
Dual Compilation for Hardware and

Software

Ewald Frensch, Universität Augsburg

Dissertation

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

1

2

Erstgutachter: Prof. Dr. Bernhard Möller
Zweitgutachter: Prof. Dr. Theo Ungerer
Prüfer: Prof. Dr. Rainer Lienhart
Prüfer: Prof. Dr. Bernhard Bauer

3

Abstract

For many years hardware designers and software programmers have been using different
description languages to implement algorithms. For software systems the language C (and
it’s derivatives like C++) made its way, whereas hardware systems are implemented in
one of the hardware description languages like VHDL, Verilog or Able.

The main reason why the hardware and software design methodologies have branched is
the fact that hardware and software was developed by different persons. Hardware en-
gineers are used to structural thinking whereas software engineers think algorithmically.
This fact is reflected in the tools used for the development. In the last few years a new
type of engineer has been established: the System Engineer. This was a result of the
awareness that hardware and software can not be treated totally separately. They have
influence on each other. The System Engineers have realized that for many reasons it
is very advantageous to have one language for both, hardware and software (for rapid
prototyping, hardware/software split systems etc.).

A lot of new research topics arose when the discussion about Dual Compilation for Hard-
ware and Software started. The most important question when talking about Dual Com-
pilation is: Is it possible to combine high-level compilers for silicon gate devices with
proven software methodologies without being afflicted with a flawed synthesis process?

Some of the members in the community discussing this item do not take care of an un-
flawed synthesis primarily, but they try to figure out the optimal design language and the
optimal level of abstraction for the design entry1. Of course it is advantageous to have
a common language like C and the level as high as possible in order to make the source
code highly readable and testable. This may be the easiest way to bridge the gap between
hardware und software, but it runs the risk to raise the design level at a theoretical and
impractical level for real targets. R. Leupers et al. have focused their research on this
item. Refer to [25].

A second group of the research community try to develop tools (i.e. compilers) for auto-
matic generation of a synthesisable representation of the algorithm. We realise two main
streams: The first one provides tools to transfer the source code into the RTL2 imple-
mented in a common hardware description language (like VHDL or Verilog). This level
of abstraction is accepted to be synthesisable anyway. The second main stream is focused
on the direct compilation from high level source code to silicon net lists.

A lot of papers concerning the hardware compilation from a normal programming lan-
guage have been published in the last few years (for example Handel C by Ian Page et
al. [2]). Handel C has been successfully implemented by Celoxica Inc [3]. These tools use
asynchronous timing. This is typical for software system. Cycle accurate timing is one of

1The circuit description with the highest level of abstraction
2Register Transfer Level

4

the most important features for hardware systems. The synchronisation is done by special
signals between concurrent threads. We are going a different way. We’re using a global
clock for synchronization. Using this mechanism, it is possible to hide the timing analysis.
The compiler may predict the timing behaviour, whereas the programmer using Handel
C must take care of the timing and the thread synchronisation on his own. Using our
compiler the programmer can focus his interest on the algorithm even if accurate timing
is required.

For this purpose, we propose a C-based programming language. This language is not real
C but very similar, in order to enable ”normal” software programmers to develop digital
circuits without having detailed knowledge in hardware or hardware description languages
respectively.

The compiler proposed in this thesis provides all the typical hardware-items like timing
analysis, net list generation etc.

CONTENTS 5

Contents

1 Introduction 10

1.1 Aims of the work . 10

1.2 Structure of the document . 11

1.3 Technical Basics . 12

2 Programming language 14

2.1 Semantics . 14

2.1.1 Statements . 14

2.1.2 Data . 15

2.1.3 Input/Output . 17

2.2 Syntax . 19

2.2.1 Assignments . 20

2.2.2 Loops . 21

2.2.3 Expressions . 23

2.2.4 Additional timing construct . 24

2.3 Conclusion . 26

2.4 Program examples . 27

2.4.1 Linear transformation of an n-dimensional vector 27

2.4.2 Matrix multiplication . 28

2.4.3 Linear regression . 30

3 Compiler 33

3.1 Preprocessor . 33

3.2 Compilation . 33

3.2.1 Intermediate code generator . 34

3.3 Optimization . 39

3.3.1 Optimization (first step) . 39

3.3.2 Optimization (second step) . 41

3.4 Timing analysis . 42

3.5 Code/circuit generation . 42

3.5.1 Microprocessor code . 42

3.5.2 Digital circuits . 43

3.6 Atomic commands . 45

3.7 Some compiler details . 46

3.7.1 Calling conventions . 46

3.8 Implementation of atomic commands . 48

3.8.1 Semantics of the ATC implementation 48

3.8.2 Adder for 8bit integers . 49

3.9 The complete list of intermediate commands . 51

3.10 Linker . 52

CONTENTS 6

3.10.1 Software target . 52

3.10.2 Hardware target . 53

3.10.3 Low-level signals . 56

3.11 Edif generator . 57

3.11.1 Generator Usage . 58

3.11.2 Support files . 60

4 Timing of Clocked Circuits 62

4.1 Compilation process . 63

4.2 Assumptions . 64

4.2.1 Functional units . 64

4.2.2 Data paths . 64

4.2.3 Data manipulation . 64

4.2.4 Running time . 64

4.2.5 Connection length . 65

4.2.6 Data Transport . 65

4.2.7 Pipelining . 65

4.2.8 IO cycles . 65

4.3 Timing behaviour . 66

4.3.1 Time slot matrix . 66

4.3.2 Total running time . 66

4.3.3 The maximal IO-frequency . 67

4.4 Formal ATC description . 68

4.5 Optimizing the timing behaviour . 68

4.5.1 Cost function . 69

5 Experimental results 74

5.1 Compiler inputs and outputs . 74

5.2 Intermediate code . 76

5.3 Software target . 78

5.4 Hardware target . 79

5.4.1 Simulation . 80

5.5 Timing constraints . 81

5.5.1 Inappropriate timing constraints . 84

5.5.2 Relative output timing constraints . 85

6 Related work 87

6.1 TLM . 87

6.1.1 A smart TLM methodology . 87

6.2 A mature C based design system . 90

6.2.1 Similarities . 90

6.2.2 Differences . 91

CONTENTS 7

6.3 Advantages/Disadvantages . 97

7 Outlook and Future Research 100

7.1 Methodology items . 100

7.2 Additional compiler issues . 101

7.2.1 Optimizer . 101

7.2.2 Synthesizer . 105

7.2.3 Data exchange . 105

8 Summary 107

9 Appendix 109

9.1 Proof of Equation 4 by complete induction . 109

9.2 Source code of the matrix multiplication . 110

9.3 ARM assembler code of the matrix multiplication 112

9.4 Test bench for the model simulation of the matrix multiplication 115

9.5 The structure of the internal net list files . 121

LIST OF FIGURES 8

List of Figures

1 Comparator without data type ’bit’ . 16

2 Comparator with data type ’bit’ . 17

3 Function call without parameters . 38

4 Clocked circuit . 43

5 8-Bit multiplier . 44

6 Model of a multiplier by 7 sequentially linked blocks 44

7 8-Bit adder . 45

8 user defined ATC declaration . 48

9 Linking process . 53

10 EDIF port bundle . 56

11 Progress of the low-level-signals . 58

12 Linker Structure . 59

13 Delay of a design block . 63

14 Pipelining . 65

15 Time slot matrix . 66

16 Time slot matrix 1 . 67

17 Wire length term of the cost function . 71

18 ATC optimization; starting point . 72

19 optimized ATC; without consideration of the connection length 72

20 optimized ATC; with consideration of the connection length 72

21 optimized ATC; with and without consideration of the connection length 73

22 Determinant calculation and matrix multiplication without optimization 80

23 Simulation of the matrix multiplication . 81

24 Determinant calculation . 83

25 Matrix multiplication . 84

26 Main routine . 85

27 Conceptual difference . 91

28 Loop generated by the reference design . 94

29 Loop optimized for size . 95

30 Loop optimized for speed . 95

31 Reference design . 96

32 Reference compiler design chain . 97

33 Our compiler design chain . 97

34 Reference design chain . 98

35 Our design chain . 98

36 Running time . 99

37 Separately optimized functions (main) . 102

38 Separately optimized functions (func1) . 103

39 Optimal circuit . 104

LIST OF FIGURES 9

40 Module loop . 105

1 INTRODUCTION 10

1 Introduction

Are VHDL and Verilog past their prime, soon to be replaced by C-like design languages, Pro-

fessor Ian Page3 asked a couple of years ago. He said a change is at hand. Two main reasons led

him to predict this change: rising costs to create state-of-the-art chips with hundreds of millions

of logic gates and the problems of attracting and retaining the engineers who can handle such

complex chips. The discussion was accompanied by a significant change in the semiconductor

landscape: the disproportional rise of the FPGAs4. The FPGAs made the development process

more software-like. The way from a rapid prototype to a final device was much easier and

cost-efficient than the refinement loop of an ASIC5 design. Since the introduction of FPGAs

for prototyping as well as for plant operations the development effort was reduced to the pure

programming using one of the particularly developed hardware description languages. Since the

hardware development process became more and more software-like it was a logical conclusion

to bridge the gap between hardware and software.

Many examples have shown that algorithms intended to be implemented in hardware at the

beginning of a project were finally implemented at least partially in software and vice versa.

The switch from hardware to software is usually not planned but done due to the experiences

collected during the development phase. The contrary switch, from software to hardware, is

taken for many reasons:

• Evaluation of the algorithmic complexity

• Rapid prototyping

• Demonstration purposes

• Simulation, Verification and Test of the algorithms

Anyway, if intended or not, the hardware-software switch (or partitioning) require comfortable

tools for design and implementation. The research results in the past have shown that it is

better to use software programming languages rather than hardware description languages.

But, we will show later that pure programming languages are not useful for this purpose. Some

extensions and restrictions may apply to the syntax and semantics.

1.1 Aims of the work

The aim of this work was to develop a smart methodology for Dual Compilation (Hardware und

Software) using a derivate of the programming language C. It was motivated by Professor Ian

Page’s research. Prof. Page was involved in the Hardware Compilation Group at the Oxford

University for many years and published a lot of results concerning hardware compilation and

3Oxford University
4Field-Programmable Gate Arrays
5Application Specific Integrated Circuit

1 INTRODUCTION 11

hardware/software codesign. A commercial spin-out company6 founded by Prof. Page et al.

has shown that his results are mature enough to leave the academic world and make their way

into commercial products. An extensive study of the publications of different research groups7

have shown that some deficiencies may be removed in future.

This thesis focuses on a new methodology for the implementation of a hardware compiler for a

C-like programming language that is able to generate timing accurate silicon gates. The work

shows that even if some extensions and restrictions are made to ANSI-C8 it is still possible to

use this language as a normal programming language. A code generator for the ARM9 micro-

controller was implemented for this purpose.

The compiler is intended to achieve the maturation of a technology demonstrator. Although, it

was not the intention to produce a ready-for-market highly optimizing compiler that produces

optimal code, a big part of the exploration was focused on optimisation techniques. Optimi-

sation is a very important part of the compilation process (especially for hardware compilation).

