric field 
in the proximity of the grating coupler. 

Most interesting is the fact that for our sample 
geometry different orientations of q with respect to B 
are possible. We shall demonstrate that the case q I B
is in exact analogy to the one-dimensional plasmon 
as discussed above. In figure 32 we show a set of 
typical spectra as obtained for sample PB31 with a 2 pm 
grating coupler in Voigt geometry. The magnetic field is 
directed along the free direction of the electron slab, i.e. 
parallel to the plane of the PQW. In the upper panel we 
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Figure 32. (a) Typical spectra as obtained in transmission 
and Voigt geometry for different magnetic fields B. The 
cases of q being perpendicular (a) and parallel (b) to 5 
are depicted. In both experiments we observe three 
resonances, which are related to the intrasubband 
plasmon at finite wavevector (p,  4). the intersubband 
plasmon at finite wavevector (0, q), and the intersubband 
plasmon at zero wavevector (0, 0). The latter is also called 
plasma-shifted cyclotron resonance. In (a) the resonance 
(p, q) has a characteristic negative magnetic field 
dispersion, whereas (0, q) and (0, 0) follow the dispersion 
for a magnetoelectric hybrid excitation as described in the 
text. (b) In contrast to (a), for parallel configuration the 
intrasubband plasmon (p. 4) exhibits no magnetic field 
dependence as expected from :he simple model given by 
equation (27). 

depict the observed spectrum for different magnetic fields 
with q l B .  For low’ magnetic fields we observe two 
well defined resonances which we identify as the intra- 
subband plasmon (w,,,) and the grating-coupler-induced 
intersubband-like excitation of the sloshing electron 
system (o,,,). With increasing magnetic field this 
resonance increases in energy, as predicited by equa- 
tion (12). The lower resonance however, exhibits 
a negative B-field dispersion, i.e. with increasing B 
the resonance position shifts to lower energies. For 
higher magnetic fields a second mode ( w ~ : ~ )  develops 
at a slightly higher energy than the gratlng-coupler- 

                                        

induced ISR (w0.,). We identify this line with the CR-ISR 
hybrid at q = 0. This is also indicated by the typical 
behaviour of the oscillator strength ofthismode following 
equation (12). 

In the lower panel of figure 32 the result of the 
corresponding experiment with qllB is shown for com- 
parison. Qualitatively, no differences from q I B are 
observed for either IsR-like mode. The intrasubband 
plasmon, however, does not shift in energy at all with 
increasing magnetic field. This is the direct consequence 
of the magnetic-field-induced anisotropic band structure 
occurring under these experimental conditions. Omitting 
the spin; the initial eigenenergy equation for a PQW 
subjected to an in-plane magnetic field reads [59] 

(&b + eA)’ + - ‘p = EY (22) 2 

where m* 0:,~/2 characterizes the parabolic potential in 
the growth (2) direction and wo,o is the natural frequency 
of the parabolic well. At finite wavevector q, the mode 
exhibits a dispersion [31] which is determined by the 
quantity qWe, We again being the width of the electron 
system in the direction of confinement 

Cl + exp(-2qK)l. (23) 0 = - 
2 

Taking A = -(Bz, 0. 0), and separating the variables in 
the usual way, one obtains from equation (21) 

where 0’ = w t ,  + wf is the effective hybrid frequency 
at finite q, and i = z - zo with zo = hkxw,/m*02. The 
resulting energy dispersion then turns out to be given by 

This dispersion describes a harmonic oscillator-like 
spectrum in the confining direction of the parabolic 
potential with a characteristic frequency R, representing 
the intersubband-type collective excitation that has been 
discussed in detail before. The free motion in the plane 
of the Q ~ D E S  is represented by the quasimomenta k, and 
k,. Equation (25) has exactly the same form for a IDES 
(quantum wire) in parabolic approximation if one 
replaces the term containing k, by the 2D subbdnd energy 
of the ‘starting material’  DES. The term containing k, 
is then related to so-called one-dimensional plasmons 
propagating along the wire [SI. The interesting fact for 
a PQW, however, is the occurrence of an anisotropic band 
structure in the plane of the electron system with respect 
to the direction of the magnetic field. The same anisotropy 
has been observed before, although as a much weaker 
effect, for high-quality ?DES on GaAs/AIGaAs hetero- 
structures [60]. The theoretical description in that case, 
however, is rather complex and not straightforward [61]. 
Using equations (25) one can define a very simple 
expression for the effective plasmon mass for a PQw and 
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Figure 33. Resonance positions as extracted from figure 
32 for both orientations of the intrasubband plasmon 
wavevector q with respect to B. They reflect the 
magnetic-field-induced anisotropy of the plasmon mass. 
Symbols represent the experimental data, whereas the ful l  
curves are the result of the simple model as described in 
the text. The parameters used, which are in good 
agreement with the ones expected, are given in the figure. 