Finally it was explored, how the work may be embedded in related research activities. Although

the current research activities are mainly focused on the problem to figure out the best design

entry, it will be shown that the work can excellently be embedded in the related activities.

1.2 Structure of the document

Within the next chapter a programming language is proposed which is applicable for dual com-

pilation for hardware and software. Since it is based on the well-known C we have focused our

interests on the differences. At the end of that chapter some examples containing typical appli-

cations demonstrate the usage of our C derivative. These examples have been chosen since they

are often implemented in software as well as in hardware dependent on the field of application.

Chapter 3 shows the possibility to implement a real compiler which translates the source code

into the assembler code of a real microcontroller. Without loss of generality we can say that the

source code may be compiled for the assembler code of any currently available microcontroller

even if the compiler generates code for a particular target architecture. The consideration of

a software target is done only for completeness. It is evident that a programming language

based on C is suitable for this purpose. The hardware target has been examined more closely.

The entire compilation process is described but we focused upon the timing, since this is one

of the greatest difficulties when compiling source code for hardware targets. The explanations

are accompanied by some examples.

6Celoxica Ltd, 66 Milton Park, Abingdon, Oxfordshire, OX14 4RX, United Kingdom
7e.g. R. Leupers et al., RWTH Aachen
8American National Standards Institute
9ARM architecture CPU design or one of its derivatives developed by ARM Ltd (originally called The Acorn

RISC Machine)

1 INTRODUCTION 12

Since the focus of our consideration is the timing behaviour and its steering, we have separated

this discussion into chapter 4. The timing is evaluated at intermediate code level. Therefore a

formal description of this level is defined in that chapter.

Some experiments and their results are given in chapter 5. The execution and the correspond-

ing results are explained at different levels of abstraction.

In chapter 6 we discuss two related bodies of works. The methods and results are compared

to the works of Ian Page [1] et al. from Oxford University. This group has implemented algo-

rithms having a similar aim. A second group of researchers from the University of Aachen have

focused their interests on an optimal design philosophy. We have evaluated how our work can

be embedded in this research area.

An outlook to future research and open problems is given in chapter 7. We discuss two main

items:

• How can the methodology be improved?

• Is it possible to use the methodology and the corresponding compiler for real applications?

1.3 Technical Basics

As we’ve already mentioned, the syntax of our programming language is very similar to C. C

was developed for programming sequential machines (microprocessors). To make it suitable for

hardware designers we have to remove some constructs. On the other hand we have to add

some constructs for concurrency and for input/output.

Usually the compilation of a C program is done in several steps (i.e. scanner, lexical analysis

etc.) If all these steps are processed only once, we call the compiler a single-pass compiler,

otherwise it is called a multi-pass compiler. For our purposes it is suitable to implement a

multi pass compiler, since at least the net list refinement is implemented as a separate loop.

As we will see later in this thesis, the first steps of the compiler are implemented similar to a

common C compiler, since the syntax and the lexical interpretation is very close to the ANSI

C proposed by Kernighan and Ritchie (refer to [11]). One of the most important differences

in the terms of grammar is that our C is not necessarily context-independent, since we need

to support concurrent statements. Context-independence means that each statement may be

compiled without regard to other statements. This, of course, is not possible within concurrent

blocks, since we have to rule out the manipulation of the same data by two concurrent state-

ments at the same time.

1 INTRODUCTION 13

One may see that the ”common” parts of the compiler cause no problems, since they have

already been implemented successfully many times. Once again the most difficult part is the

code generator for software respectively net list generator for hardware targets.

2 PROGRAMMING LANGUAGE 14

2 Programming language

The semantics of the proposed language is based on the common hardware description lan-

guages whereas the syntax has been taken from C. At first glance the source code looks like

”normal” C but the statements can have very different meanings (dependent on the context).

As already mentioned, the language C has no construct to implement concurrency which is one

of the most important characteristics of silicon devices. In C all statements are processed step

by step. That means only one statement can be processed in a particular time slot. This is

very typical for algorithms running on microprocessors (software implementations). The next

problem we are faced with is the necessity to synchronize the concurrent statements. C does

not provide such a mechanism. There is more than one possibility to implement this item

(signals between concurrent statements; global clock etc.)

One can see that it is much easier to compile a ”concurrent” program for the assembler code

of a microprocessor. The concurrent items have to be serialized. The order of these items is

arbitrary, since the data manipulated by them have no correlations; otherwise it is not possible

to run them in a concurrent way.

2.1 Semantics

As already mentioned, it is much easier to serialize a parallel program than vice versa. There-

fore it is a good choice to start with the semantics of a ”parallel” description language; for

example VHDL. Real VDHL is not suitable for our purpose, since it was originally developed

for hardware documentation and therefore contains elements that are not synthesizable. In con-

trast, we want to propose a language that can be completely synthesized as well as compiled

to microprocessor code.

2.1.1 Statements

The statements can be divided into two classes:

• concurrent statements

• sequential statements

Sequential statements cause no problems, neither in hardware nor in software. In software

they correspond to the common sequence of machine commands that are processed step by

step on a microprocessor, and in hardware they correspond to sequentially wired circuits. The

concurrent statements do not cause any problems in hardware except for the synchronization

of the different parallel data paths. They are mapped to parallel circuits. In software we have

to distinguish two cases:

• The number of processors is greater than or equal to number of concurrent statements or

• the number is less

2 PROGRAMMING LANGUAGE 15

In most cases the number of processors is 1. Therefore the second case will occur more often.

In the first case, each concurrent statement will run on one processor. This is faster than the

second case, but it is necessary to synchronize the different processors. In the second case

it is necessary to utilize a scheduler in order to run more than one statement on the same

processor. This is the well-known method of running several tasks ”quasi parallel” on one

sequential processor. In the common case of having just one processor it is not necessary to

synchronize the different concurrent statements, since the execution of one concurrent block is

finished before the system goes on with the next block which uses the results of the current

block as input. Therefore all the necessary data is ready at the same time (start of the execution

of the succeeding block).

2.1.2 Data

This section looks into the question which data types/structures are supported. The types

correspond to those known from the sequential programming language C. Even all the data

structures are supported. They can be implemented in hardware and software. Unfortunately

the language C does not support the data type ”Boolean”. This is always mapped to a byte or

to another integer type. For microprocessor code this may be suitable, since the processor can

process data types with bit length up to its register size in one cycle. When hardware circuits

are used, this mapping is not suitable, since it consumes chip area without any sense (see Fig.

1). Therefore we add the type ”bit” to the list of elementary data types. The declaration of

variables with this data type is analogous to the declaration of any other variable of simple

type. See the following code snippet.

Example 1:

{

bit var0;

//........

}

Without having this new type the compiler would produce the first circuit (Fig. 1). 7 of the

eight wires (which correspond to a byte) are not necessary. In the second circuit the output of

an if-statement was implemented with the new data type ”bit”. In this case only one wire is

produced by the compiler (Fig. 2).

The language C provides four storage classes

• global variables (data segment)

• static local variables (data segment)

• automatic local variables (stack)

• dynamic variables (heap)

2 PROGRAMMING LANGUAGE 16

Figure 1: Comparator without data type ’bit’

The storage classes are mapped to the system in a totally different manner in hardware and

software systems. Microprocessor-based systems store variables in 3 types of physical memory

• registers

• RAM

• ROM

The ROM contains the constants. They have fixed values during the whole life of the system.

Variables are stored either in RAM or in one of the processor registers. The decision where

they are stored is dependent on the duration between the production of a value and its usage

as well as on the storage class. Global and static variables are always stored in RAM, whereas

local variables and dynamic variables may be stored in registers. Anyway, the compiler tries to

store as many variables as possible in the registers. This is much faster, since the manipulation

of the values is always done in registers and it reduces the memory consumption.

If the source code is compiled to silicon the situation will be totally different. Nowadays most

of the reconfigurable devices have an on-chip RAM. Therefore the variables which are stored

in RAM in microprocessor systems can be stored similarly in silicon-based systems. But this

2 PROGRAMMING LANGUAGE 17

Figure 2: Comparator with data type ’bit’

makes no sense for local automatic variables. These variables will always be latched either at

the outputs of the circuits which produce them or at the inputs of the ”consuming” circuits.

Which one is more suitable depends on the particular implementation.

2.1.3 Input/Output

In contrary to ANSI C we do not allow command line parameters, since they do not have mean-

ingful equivalents in hardware. For data input and output we use external variable declarations

with the prefix keyword ”input” and ”output” respectively.

Example 2:

input int x[100], y[100];

output int a, b;

void lin_regress(int ndata)

{

int i;

int t, sxoss, sx=0, sy=0, st2=0, ss;

2 PROGRAMMING LANGUAGE 18

b = 0;

for (i=0; i<ndata; i++)

{

sx += x[i];

sy += y[i];

}

ss = ndata;

sxoss = sx/ss;

for (i=0; i<ndata; i++)

{

t = x[i]-sxoss;

st2 += t*t;

b += t*y[i];

}

b /= st2;

a = (sy-sx*b)/ss;

}

The example demonstrates the usage of input and output variables. This is indicated by the

keywords ”input” or ”input” respectively. The program reads in a set of coordinates provided

in the arrays x[100] and y[100]. It calculates the linear regression line and outputs the line

parameters (a is the gradient and b is the the y-axis intercept).

The range of these variables is similar to all the externally defined variables. This is usually

the whole program (except that they are declared with the keyword static; in this case they

are limited to the file where they’re declared). The user must declare an IO-channel for each

of these variables, with the limitation that it is just allowed to read from the input channel or

write to the output channel. Refer to the following examples.

Example 3:

input char a;

output char b;

void lin_regress(void)

{

char chBuf;

chBuf = a;

2 PROGRAMMING LANGUAGE 19

if ((chBuf >= ’a’) && (chBuf <= ’z’))

chBuf -= (’a’ - ’A’);

b = chBuf;

}

Example 4:

input int a;

output int b;

void abs(void)

{

char intBuf;

intBuf = a;

if (intBuf < 0)

intBuf = -intBuf;

b = intBuf;

}

The example above reads a character from an input stream and transforms it to a stream of

capital letters if the input characters are small letters. The second part calculates the absolute

value of an integer. It is absolutely necessary to buffer the values after the input, since one

must not write to variables which are marked as input variables. This restriction is necessary,

since the input variables are not real variables but they are input channels. Output variables

have the same meaning. They are output channels. The programmer should write only final

results to these variables, since every write request to these variables leads to an interaction

with the peripherals which is suitable just for final values but not for intermediate values.

2.2 Syntax

The syntax is based on C. Unfortunately ANSI C is not suitable for hardware/software-codesign

for the following reasons:

• C has no language elements to implement concurrency, which is one of the most import

characteristics in hardware designs.

• C does not support time steering.

• C provides language constructs which have no immediate equivalent in hardware

2 PROGRAMMING LANGUAGE 20

• Some language features may not be compiled to hardware even if they are implementable

(for example endless loops).