the geometry under consideration 

in the plane of the electron system. The subscript 
symbols for m indicate the direction with respect to the 
magnetic field. With increasing magnetic field the 
‘perpendicular’ effective mass renormalizes and increases 
quadratically. The effective mass parallel to the magnetic 
field remains unaltered and is given by m*. Using this 
expression for the plasmon mass we obtain the magnetic 
field dispersion of the surface plasmon 

The result is shown in figure 33, where we plot the 
extracted resonance positions of for both principal 
orientations of q and B as a function of the magnetic 
field. For high magnetic fields (E > 3 T) we are not able 
to follow the negative dispersion of since we are 
approaching the noise limit of our spectrometer close to 
10 cm-’. The magnetic-field-independent resonance w ~ , ~  
for q 11 B, however, does not deviate significantly from its 
low-field behaviour up to B = 15 T. These data have been 
omitted in the plot for clarity. Note that no fit parameter 
has been used since all quantities can be measured 
independently. 

6. Summary 

In the present article, we give a comprehensive review’of 
our recent experimental investigations on the far-infrared 
response of an electron system which is confined in an 
external harmonic potential. Such structures have been 
realized in so-called parabolic quantum wells which can 
be fabricated using modem molecular beam growth 

238 

techniques. The characteristics of such electron systems 
are of great interest since most of the currently available 
so-called nanostructures can be described in good 
approximation in a parabolic model. Also, the theoretical 
description of the properties of parabolically confined 
electron systems is mostly straightforward due to the 
unique properties of the quantum mechanical harmonic 
oscillator. Many fundamental properties of it were 
investigated theoretically in the early days of quantum 
mechanics, for example the effect of a magnetic field on 
its spectrum [62]. 

Here we have mainly focused on the collective 
excitation spectra of parabolically confined electron 
systems employing long-wavelength spectroscopy. First, 
we concentrated on the spectrum of what we call ‘ideal 
PQW’, where the confining potential is very close to being 
real harmonic. We then discussed the generalized Kohn 
theorem, which was formulated in connection with 
experiments on PQW and subsequently had been success- 
fully applied also to the description of the spectral 
behaviour of quantum wires and dots. A somewhat 
frustrating result, however, was that the spectral response 
of parabolically confined systems does not depend on 
electron-electron interactions. This makes it impossible 
to uncover fine structure in geometries like ‘quantum dot 
atoms’ if the confining potential is harmonic. The study 
of PQWS, where we intentionally induced some degree of 
non-parabolicity, however, clarified the situation a lot: 
once we know about the spectrum of an ideal well, we 
can directly compare it with the more complex spectrum 
of an ‘imperfect’ PQW and gain some insight into the fine 
structure of the collective modes. Due to the relative 
simplicity of the confining potentials, the theoretical 
description is relatively straightforward. Our experi- 
mental results have been compared with those obtained 
in a classical hydrodynamic model as well as with those 
obtained in more sophisticated approaches and excellent 
agreement has been obtained. These studies may also be 
very usefulin the understanding of the collective spectrum 
of quantum wires and dots, where the confining potential 
is not known a priori. 

The study of the collective excitation spectrum of an 
electron slab also included investigations at finite 
wavevector and scrutiny of the mode dispersion. For an 
electron system of finite width, a whole set of collective 
excitations which are strongly coupled becomes acces- 
sible. In first-order approximation the excitations can be 
divided into surface- and bulk-like modes, each of which 
exhibits a characteristic dispersion. We studied the 
mutual interaction of inter- and intrasubband collective 
modes, which is not possible in this simplicity for a ZDES. 
Here, too, we could directly compare our results with 
those predicted and in part already experimentally 
observed on quantum wires and dots. The same is true 
for the characteristic magnetic field dispersion of intra- 
subband plasmons if the PQW is subjected to an 
in-plane magnetic field. We gain direct access to the 
magnetic-field-induced anisotropy of the band structure 
which is reflected in a renormalization of the effective 
mass. The case where the effective plasmon mass is 



                                        

renormalized due to  the strong interplay between 
magnetic and electrical confinement could directly be 
related to the recent observation of one-dimensional 
plasmons propagating along quantum wires. 

The striking similarity of many properties of the 
electron system confined in a PQW to those in quantum 
wires and dots certainly makes our studies a valuable 
tool with which to understand and investigatemany other 
interesting features that cannot so easily be accessed in 
those nanostructures and provides valuable information 
for the future direction this rapidly developing field of 
research. 
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