The language constructs can be classified into 3 groups :

• assignments

• loops

• expressions

2.2.1 Assignments

Assignments can occur in sequential as well as in parallel blocks. The usage of L-values in

sequential blocks is not limited even if some constructs are not meaningful. See the following

example (assume the following block contains only sequential statements).

Example 5:

{

int x, y=1, z=2;

x = y+z;

x = 4;

}

The first assignment (x = y + z) is useless. The assignment (x = y + z) is done right before the

second one (x = 4) and uses the same L-value (x). The value calculated in the first assignment

can not be used at any time and is therefore senseless. Nevertheless, the block above is allowed.

In contrary to sequential blocks it is not allowed to use the same L-value twice in one parallel

block. See the following example.

Example 6:

{

int x;

par

{

x = 3;

x = 4;

}

}

2 PROGRAMMING LANGUAGE 21

The compiler is requested to assign the values 3 and 4 to the variable x at the same time. This,

of course, is not possible.

There are no other restrictions on assignments compared to ANSI C.

2.2.2 Loops

Loops are the most difficult items in hardware/software co-design. Without considering the

timing behaviour it is possible to implement all the types of loops known from ANSI C (for, do

while, while). Even endless loops are possible in software implementations as well as in hard-

ware implementations. In the assembler code of a microcontroller the loops are implemented

using branch commands. The block of commands between the beginning and the end of a loop

can be processed many times, with or without termination. Hardware circuits can be imple-

mented similarly. The circuits which belong to the source code inside a loop may be activated

many times, even endlessly. But for timing calculation purposes we restrict the implementation

of loops if timing prediction is required. In this particular compilation mode, only a constant

number of iterations are allowed. Timing prediction means that the compiler calculates the

timing behaviour of the circuit or microcontroller system. See the following examples.

Example 7: (without timing prediction)

{

int i, a;

a = Get_a();

for (i=0; i<a; i++)

{

//........

}

//........

}

Example 8: (with timing prediction)

{

int i;

for (i=0; i<10; i++)

{

//........

}

2 PROGRAMMING LANGUAGE 22

//........

}

The expression above has a constant number of loops. The compiler is able to calculate the

loop processing time. The following examples are not allowed in this operation mode, since the

processing time can not be calculated by the compiler.

Example 9:

{

int i, a;

a = Get_a();

for (i=0; i<a; i++)

{

//........

}

for (i=a; i<10; i++)

{

//........

}

for (i=0; i<10; i+=a)

{

//........

}

//........

}

That means that all the R-values of the expression in the loop header must be constants. We

allow just ”for”-loops with a constant number of iterations.

In addition to ”normal” for-loops we add a ”parallel” for loop. This type may be used if

the different loops are not correlated to each other. The syntax of this kind of loops is sim-

ilar to the common ”sequential” loop. The only difference is the keyword ”par” instead of ”for”.

Example 10:

{

2 PROGRAMMING LANGUAGE 23

int i, x[10];

par (i=0; i<10; i++)

{

x[i] = i;

//........

}

//........

}

The compiler can unroll the loop in order to make all the assignments at the same time in

order to speed up the circuit. This, of course, is meaningful only if there is enough silicon space

available.

2.2.3 Expressions

All the expressions known from normal ANSI C are supported. Refer to [11] for an entire

description of ANSI C. Expressions are used to determine the value of a variable, inside of if

statements etc. See a simple example below.

Example 11:

{

int i, x[10];

if (x[i]==i)

{

x[i] = 0;

//........

}

else

{

x[i] -= 1;

//........

}

//........

}

Notice that every expression always provides a result, even if it is not assigned to a variable

and just used to determine the right path of a branch (like in the example above).

2 PROGRAMMING LANGUAGE 24

2.2.4 Additional timing construct

For timing behaviour calculations it is sometimes necessary to add some timing information to

the IO-channels.

Example 12:

input int a, b;

output int c;

{

int buf0, buf1;

buf0 = a <0 milliseconds>;

buf1 = b <0 milliseconds>;

c = buf0 + buf1;

//........

}

The example above reads in the values of the input variables a and b right after the block is

activated. In this case no timing information is required.

Assume we want to calculate the sum of a and b 3 times with a latency time of 20 millisec-

onds in between. Then we write these times after the ”read in” statement. The first pair

of values of a and b is read right after the software or the silicon respectively is activated.

But between the first and the second and the second and the third accesses to the IO-channel

that belongs to these variables a delay of 20 seconds will be inserted. See the following example.

Example 13:

input int a, b;

output int c;

{

int buf0, buf1;

buf0 = a <0 milliseconds>;

buf1 = b <20 milliseconds>;

c = buf0 + buf1;

//........

}

The values in brackets are absolute times. That means that the measurement starts when the

silicon respectively the software is activated. It is also possible to measure the time relative

2 PROGRAMMING LANGUAGE 25

to the start time of the current block. Therefore the keyword relative has to be added to the

timing statement. See the following example.

Example 14:

input int a;

{

int cBuf[3];

cBuf[0] = a; <0 milliseconds relative>

cBuf[1] = a; <20 milliseconds relative>

cBuf[2] = a; <40 milliseconds relative>

//........

}

Of course, this algorithm may also be implemented by writing a loop with a delay after each

calculation. But this is more difficult for the programmer, since he has to calculate the time of

the addition and the loop administration and subtract this from the desired time (20 millisec-

onds in our example). See the following example.

Example 15:

input int a, b;

output int c;

{

c = a+b;

delay(20_MILISECONDS - calctime());

//........

}

In some cases it is very difficult and maybe not important to calculate the absolute delay of the

circuit. But, if a single bus is used to output the values, it is necessary to specify the output

timing relatively to each other. For this purpose we introduce the timing keyword relativeOut.

If the first value is ready for output, a special signal is activated to indicate this (refer to 3.10.3

for details of this signal). The timing value associated with the relativeOut-keyword is defined

as the time passed after this signal has been activated. See the following example:

Example 16:

output int c;

2 PROGRAMMING LANGUAGE 26

{

int cBuf[3];

//........

c = cBuf[0]; <0 clocks relativeOut>

c = cBuf[1]; <2 clocks relativeOut>

c = cBuf[2]; <4 clocks relativeOut>

}

The first value in the example above is output shortly after the output ready signal is activated.

The second and the third one are output after two and three clock cycles respectively.

The unit (in our case ”milliseconds”) is not mandatory. The default value for all the timing

expressions is ”clocks”. That means exactly one internal clock. For example.

Example 17:

c = a+b; <20>

is equivalent to

Example 18:

c = a+b; <20 clocks>

Allowed units are all the known time units

• microseconds

• milliseconds

• seconds

• minutes

• hours

and the additional unit

• clocks

2.3 Conclusion

An experienced C Programmer will recognize most of the elements in the proposed language.

We have restricted the allowed elements even if it may be possible to build a hardware compiler

which is able to translate much more constructs, for example

2 PROGRAMMING LANGUAGE 27

• dynamic memory management

• pointer arithmetic

But these elements rule out the possibility to predict the timing behaviour; or they can not

be implemented efficiently in hardware. Even in software systems these constructs are a well-

known source of errors.

A compiler for hardware/software co-design has been partially implemented; refer to section

3 for details. It produces code for ARM-processors as well as net lists. (represented by EDIF-

files)

2.4 Program examples

The following examples implement a few simple mathematical algorithms. They are predestined

for our purpose, since they are used in software as well as in hardware systems.

2.4.1 Linear transformation of an n-dimensional vector

A linear transformation in general may be represented by a matrix. Therefore we can write it

as a multiplication of the corresponding matrix with the vector. Notice that there is exactly

one matrix which represents a linear transformation. The following example performs a linear

transformation in a 3-dimensional vector space.
x

′

y
′

z
′

 =

a11 a12 a13

a21 a22 a23

a31 a32 a33

x

y

z

A corresponding implementation in our C reads as follows.

Example 19:

#define DIMENSION 3

input int x;

output int y;

void linTrafo(void)

{

int i;

int xBuf[DIMENSION];

int yBuf[DIMENSION];

2 PROGRAMMING LANGUAGE 28

const int a[DIMENSION][DIMENSION] =

{

{1, 2, 3},

{4, 5, 6},

{7, 8, 9}

}

/* The input vector components are read

sequentially. */

xBuf[0] = x; <0 clocks>

xBuf[1] = x; <1 clocks>

xBuf[2] = x; <2 clocks>

par (i=0; i<DIMENSION; i++)

{

yBuf[i] = a[i][0]*xBuf[0] + a[i][1]*xBuf[1] +

a[i][2]*xBuf[2];

}

/* The output vector components are written

sequentially. */

y = xBuf[0]; <0 clocks relativeOut>

y = xBuf[1]; <1 clocks relativeOut>

y = xBuf[2]; <2 clocks relativeOut>

}

2.4.2 Matrix multiplication

Nest we show how the matrix multiplication

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

b11 b12 b13

b21 b22 b23

b31 b32 b33

is implementated in our C.

Example 20:

#define DIMENSION 3

input int x;

output int y;

2 PROGRAMMING LANGUAGE 29

void matrMult(void)

{

int i, j;

int a[DIMENSION][DIMENSION];

int b[DIMENSION][DIMENSION];

int c[DIMENSION][DIMENSION];

/* The components of input array a are read sequentially. */

a[0][0] = x; <0 clocks>

a[0][1] = x; <1 clocks>

a[0][2] = x; <2 clocks>

a[1][0] = x; <3 clocks>

a[1][1] = x; <4 clocks>

a[1][2] = x; <5 clocks>

a[2][0] = x; <6 clocks>

a[2][1] = x; <7 clocks>

a[2][2] = x; <8 clocks>

/* The components of input array b are read sequentially. */

b[0][0] = x; <9 clocks

b[0][1] = x; <10 clocks>

b[0][2] = x; <11 clocks>

b[1][0] = x; <12 clocks>

b[1][1] = x; <13 clocks>

b[1][2] = x; <14 clocks>

b[2][0] = x; <15 clocks>

b[2][1] = x; <16 clocks>

b[2][2] = x; <17 clocks>

par (i=0; i<DIMENSION; i++)

{

par (j=0; j<DIMENSION; j++)

{

c[i][j] = a[i][0]*b[0][j] + a[i][1]*b[1][j] +

a[i][2]*b[2][j];

}

}

/* The output array components are written

sequentially. */

2 PROGRAMMING LANGUAGE 30

y = c[0][0]; <0 clocks relativeOut>

y = c[0][1]; <1 clocks relativeOut>

y = c[0][2]; <2 clocks relativeOut>

y = c[1][0]; <3 clocks relativeOut>

y = c[1][1]; <4 clocks relativeOut>

y = c[1][2]; <5 clocks relativeOut>

y = c[2][0]; <6 clocks relativeOut>

y = c[2][1]; <7 clocks relativeOut>

y = c[2][2]; <8 clocks relativeOut>

}

2.4.3 Linear regression

This method is used each time an experiment provides data samples with linear impact and

the parameters of the corresponding line are required. In case of a straight line these are 2

constants: the intercept of the y axis and the gradient. The following formula minimizes the

square distances of the samples to the regression line; refer to [14] for details.

n∑
i=1

(yi − (a + bxi))
2 = Min (1)

A corresponding implementation in our C reads as follows.

Example 21:

input int x_in, y_in;

output int a_out, b_out;

void lin_regress(void)

{

int x[10], y[10];

int i;

int t, sxoss, sx=0, sy=0, st2=0, ss;

int a, b;

b = 0;

x[0] = x_in <0 clocks>;

x[1] = x_in <1 clocks>;

x[2] = x_in <2 clocks>;

x[3] = x_in <3 clocks>;

x[4] = x_in <4 clocks>;

x[5] = x_in <5 clocks>;

2 PROGRAMMING LANGUAGE 31

x[6] = x_in <6 clocks>;

x[7] = x_in <7 clocks>;

x[8] = x_in <8 clocks>;

x[9] = x_in <9 clocks>;

y[0] = x_in <10 clocks>;

y[1] = x_in <11 clocks>;

y[2] = x_in <12 clocks>;

y[3] = x_in <13 clocks>;

y[4] = x_in <14 clocks>;

y[5] = x_in <15 clocks>;

y[6] = x_in <16 clocks>;

y[7] = x_in <17 clocks>;

y[8] = x_in <18 clocks>;

y[9] = x_in <19 clocks>;

for (i=0; i<10; i++)

{

sx += x[i];

sy += y[i];

}

ss = ndata;

sxoss = sx/ss;

for (i=0; i<ndata; i++)

{

t = x[i]-sxoss;

st2 += t*t;

b += t*y[i];

}

b /= st2;

a = (sy-sx*b)/ss;

a_out = a;

b_out = b;

}

The implementations above are not optimal but they demonstrate efficiently the usage of our

programming language. Especially the first 2 examples may be implemented differently in real

applications.

2 PROGRAMMING LANGUAGE 32

Refer to section 5 for some experiments with the proposed programming language.

3 COMPILER 33

3 Compiler

One may see that the compiler has to branch between hardware and software compilation at the

latest when the grammar is analyzed. In the case of a hardware-target the language is context-

dependent, as already mentioned, whereas it may be seen as almost context-independent if

a microcontroller target is desired. Please notice, that even ANSI C is not fully context-

independent; i.e. a variable has to be defined earlier in the text before usage (refer to [12] for

details).

One may see that the standard parts of the compiler cause no problems, since they have

already been implemented successfully many times. Once again the most difficult part is the

code generator for software and the net list generator for hardware targets.

3.1 Preprocessor

Common C compilers use a preprocessor for the program script. The preprocessor is very

helpful to manage fragmented source codes and steer the compilation process. Anyway the

preprocessor may differ in details from one compiler to another. We have decided to implement

the preprocessor as described in the C primer by Kernighan and Ritchie (refer to [11]).

3.2 Compilation

As mentioned in the introduction, the compilation process is done in several steps (in this con-

text, the preprocessing is not viewed as part of the compilation, since it is just a kind of text

processing of the source code).

We’ve split our compiler into 4 main blocks. This partition is similar to the majority of the

publications.

• source code analysis

• intermediate code generator

• optimization and timing analysis

• code or net list generator

Since our compiler is able to build microprocessor code and net lists from the same source code,

it is necessary to branch for one of the targets at a particular point. We have decided to make

this branch within the block called ’optimization and timing analysis’. Some optimization tech-

niques may be used for both targets. But there are also highly target-dependent techniques.

We decided to put both parts to one block to have a better overview.

3 COMPILER 34

Source code analysis is probably the easiest part of the software, since it has been implemented

several times for common sequential compilers. It may be developed from scratch as a ’normal’

program, but the more efficient way is to use the tools called ’lex’ and ’yacc’ which are available

for free on almost all UNIX systems. We have decided to use lex and yacc to implement the

source code analysis. The analysis is done in two steps. The first one splits the input character

stream into a list of strings (called lexemes). This is done by the tool called lex. Then yacc

reads these lexemes and sorts them in a syntax tree according to predefined rules. Refer to [12]

for further explanations of syntax trees.

3.2.1 Intermediate code generator

The intermediate code is a common low-level base for both targets. The intermediate code

generator reads the syntax tree (produced by yacc) in reverse direction and generates this code.

As mentioned it is a low-level code for a sequential machine. The syntax of the proposed in-

termediate code is proprietary and will not be found in the literature. See the following example.

Example 22:

int a, b;

int x[100], y[100];

void lin_regress(int ndata)

{

int i;

int t, sxoss, sx=0, sy=0, st2=0, ss;

b = 0;

for (i=0; i<ndata; i++)

{

sx += x[i];

sy += y[i];

}

ss = ndata;

sxoss = sx/ss;

for (i=0; i<ndata; i++)

{

t = x[i]-sxoss;

st2 += t*t;

b += t*y[i];

}

3 COMPILER 35

b /= st2;

a = (sy-sx*b)/ss;

}

The compiler generates the following intermediate code.

Example 23:

lin_regress

===========

(0) (=) st2 <-- [0]

(1) (=) sy <-- [0]

(2) (=) sx <-- [0]

(3) (=) b <-- [0]

(4) (=) i <-- [0]

(5) (<) CCHW_TMPVAR_16 <-- [i ndata]

(6) (if) [CCHW_TMPVAR_16 11]

(7) (+) sx <-- [sx x,i]

(8) (+) sy <-- [sy y,i]

(9) (++) i <-- [i]

(10) (B) [5]

(11) (=) ss <-- [ndata]

(12) (/) sxoss <-- [sx ss]

(13) (=) i <-- [0]

(14) (<) CCHW_TMPVAR_25 <-- [i ndata]

(15) (if) [CCHW_TMPVAR_25 23]

(16) (-) t <-- [x,i sxoss]

(17) (*) CCHW_TMPVAR_30 <-- [t t]

(18) (+) st2 <-- [st2 CCHW_TMPVAR_30]

(19) (*) CCHW_TMPVAR_32 <-- [t y,i]

(20) (+) b <-- [b CCHW_TMPVAR_32]

(21) (++) i <-- [i]

(22) (B) [14]

(23) (/) b <-- [b st2]

(24) (*) CCHW_TMPVAR_37 <-- [sx b]

(25) (-) CCHW_TMPVAR_36 <-- [sy CCHW_TMPVAR_37]

(26) (/) a <-- [CCHW_TMPVAR_36 ss]

(27) (RFS)

One can see that the semantics is already similar to the assembler of a common RISC processor.

The operators in brackets have to be replaced by the assembler mnemonics and the symbols

have to be mapped to registers. The last step of course, is not trivial, since the number of

3 COMPILER 36

available registers is limited. Consider as example the intermediate code line:

Example 24:

(7) (+) sx <-- [sx x,i]

This statement adds the value of the variable x to the offset determined by i of the variable

x. One can see that x may not be a simple variable but a data structure. Otherwise the

base/offset addressing mode does not make sense. The result of the operation is stored in the

variable sx. This intermediate statement may be translated easily to the assembler code of a

RISC processor. If we assumed to utilize an ARM compatible processor the assembler code

will look as follows:

Example 25:

LDR R7,[R8,R9] ;load the value of x, offset i to register R7

ADD R5,R6,R7 ;add the value of x, offset i to sx and store it in R5

The short example above shows that the structure of the produced intermediate code is very

similar to the assembler mnemonics of a current Risc-machine, but of course, much more ab-

stract. The syntax of the intermediate code is quite simple:

<operator> [<L-value> <operand1> <operand2>]

The objects in []-brackets depend on the operator. At least an operator for each statement is

required. Therefore the simplest possible intermediate code statement is the following:

<operator>

The only currently implemented statement of this simple type (without any additional operand)

is the return from subroutine. Refer to statement (27) of the code snippet in example 23.

The operator is one of the following options: (”+” ”-”, ”*”, B(Branch), RFS (Return from

subroutine...). The operators/statements are divided into two classes. The first class contains

control statements whereas the second class contains operators which belong to the data path.

The control statements are listed below:

• B branch

The branch operator has one parameter that indicates the statement index to branch to.

See the following example (extracted from example 23):

Example 26:

(10) B [5]

3 COMPILER 37

The execution branches immediately to the statement with index 5.

Example 27:

.......................

(5) (<) CCHW_TMPVAR_16 <-- [i ndata]

(6) - (9)

(10) (B) [5]

.......................

In this particular example the branch statement belongs to a loop. The loop is repeated

until the CCHW TMPVAR 16 is 0.

• if conditional branch The if-statement has two operands. The first one is the variable

that contains the truth value and the second one is the start index of the false path. Refer

to the following example:

Example 28:

(6) (if) [CCHW_TMPVAR_16 11]

If the value of CCHW TMPVAR 16 is 0 then the engine resumes operation at index 11.

If the value of CCHW TMPVAR 16 is unequal 0 then the execution goes on at index 7

directly after the if-statement.

• RFS return from subroutine This operator returns to the caller’s module.

• BS branch subroutine The BS operator invokes a subroutine. There are two types of BS

statements; with and without a return value (corresponds to a void function in C). The

first one has an L-value at the left side of the arrow (Example 29) whereas the second

one has no L-value, even no arrow sign (Example 30).

Example 29:

(2) (TS) 3 <-- [2] (BS) det1 <-- [(buf_00,buf_01,buf_10,buf_11)]

Example 30:

(2) (TS) 3 <-- [2] (BS) [(buf_00,buf_01,buf_10,buf_11)]

The objects in the brackets [(...)] are passed to the subroutine. Their number is arbitrary

(even 0 objects are allowed). A subroutine with 0 input parameters or no return value

seems to be senseless at first glance. But of course, it can communicate directly with the

external world using input/output channels. Refer to Fig. 3.

3 COMPILER 38

Figure 3: Function call without parameters

The intermediate code supports concurrent execution. Each line consumes exactly one clock

cycle (top to bottom). The cycle index is on the left side of each line. Refer to the following

source code example. The source code block of concurrent commands is prefixed by the key-

word par.

Example 31:

void lin_regress(int ndata)

{

int i;

int t, sxoss, sx, sy, st2, ss;

//........

par

{

sx = 0;

sy = 0;

st2= 0;

ss = 0;

}

//........

}

3 COMPILER 39

The intermediate code generator produces the following code:

Example 32:

lin_regress

===========

(0) (=) sx <-- [0] (=) sy <-- [0] (=) st2 <-- [0] (=) ss <-- [0]

(1) (RFS)

One can see that the assignments within the par block is executed concurrently. These assign-

ments of course, are serialized if the final target is not able to execute commands concurrently

(i.e. a single processor engine). Please refer to appendix 3.9 for a full description of the inter-

mediate code commands.

3.3 Optimization

We have to distinguish between two goals of optimization:

• for speed

• for memory or for silicon consumption respectively.

In general the two goals can not be achieved at the same time, that means, if we want to

increase the speed, we have to take into account that the memory/silicon requirement is higher

and vice versa.

Many approaches for optimization at different levels of abstraction have been published in the

past years. Some of them are utilized in our compiler. The optimizer described in this para-

graph is focused on the intermediate code even if some minor optimizations are done at the

source code level and at the assembler code or net list level.

The optimization of the intermediate code may roughly be divided into two subsections. The

first one is common for both target types whereas the second one is highly dependent on the

desired target type (microprocessor code or hardware net lists).

3.3.1 Optimization (first step)

In C as well as in all other context-independent grammar languages the programmer is allowed

to write any kind of statement even if they are not useful or at least their order in the program

is not meaningful.

Example 33:

{

int a, b, c;

3 COMPILER 40

a = b;

c = a;

}

If the variable a is not used anymore in subsequent statements it can be removed and the

two statements are replaced by just one. Normally the statements are not as simple as in the

example above. Therefore it is more efficient to do these optimizations with the intermediate

code. See example below.

Example 34:

UINT8 main(UINT8 inp0, UINT8 inp1, UINT8 inp2, UINT8 inp3)

{

UINT8 buf;

buf = inp0 + inp1 + inp2 + inp3 + inp4 + inp5;

return buf;

}

A straightforward compilation (without compilation) generates the following intermediate code:

Example 35:

main

====

(0) (TS) 1 <--| inp0 <--| inp1 <--| inp2 <--| inp3 <--|

inp4 <--| inp5 <--|

(1) (TS) 2 <-- [1] (+) CCHW_TMPVAR_17 <-- [inp0 inp1]

(2) (TS) 3 <-- [2] (+) CCHW_TMPVAR_16 <-- [CCHW_TMPVAR_17 inp2]

(3) (TS) 4 <-- [3] (+) CCHW_TMPVAR_15 <-- [CCHW_TMPVAR_16 inp3]

(4) (TS) 5 <-- [4] (+) CCHW_TMPVAR_14 <-- [CCHW_TMPVAR_15 inp4]

(5) (TS) 6 <-- [5] (+) buf <-- [CCHW_TMPVAR_14 inp5]

(6) (TS) 7 <-- [6] (=) RFS_VAR_NAME <-- [buf]

(7) (TS) |<-- [7] (RFS) [RFS_VAR_NAME]

It is evident that this intermediate code is not optimal. An additional value is added to

the temporary variable each clock. The parallelization of the statements is not possible in this

case. The best way to optimize this code is to cluster the additions as done in the next example.

Example 36:

3 COMPILER 41

main

====

(0) (TS) 1 <--| inp0 <--| inp1 <--| inp2 <--| inp3 <--|

inp4 <--| inp5 <--|

(1) (TS) 2 <-- [1] (+) CCHW_TMPVAR_15 <-- [inp4 inp5]

(+) CCHW_TMPVAR_17 <-- [inp2 inp3]

(+) CCHW_TMPVAR_16 <-- [inp0 inp1]

(2) (TS) 3 <-- [2] (+) CCHW_TMPVAR_14 <-- [CCHW_TMPVAR_16 CCHW_TMPVAR_17]

(3) (TS) 4 <-- [3] (+) buf <-- [CCHW_TMPVAR_14 CCHW_TMPVAR_15]

(4) (TS) 5 <-- [4] (=) RFS_VAR_NAME <-- [buf]

(5) (TS) |<-- [5] (RFS) [RFS_VAR_NAME]

One can see that this intermediate code runs faster than the non-optimized version. Refer to

[12] for details on this kind of optimizations.

3.3.2 Optimization (second step)

The second step is highly dependent on the target class. It takes care of the particular features

of software systems or hardware devices respectively. State-of-the-art microprocessors provide

a lot of registers. The majority of them are for general purpose and may be used to store and

manipulate the values of variables. Statements may be reordered in terms of their execution

schedule in order to avoid storing and reloading the values to/from the RAM. The following

example shows how statement reordering reduces the RAM access:

Example 37:

(1) (TS) 2 <-- [1] (+) buf0 <-- [inp0 inp1]

(2) (TS) 3 <-- [2] (+) buf1 <-- [inp2 inp3]

(3) (TS) 4 <-- [3] (+) buf2 <-- [buf0 inp4]

Assume that there are no more registers available when the statement (2) is to be executed. In

this case the value of buf0 must be copied to RAM. Switching the first two statements avoids

this time-consuming action.

Another option to increase the speed of a microprocessor is the opcode pipelining. That means

that an opcode is fetched, decoded etc. on a pipeline within the processor. But if the processor

reaches a branch it has to reload the pipeline, since it knows the operation type just after

decoding it. The optimizer has the chance to optimize the code in order to use as few branches

as possible. On the other side, hardware devices are able to execute statements concurrently.

The more statements are executed concurrently the faster is the overall execution time.

Another aspect is the input latency. That means the time after reading input data when the

circuit is blocked for other inputs.

3 COMPILER 42

3.4 Timing analysis

One of the most interesting aspects of our work is the prediction of the timing behaviour.

Conventionally the timing analysis is done experimentally with the finished design. If the

result does not meet the requirements the developer will go back into the design chain and

refine the design. Our approach is totally different. We try to use the intermediate code for

timing prediction. Please refer to section 4 for details on this item. Please notice that a

clock-accurate timing is possible only in hardware implementations.

3.5 Code/circuit generation

The generation of microprocessor code and hardware circuits are totally different tasks. The

generation of microprocessor code from a sequential programming language like C is a well-

known task. Compilers have been implemented for lots of processor architectures (Cisc, Risc,

DSP etc.). For that reason we focus our interests on the generation of net lists of logic gates.

The routing and mapping of the logic gates to particular devices cause no problems. Tools for

routing and mapping are provided by the device vendors for free (for example ”Quartus” by

Altera Inc. or ”ICE” by Xilinx). Therefore we stop our discussion at the gate level.

3.5.1 Microprocessor code

Our compiler generates code for the ARM7 core. This core is incorporated by a majority of

microcontrollers for embedded devices. Also a core simulator (ARMULATOR) is available for

debugging purposes on Windows platforms.

The ARM7 incorporates 13 general purpose registers and a lot of steering and control registers

(stack pointer, link register etc.). The steering and control registers have their particular pur-

pose. Their usage follows directly from the intermediate code. For example the link register

is used to store the return address before a function is invoked. The stack pointer register

points to the top of the stack. It is incremented or decremented each time the stack is pushed

respectively popped. More interesting is the usage of the general purpose registers. These reg-

isters are used to store and manipulate the variables. The problem is to map the variables to

registers efficiently; that means, to exchange the variables values between the memory and the

register as rarely as possible. We have implemented a statistic method for this task. Therefore

we introduce a function fk(t) which defines the priority of a variable within a functional block:

fk(t) =

{
∞ : if k is not used ∀t′

> t

A ∗ (t− tE) + B ∗ (tkN − t) + CL(k, t) + CR : else

t measures the time (number of elapsed clock cycles) from the start of a particular function.

A, B and CL are proportional constants. tE is the end time of the examined function and tN the

time of the next appearance of the variable k. The constant CL(k, t) is added if the variable k

3 COMPILER 43

is used within a loop at the time t. If at a particular time t∗ no registers are available, a register

is captured from the variable with the lowest priority (mink fk(t∗)), and its value is transferred

to the RAM. CR is a value which is added if the variable is declared in the source code with the

keyword ”register”. Most intermediate code objects can be translated straightforwardly to the

ARM7 commands (refer to [8] for the complete instruction set of the ARM7). Some command

cause a little bit more work, since the ARM7 does not provide a useful instruction (for example

the arithmetic division).

3.5.2 Digital circuits

We want to focus our interests on this item, since the compilation of C to assembler code for

a sequential microprocessor is a well-known task.

We assume that the optimization of the intermediate code is finished at this point. The task is

to translate the commands of the intermediate code to a lower level of representation. A suit-

able level of abstraction are net lists of logic gates. The last step after this process is the routing

and placing, but we do not need to take care of this final process for two reasons: The final step

is identical to classic ways of hardware development (hardware definition language of sketch ed-

itors). This part is highly device-dependent and the number of vendors for these devices is high.

Complex algorithms can be translated efficiently only into clocked circuits. The data is pro-

cessed within the circuits step by step. Therefore the entire circuit is split into pieces of logic

gates. Each of these blocks is processed at a particular time and activated by an external clock

(see the sketch below; Fig. 4).

Figure 4: Clocked circuit

The example in Fig. 4 contains 7 blocks. It takes 5 clock cycles for execution. Blocks 2,3 and

5,6 are executed within the same clock cycle. This, of course, is possible only if different data

are manipulated by these blocks. It is evident that the topology of these blocks has a strong

impact on the quality of the circuit. Refer to Chapter 4 for details on this item.

It is possible to map each of the commands in the intermediate code to one block. For efficient

circuits this is not suitable, since the number of subsequent logic gates is different for different

types of commands. For example a multiplication may be built of a sequence of additions (a

8-Bit multiplication is built of 7 subsequent additions; see Fig. 5).

3 COMPILER 44

Figure 5: 8-Bit multiplier

If we implement our system such that all the commands take the same time, we will need to

latch the result of a fast command for a long time. For example, the circuit delay of a multi-

plication is seven times the delay of an addition (since the circuit is built of seven sequential

additions). For this purpose we model formally the multiplication by 7 linked blocks, each of

them taking one cycle (Fig. 6).

Figure 6: Model of a multiplier by 7 sequentially linked blocks

In the model above the matrix multiplication ATC is split into seven blocks. From a timing

point of view the seven ATCs are independent. But of course, the chronology of the new blocks

is fixed, since the different ATC have fixed data links. If we use this model it will be possible

to increase the execution clock, since the maximum delay time of each ATC is the same as the

delay time of an addition.

3 COMPILER 45

Systems currently available on the market (for example the DK1 suite from Celoxica Inc) assume

that all the statements at the source code level take the same execution time. This assumption

enables the user to calculate the execution time easily. But it forces the programmer to take

care of the execution time when writing each statement in the source code. In this case it may

be a bad habit to mix short and long statements. In our system the way of writing source code

statements has no impact on the execution time. Refer to section 6.2.2 for a detailed discussion

of this item.

3.6 Atomic commands

Our compiler provides a default circuit implementation for each of the intermediate code com-

mands. Hence we call them atomic commands. These implementations are generic and not

optimized for a particular target. The level of abstraction for this mode is structural at the

gate level. See Fig. 7 (it is our default implementation for the addition). The source code for

this block may be found in the appendix 3.8 together with some other examples.

Figure 7: 8-Bit adder

Different implementations for all the used commands in the intermediate code may be found

in the literature; refer to [15].

3 COMPILER 46

3.7 Some compiler details

The compiler has not been finished yet. The current status demonstrates that our approach is

realizable and the results are sensible.

3.7.1 Calling conventions

The compiler is implemented as a console application for WIN32 platforms. There are default

values for all the command line options. Therefore the simplest way to run the program is

calling the executable together with a source code file.

Example 38:

{

c:>...\bin\cchw source.hc

}

The options (if required) are written between the program name and the source-code file name.

Example 39:

{

c:>...\bin\cchw [options] source.hc

}

The following options are supported:

• -t directory name directory where the intermediate files are stored

• -v verbose mode

• -I directory name directory where the include files are searched

• -p generate an output after running the preprocessor

• -a ATC file add the ATC file to the list of file names

• -i interactive mode

• -c don’t link the compiled objects (stop after compilation)

• -S don’t link the assembled objects (stop after assembly)

• -trg [target] desired target:

– NL net list

– ARM7 ARM7 microcontroller code

– ATC net list for atomic commands

3 COMPILER 47

• -o[digit] level of optimization (0-9)

Below there are the default values for the command line options:

• -t ./ local directory

• -v none

• -I none

• -p none

• -a empty list

• -i none

• -c none

• -S none

• -trg ARM7

• -o0 no optimization

The name of the output file is generated from the name of the input files. It’s extension is

dependent on the options. See below the list of output file extensions.

• .s ARM assembler file

• .edf EDIF file for net lists

• .hcp preprocessed source code

• .enl internal net list format; used also for graphical output

• .egl internal ATC net list format; used also for graphical output

• .o ARM object file

• .m32 Motorola 32 Bit S-records

Notice that not all the file types are supported in the current version.

3 COMPILER 48

3.8 Implementation of atomic commands

In this section we explain the usage of the structural description10 which is used to implement

atomic commands. The syntax is taken from C but the semantics is totally different. The

implementation of algorithm in ANSI C is always behavioural. As already mentioned the atomic

commands are implemented using a structural description. Therefore the main operator is the

right arrow (→). Hence we call it the link operator. It links two objects with a wire. The only

predefined objects are:

• NOT ; one input; invert the logic input state

• AND; two inputs; output is logic high if both inputs are high, else low

• OR; two inputs; output is logic low if both inputs are low, else high

The three objects above are the basic bool functions not, and and or. They are used to declare

digital gates (the syntax is similar to the declaration of variables in C) which are linked together

with the → operator.

3.8.1 Semantics of the ATC implementation

The semantics is quite simple. Each object is defined similar to functions in C.

<object name> <output list> (<input list>)

The object name is arbitrary. The output list declares the output wires of the object whereas

the input list (in ()-brackets) declares the input wires.

output list:

output wire0, output wire1, ..., output wire n

input list:

input wire0, input wire1, ..., input wire n

Figure 8: user defined ATC declaration

The input and output wires may also be declare as port bundles. This is done similar to the

array declarations in C. The number in []-brackets is the number of wires in the bundle. The

10See [16] for details on the structural and behavioural descriptions

3 COMPILER 49

access to a particular wire within the bundle is also done similar to the access to the component

of an array. See the following example:

Example 40:

gateX C[8],c_out (A[8], B[8])

{

...............

A[0] --> C[1];

}

The example above defines two input port bundles named A, B, one output port bundle named

C that contain eight wires each and one single wire output port named c out. The first wire in

the input bundle A is connected to the second wire in the output bundle C.

3.8.2 Adder for 8bit integers

The following two examples implement a half-adder (HA) and a full-adder FA. In addition to

the three basic gates all the user defined objects may also be used to declare gates. For example

the half-adder implemented in the first example is used to implement the full-adder.

Example 41:

// The following

HA C,c_out (A, B)

{

{ // declare two inverters

NOT inp_Invert_A, inp_Invert_B;

}

{ // declare three AND gates

AND And0, And1, c_And;

}

{ // declare an OR gate

OR out_Collect;

}

// connect the inputs to the invertors

A --> inp_Invert_A;

B --> inp_Invert_B;

// connect the inverted input A to the first port and

// the input B to the second port of an AND gate

inp_Invert_A --> And0[0];

3 COMPILER 50

B --> And0[1];

// connect the input A to the first port and

// the inverted input B to the second port of another AND gate

A --> And1[0];

inp_Invert_B --> And1[1];

// connect the input A to the first port and

// the input B to the second port of another AND gate

A --> c_And[0];

B --> c_And[1];

// collect the outputs (connect to an OR gate)

And0 --> out_Collect[0];

And1 --> out_Collect[1];

// connect the collected outputs to the output of the half-adder

out_Collect --> C;

// connect the carry to the carry output of the half-adder

c_And --> c_out;

}

FA C,c_out (c_in, A, B)

{

{ // declare a half-adder

HA ha0, ha1;

}

{ // declare an OR gate

OR out_Collect;

}

// The following statements are the typical wiring of a full-adder

c_in --> ha0.A;

A --> ha1.A;

B --> ha1.B;

ha1[0] --> ha0.B;

ha0[1] --> out_Collect[0];

ha1[1] --> out_Collect[1];

3 COMPILER 51

// connect the collected outputs to the output of the full-adder

ha0[0] --> C;

// connect the carry to the carry output of the full-adder

out_Collect --> c_out;

}

A 8-Bit adder may be implemented similar using eight full adders. A graphical output of the

8-Bit adder may be found in Fig. 7.

3.9 The complete list of intermediate commands

The following intermediate commands are internal. They are optimized with the goal of imple-

menting an optimizer and a generator for microprocessor code as well as generator of silicon

gates.

• if followed by 3 operands. The result is 1 operand.

• = followed by 2 operands. Assign value of operand 2 to operand 1.

• + followed by 3 operands. The result is the sum of operand 2 and 3. The result is stored

in operand 1.

• − followed by 3 operands. The result is the difference of operand 2 and 3. The result is

stored in operand 1.

• ∗ followed by 3 operands. The result is the product of operand 2 and 3. The result is

stored in operand 1.

• / followed by 3 operands. The result is the quotient of operand 2 and 3. The result is

stored in operand 1.

• & followed by 3 operands. The result is the logical bitwise AND of operand 2 and 3. The

result is stored in operand 1.

• | followed by 3 operands. The result is the logical bitwise OR of operand 2 and 3. The

result is stored in operand 1.

• < if the value of operand 2 is lower than operand 3 the result is 0, otherwise it is 0. The

result is stored in operand 1.

• > followed by 3 operands. If the value of operand 2 is greater than operand 3 the result

is 0, otherwise it is 0. The result is stored in operand 1.

• <= followed by 3 operands. If the value of operand 2 is lower or equal than operand 3

the result is 0, otherwise it is 0. The result is stored in operand 1.

3 COMPILER 52

• >= followed by 3 operands. If the value of operand 2 is greater or equal than operand 3

the result is 0, otherwise it is 0. The result is stored in operand 1.

• ! = followed by 3 operands. If the value of operand 2 is not equal than operand 3 the

result is 0, otherwise it is 0. The result is stored in operand 1.

• == followed by 3 operands. If the value of operand 2 is equal than operand 3 the result

is 0, otherwise it is 0. The result is stored in operand 1.

• ++ followed by 2 operands. The operands are the same symbols. The value is incremented

by one.

• −−followed by 2 operands. The operands are the same symbols. The value is decremented

by one.

• B followed by 1 operand. Branch to the command with time stamp determined by the

operand.

• RFS Return from subroutine.

• BS Branch to subroutine.

3.10 Linker

The linking process is the very last task of the compilation process. It compiles all the different

modules and generates an executable output file. This is at least the imagination of software

developers. The executable is a binary file that may be downloaded to a processors work space

and started either by power up or by a command in an OS shell. The situation is totally

different if a hardware target is selected. Even in this case the linker may be the last stage

(i.e. the design will run on a logic simulator) but the result may also be post-processed if a real

hardware device is generated. In this case the formal description of the circuit (net list file) has

to be mapped to the physical structure of the particular target. Refer to Fig. 9.

Anyway our compilation process stops after the linking process. The example shown in Fig. 9

selects a Xilinx11 device as hardware target. The post-processing (placing12 and routing13) is

done by the ISE refer to [18] for details) tool provided for free by Xilinx.

3.10.1 Software target

The compiler output is assembler code if the software target is selected. The assembler code

may be processed by the assembler tool taken from the ARM developer suite [9] or the SDT

[10]. Since the compilation process for software targets stops before assembly it is evident that

a linker has not been implemented. Assembly and linking are quite simple tasks and not within

the scope of this thesis.

11one of the two market leading FPGA vendors
12map the logic cells to the lookup tables of the FPGA
13connection between the logic cells

3 COMPILER 53

Figure 9: Linking process

3.10.2 Hardware target

The compiler output for hardware targets is a internal representation of the net lists stored in

files with the extension .enl followed by an ordinary number that represents the appearance

of the function within the intermediate code. The compiler generates one output file for each

function. Refer to the intermediate code in example 50. This code contains four functions. For

example the net list of function 3 will be stored in a file named matr2Mult.enl3. The structure

of the net list file is quite simple. See the following C structures for details.

{

typedef struct

{

char KeyWord[MAX_NAME_LENGTH]; // file Keyword

T_ClockInfo globalClock; // clocking information

int fct_symIdx; // index of function within the symbol table

int fct_entries_Nr; // number of entries

T_atm_cmd ATCs[ENTRIES_NR][ATCs_Nr]; // all the ATCs

}

T_propNetList;

}

The magic word is always Schem. Refer to appendix 9.5 for the meaning of the other compo-

nents.

3 COMPILER 54

The linker output is an EDIF14-file. Our EDIF file is a low-level representation of the entire

circuit. The external variables (input/output variables and function parameters) and function

names within the source code may be recognized in the EDIF files, since these arbitrary names

are generated from the source code names. For example the function matr2 Det may be found

in the EDIF file under the same name within the library libmain. Each function generates a

cell in the EDIF file and each parameter generates a port or a port bundle in the cells header.

Refer to the following example:

Example 42:

static UINT8 matr2_Det(UINT8 A00, UINT8 A01, UINT8 A10, UINT8 A11)

{

........

}

UINT8 main(UINT8 inp0_00, UINT8 inp0_01, UINT8 inp0_10, UINT8 inp0_11)

{

........

return matr2_Det(buf_00, buf_01, buf_10, buf_11);

}

The linker generates the following cell header (a schematic may be found in Fig. 10):

Example 43:

(library lib_main

(edifLevel 0)

(technology (numberDefinition))

(cell matr2_Det (cellType GENERIC)

(view matr2_Det (viewType NETLIST)

(interface

(port act (direction input))

(port A00_0 (direction input))

(port A00_1 (direction input))

(port A00_2 (direction input))

(port A00_3 (direction input))

(port A00_4 (direction input))

(port A00_5 (direction input))

(port A00_6 (direction input))

14The Electronic Design Interchange Format (EDIF) is a format used to exchange design data between
different CAD systems, and between CAD systems and Printed Circuit fabrication and assembly.

3 COMPILER 55

(port A00_7 (direction input))

(port A01_0 (direction input))

(port A01_1 (direction input))

(port A01_2 (direction input))

(port A01_3 (direction input))

(port A01_4 (direction input))

(port A01_5 (direction input))

(port A01_6 (direction input))

(port A01_7 (direction input))

(port A10_0 (direction input))

(port A10_1 (direction input))

(port A10_2 (direction input))

(port A10_3 (direction input))

(port A10_4 (direction input))

(port A10_5 (direction input))

(port A10_6 (direction input))

(port A10_7 (direction input))

(port A11_0 (direction input))

(port A11_1 (direction input))

(port A11_2 (direction input))

(port A11_3 (direction input))

(port A11_4 (direction input))

(port A11_5 (direction input))

(port A11_6 (direction input))

(port A11_7 (direction input))

(port CLK (direction input))

(port GND (direction input))

(port VCC (direction input))

(port act_out (direction output))

(port RFS_VAR_NAME_0 (direction output))

(port RFS_VAR_NAME_1 (direction output))

(port RFS_VAR_NAME_2 (direction output))

(port RFS_VAR_NAME_3 (direction output))

(port RFS_VAR_NAME_4 (direction output))

(port RFS_VAR_NAME_5 (direction output))

(port RFS_VAR_NAME_6 (direction output))

(port RFS_VAR_NAME_7 (direction output)))

(contents

..................

)

}

3 COMPILER 56

Each parameter generates 8 ports, since the bit size of the parameters is 8. The wires containing

the return value is always called RFS VAR NAME The other ports are low-level steering

and supply lines. Refer to section 3.10.3 for their meaning.

Figure 10: EDIF port bundle

3.10.3 Low-level signals

The circuit provides some signals for the basic interchange with the environment. They are

common to all circuits and do not belong to a particular algorithm. Therefore the compiler

or the linker generates them automatically. The user can focus his interests on the algorithm.

Some of the signals are inputs to the circuit others are outputs. The low-level signals are listed

below:

• powersupply (input)

• ground (input)

• clock (input)

• activation (input, high active)

• readyforactivation (output, high active)

• outputready (output, high active)

3 COMPILER 57

• finished (output, high active)

The first 3 signals are common for all kinds of clocked circuits. They are not influenced by the

algorithm and therefore they are attached by the linker at the end of the compilation process.

The ground and the power supply determine the basic logic levels 0 and 1, whereas the clock

is the physical input clock and must not change during the operation time. In most cases it is

connected directly to a clock source (i.e. a quartz). Clocks with different frequencies are gener-

ated internally if necessary. State-of-the-art FPGAs15 or standard-cell-devices provide PLLs16

to do this.

The last 4 signals are internal to our method. They are highly dependent on the particular

algorithm except the activation signal. This signal starts the circuit. It must remain high at

least for one clock cycle. But it may also remain high all the time. If the activation remains

high it causes the circuit to run in an endless loop. If the activation remains high for less than

one clock cycle the behaviour will be undefined, since it depends on the particular physical

implementation of the circuit. The second internal signal ”ready for activation” shows the

environment of the circuit whether it is ready for activation or not. If the circuit is activated

and the ”ready for activation” signal shows busy state (logic low) it is ignored (therefore the

activation signal is allowed to stay high all the time). Notice that the circuit may be ready

for execution even if the entire circuit has not finished. This is typical for hardware imple-

mentations and show their pipeline character. The output ready signal shows that at least one

output value is ready. Refer to section 5 for some examples showing the purpose of this signal.

The last and least important signal is the ”finished” signal. It stays active for one clock cycle.

It may be later than the last value output for many reasons (i.e. update internal counters).

But in most cases the information when the circuit has finished is not important to the cir-

cuits environment. It may be interesting for example in battery powered devices in order to

avoid peaks in power consumption. The Fig. 11 shows a typical progress of the low-level-signals.

The time difference called ∆Ta in Fig. 11 determines the maximum input frequency and the

time called ∆Tf is the total running time. Refer to section 4 for details on the timing of clocked

circuits.

3.11 Edif generator

The output file format for the hardware target is EDIF17. The EIDF file is an ASCII file that

contains all the information to reconstruct the silicon device. No additional file is necessary.

15Field Programmable Gate Array
16Short for phase-locked loop, an electronic circuit that controls an oscillator so that it maintains a constant

phase angle on the frequency of an input, or reference, signal. A PLL ensures that a communication signal is
locked on a specific frequency and can also be used to generate, modulate and demodulate a signal and divide
a frequency.

17Electronic Data Interchange Format (refer to [17])

3 COMPILER 58

Figure 11: Progress of the low-level-signals

3.11.1 Generator Usage

The input files to the generator are the .enl files; refer to section 3.10.2. They contain our

internal circuit descriptions, one each function. The calling convention for the EDIF generator

is:

..../edif_gen [options] file.enl1 <file.enl2 file.enl3.... file.enl<n>>

options:

• −t directory for the temporary files (default is the current directory)

• −o EDIF output file name (the default uses the same base name as the first input file)

• −a ATC list file name (list of the precompiled ATCs)

• −e EDIF version (only version 2 is currently supported)

• −l EDIF level (only level 0 (net list level) is currently supported)

• −x vendor name of the target device (default is generic; currently supported are Altera

and Xilinx devices)

The program works similar to a ’normal’ linker. It reads all the input files and builds a module

data base. Then it searches the main function) and processes recursively the design. If a new

module is invoked the software goes through the data base and links the corresponding mod-

ule. If no main function is found or a requested module is not found or any other inconsistency

occurs than the EDIF generator will output an error with the necessary information to remove

the error.

We have two kinds of modules. The ATC primitives and the modules generated from the source

code. The main difference between these two module types is the way they are generated. The

ATCs provide the basic functionalities like addition, multiplication etc. The ATCs are provided

by the development suite. It is possible to change the code of the ATCs, since they are written

3 COMPILER 59

in C syntax and compiled by our compiler. As already told, the ATCs are written in a different

way. The code is structural and not behavioural. Refer to VHDL documentation [16] for details

on structural and behavioural descriptions. This method is also used in hardware description

languages, but normally only the structural description is used in current design systems (like

ISE18, Quarturs219).

The second type of modules are generated from the application software. Usually only these

modules are written by the application engineer. The description type is behavioural. It has

a higher level of abstraction than the structural one. ’Normal’ C code is always behavioural.

Refer to Fig. 12.

Figure 12: Linker Structure

Some modules may exist twice. Once within the vendor library and once within our internal

library (.egl-files). In this case the user can choose one of the modules. The default is always

our internal version. The listing of the desired vendor modules is done in a simple text file.

Refer to section 3.11.2.

18the standard Xilinx design tool
19the standard Altera design tool

3 COMPILER 60

3.11.2 Support files

We use two support files to map our internal ATCs to EDIF cells. The first one with extension

.acm maps the internal ATC to EDIF cell names. Refer to the following listing:

Example 44:

..................

+ I8A_c

- I8S_c

* I8M_c

/ I8D_c

>= GreaterE8_c

!= UnEqual8_c

== Equal8_c

++ Inc8_c

-- Dec8_c

..................

}

For example the ATC that calculates the addition of two integer numbers (called +) is mapped

to the cell called I8A c. A cell with the name I8A c must be implemented either in our library

or in the vendor’s library.

The second support file with extension .dca lists all the cells and their ports that are taken from

the vendor’s library (the default is always our internal library). Refer to the following listing:

Example 45:

..................

cell AND2 2 1 ports INPUT I0 INPUT I1 OUTPUT O

cell NAND2 2 1 ports INPUT I0 INPUT I1 OUTPUT O

cell OR2 2 1 ports INPUT I0 INPUT I1 OUTPUT O

cell OR3 3 1 ports INPUT I0 INPUT I1 INPUT I2 OUTPUT O

cell INV 1 1 ports INPUT I OUTPUT O

cell LD 2 1 ports INPUT G INPUT D OUTPUT Q

cell COMP8 2 1 ports INPUT A[8] INPUT B[8] OUTPUT EQ

cell FD 2 1 ports INPUT C INPUT D OUTPUT Q

..................

For example the 8bit comparator COMP8 is taken from the vendor’s library. Each line declares

one cell. The common syntax is

cell <cell name> <numb. of inp. ports> <numb. of outp. ports> port <port list>

3 COMPILER 61

If a cell is taken from the vendor list it will be declared in the EDIF file without a body (it

may be seen similar to an external declaration in a C file). The EDIF reader of the technology

mapping tool (placing and routing tool) will add the body automatically.

4 TIMING OF CLOCKED CIRCUITS 62

4 Timing of Clocked Circuits

One of the most difficult tasks in hardware development is the net list generation and refine-

ment. The net list is responsible for most of the characteristics of the final circuit, especially

in terms of timing (i.e. clock rates, latencies etc) and gates consumption. At all times the

tool developers have tried to find methods for totally automatic net list generation. Some of

these methods allow circuit developers to use algorithmic languages, but unfortunately it is

still necessary to have consolidated knowledge of the underlying hardware. Therefore people

using these methods are hardware developers, whereas algorithm developers are rather software

engineers. One can see that there is a gap in the chain: there is no easy way to implement

systems described in an algorithmic language (i.e. a classical programming language).

It may be a good procedure to use a hardware description language to model the circuits.

But there are a few disadvantages when using these tools: These languages are rather mod-

elling languages than real programming languages, but algorithm and software designers tend

to think sequentially and are used to dealing with programming languages like C or C++. Our

approach is to use a programming language similar to C in order to enable software designers

to develop synthesizable code. Pure C is not suitable, since it contains language constructs

that have no immediate equivalent in hardware or at least are not synthesizable efficiently (i.e.

pointers must be excluded). This thesis is focused on the timing behaviour of automatically

synthesized circuits and their refinement.

Our approach to close the design gap is based on the methods published by Ian Page et. al. [1].

It utilizes a programming language, that is similar to C (called Handel-C) [1]. Hence we assume

the reader to be familiar with ANSI C. The method published in [1] does not take care of the

timing during compilation and offers no method for optimizing the generated net lists. Our

method takes care of the timing behaviour during compilation and offers an effective method

for partially automatic parallelization. The method has already been partially implemented.

The most significant trait of digital circuits is the grade of parallelization, since it determines

the running time. Even some software based systems require concurrency, since parallel oper-

ating computers are available in great quantities. Therefore some of the considerations in this

thesis are helpful for hardware as well as for software development.

The running time has a lower and an upper bound. The lower bound (ideal case) is equivalent

to the running time of one elementary statement, since all the statements in this case run at

the same time (maximum parallelism). Of course, this case is ideal and will not be achieved

in real circuits. The upper bound is the worst case. In this case all the statements operate

sequentially. The total running time is the sum of the running times of all the elementary

statements (one pipeline system). The worst case can be considered as the baseline for the

automatic parallelization.

4 TIMING OF CLOCKED CIRCUITS 63

Figure 13: Delay of a design block

A second trait with a strong impact on the running time and the clock speed is the maximum

latch time. If the processed data (or at least parts of it) have to be latched for a long time this

will increase the running time and of course decrease the external clock speed (number of data

sets operated in a particular time slot). The ideal case is no data latching at all. This means

that each datum (even the intermediate data) is processed right after it has been generated.

This, of course, is not achievable.

The method described below allows one to implement concurrency in two ways. First, the

designer can embed parallel statements into the source code by using the keyword par, which

has already been used by Handel-C. [3]. This is not the preferred method but sometimes cannot

be avoided, especially within loops in the source code. Secondly, the compiler itself is able to

distinguish between concurrent and sequential statements. If statements are marked as being

concurrent, the compiler reorders them, otherwise they are operated sequentially. Anyway, the

compiler is not able to find out all the concurrent statements. Therefore it is sometimes useful

to be assisted by the designer.

4.1 Compilation process

The compilation is done in two steps by a smart compiler, which is capable of generating ARM

assembler code as well as circuit net lists.

The first step is identical for both targets (assembler code or net lists). It generates an interme-

diate code. Each of these statements are sequential statements. Hence they are called atomic

commands.

To ease the discussion we make some simplifying assumptions (simplifications). As will be

shown later these do not constrain the usability of the presented method.

4 TIMING OF CLOCKED CIRCUITS 64

4.2 Assumptions

4.2.1 Functional units

The circuit is built of functional units, called atomic commands ”ATC”. They are assumed to

be part of a library provided by the compiler vendor. The ATC is a logic operation unit. For

example the addition of two integers is an atomic unit.

4.2.2 Data paths

The data paths are peer-to-peer connections between two ATCs. We do not admit bus accesses

to a data pool. At first glance this assumption may cause restrictions. But it does not, for

the following reason: The access to an external data storage (i.e. RAM block) has just to be

added as another constraint during the net list generation. This does not cause a significant

change because it does not influence the temporary succession. This of course, lowers the

possibilities for parallelization. For example: Assume that there are two ATCs, which access

the same external storage location and belong to different pipelines within a circuit. Without

considering the bus access criterion the circuit synthesizer places them in order to operate at

the same time. Using the additional criterion described above this cannot happen. The ATCs

are placed into different time slots. The time slot is described in the next section (4.3.1).

4.2.3 Data manipulation

The data manipulations are disjoint in terms of time. That means, no connections are allowed

between concurrent ATCs. This item expresses the fact that a particular datum can be manip-

ulated just after the cycle within which it had been generated. Certainly it may be possible to

allow connections between concurrent statements, especially if the sum of the execution times

of both statements is lower than the specified overall execution time. But in this case an ad-

ditional steering mechanism must be implemented (or at least a steering line between the two

statements). Indeed this mechanism lowers the chance of automatic timing optimization.

4.2.4 Running time

We assume that all the ATCs have the same running time TA. This is not really a restriction,

since complex circuits with a long phyisical running time may be split and the parts connected

by sequential lines. The outputs are generated at the latest at time TA after receiving the inputs.

If ti is the time of the i-th cycle the outputs must not be generated later than t = ti + TA.

We can always meet this requirement by setting TA to the highest value. Hence if T n
A is the

running time of the ATC with index n and N is the number of ATCs then TA will be calculated

as TA = maxnεN (T n
A).

4 TIMING OF CLOCKED CIRCUITS 65

4.2.5 Connection length

There are no restrictions on the connection length. The only restrictions are given in 4.2.2

and 4.2.3. We assume that the compiler takes care of the synchronization of the data paths if

necessary.

4.2.6 Data Transport

The data between ATCs are transported without time consumption. The consumption, which

of course, is not zero in real implementations, can be ignored, since it is not comparable to the

much higher switching time of the semiconductor gates. This assumption is used by many logic

gates simulators.

4.2.7 Pipelining

The circuits support pipelining. New data samples will be processed even if the current sample

is not finished. Refer to the sketch in Fig. 14.

Figure 14: Pipelining

The results of each block are latched at their outputs. Therefore two consecutive blocks

may process different data sets at the same time even if the result of block n is processed by

the block n + 1 (i.e. block 3 processes the output of block 2).

4.2.8 IO cycles

The input/output cycles are equidistant in terms of time. The input data are read and the

output data are generated in constant time slots, respectively. Equidistant input/output cycles

are very typical for hardware devices. Example: We want to scan and classify items on an

assembly line. If the assembly line runs with a constant velocity the camera will capture the

images and forward them to the image processing engine in equidistant time steps.

4 TIMING OF CLOCKED CIRCUITS 66

4.3 Timing behaviour

There are several parameters characterizing the timing behaviour of digital circuits. We focus

our interest onto the following two items:

• The total running time of the whole circuit (the time latency between the input and the

output data)

• The maximal Input/output-frequency (the minimum time between two input data sam-

ples resp. output data)

4.3.1 Time slot matrix

One can imagine the circuit timing as a two dimensional matrix (called time slot matrix). Refer

to Fig. 15.

Figure 15: Time slot matrix

The rows represent the sequential ATCs whereas the columns represent the concurrent ATCs.

Each of the matrix elements consumes the time TA (refer to assumption 4.2.4). Starting at the

time t = 0 on the left side of the matrix the time propagates to the right in equidistant steps

(TA). All the elements which belong to the same column are operated at the same time (but

not all the time slots must necessarily be occupied). The used time slots are plotted with dark

color in Fig. 15. The data is latched at the output of each ATC and passed to the next one

each clock cycle. The data paths (pipelines) are indicated in the figure by lines.

4.3.2 Total running time

Calculation of the total running time is an easy task. Let S = {si} be the set of all sequential

data paths which connect an input to an output pin and N (si) the Number of ATCs within

4 TIMING OF CLOCKED CIRCUITS 67

the particular path si. The total running time is calculated by

Ts = max
i

{
N

(
si

)}
∗ TA (2)

This means that the total running time is proportional to the number of ATCs within the

longest data path (longest pipeline). Refer to Fig. 16. One can see that the longest data

path in this example is the first one. The total running time in this example is 12 cycles. For

synchronization it is necessary to latch the outputs. This may be done either on the output of

the producing circuit or on the input of the consuming circuit. In our compiler we decided to

latch the data on the outputs. This is just a convention and has no impact on the quality of

the circuit. The shortest pipeline is the last one. Some of the ATC slots are not occupied. This

means that the data have to be latched at the output of the last ATC until the clock activates

the next one (next occupied ATC). If there are vacant matrix components at the beginning of

a pipe line the data will be read at a later clock cycle. The data of the third pipeline in Fig.

16 is read at the third clock cycle.

Figure 16: Time slot matrix 1

4.3.3 The maximal IO-frequency

The maximal IO-frequency depends on many parameters:

• Level of concurrency.

• The topology of the peer-to-peer connections. The longer the outputs are latched, the

lower is the IO frequency (the number of input/output data sets per second).

• The running time of each ATC. Our assumption 4.2.4 sets this time to the constant

T n
A = const = TA. In real implementations the running time of different types of ATCs is

different. But the assumption 4.2.4 can be achieved formally by splitting ”longer” ATCs

4 TIMING OF CLOCKED CIRCUITS 68

into a set of sequentially linked ”shorter” ATCs. Therefore we can use assumption 4.2.4

for the formal calculations in section 4.3. But, since the subatomic ATCs that form the

longer ATCs are linked sequentially, it is evident that their number has a strong impact on

the IO-frequency. This time (T n
A) depends on its type (i.e. adder, comparator...) and the

physical implementation of the used basic gates. A lot of other parameters may influence

the running time but they are not subject of discussion within the range of this thesis.

4.4 Formal ATC description

An ATC may be described by a vector. It is called ATCn where n is the index 1 ≤ n ≤ N . N
is the total number of ATCs within a circuit. Each ATCn is represented by a 5-tuple:

ATCn =

type

ti

ij

INPUT
(
IO − type,ATCα, ..., ATCβ

)
OUTPUT

(
IO − type,ATCγ , ..., ATCδ

)

The set of all the ATCs is defined by ATCN = {ATCn} where N is the total number of ATCs:

1 ≤ n ≤ N .

• type: Type of the ATC ((i.e. adder, comparator...)). The type is given just for sake of

completeness.

• ti: Horizontal index within the time slot matrix (time when the ATC is processed)

• ij: Vertical index within the time slot matrix. The vertical index does not influence the

timing. It is just given to mark the time slot as used.

• INPUT (...): Input connections; the components ATCγ are the ATCs which are con-

nected to the inputs; IO − type is the connections type (i.e. the Bit width)

• OUTPUT (...): Output connections; the components ATCγ and IO− type are similar to

the INPUTs.

4.5 Optimizing the timing behaviour

The basic idea for the timing optimization is a smart reordering of the components of the time

slot matrix. It is evident that shifting the components to the left yields lower circuit running

times. But a reordering may have negative side effects; i.e. the outputs must be latched for

a longer time. Our approach to this optimization problem is the usage of the well known

dynamic programming method. Reordering is allowed just if it minimizes the cost function

defined below. Hence the main task is to find a cost function, that has minimal value for the

best time slot configuration, or at least has a minimum value for a configuration, that is very

close to the optimum.

4 TIMING OF CLOCKED CIRCUITS 69

4.5.1 Cost function

In this chapter we introduce the cost function F used to solve the optimization problem verbal-

ized in the last section. The cost function assigns a real number to each possible configuration

of the time slot matrix. We focus our interest onto the following questions:

• Does the function tend to a stable value when propagating in time or is it oscillating

around a stable value?

• Is there more than one minimum? How can we choose the right one (distinguish between

local and absolute minima)? How can we define further criteria in this case?

• How does the function depend on its parameters? (Definition of the cost function).

The cost function F evidently depends on the time slot configuration. This configuration

changes during optimization. Therefore it also depends indirectly on time, where time is un-

derstood as the number of reconfigurations of the time slot matrix, since the optimization

started. Formally, we denote the function by

F = F
(
ATCN (t)

)
tεN (3)

• ATCN : the compilation of all the vectors ATCn defined in the last paragraph

• t: the index number of the optimization step (the start configuration is assigned the index

0 and is incremented after each optimization step)

F
(
ATCN (t)

)
is a function which measures the quality of a particular time slot configuration.

The lower the function value, the better is the circuit timing.

One of the most important constraints for the cost function is expressed in the following equa-

tion:

if F
(
ATCN

1

)
= F

(
ATCN

2

)
then ATCN

1 = ATCN
2 (4)

The equation above may be interpreted as follows: If two final ATC configurations (called

ATCN
1 and ATCN

2) have the same cost function, they are identical (when we talk about final

ATCs, we meen ATCs with minimal cost function). Line exchanges of the ATC matrix define

a unitary transformation and are therefore called identical. And of course, they have the same

cost function.

As already mentioned in the last paragraph there are some additional constraints to be consid-

ered:

• Only unused time slots may be occupied. If ATCn = (· · · ti, ij · · ·) and ATCm =

(· · · tk, il · · ·) are two ATCs in the same circuit then ti must not be identical with tk

or ij must not be identical with il (ti 6= tk or ij 6= il).

4 TIMING OF CLOCKED CIRCUITS 70

• Before processing an ATC, the calculation of all its inputs has to be finished ⇐⇒ If

ATCn = (· · · , ti, · · · , INPUT (· · ·ATCγ (· · · , tk, · · ·))) then ti > tk.

• The same data must not be manipulated within concurrent ATCs. Let ATCm and ATCn

be located in concurrent data paths. At the source code level this restriction is equivalent

to the following statement.

Example 46:

{

int x;

par

{

x = 3;

x = 4;

}

}

The variable x is manipulated at the same time. This, of course, is a faulty program.

If ATCn = (· · · , OUTPUT (· · · , ATCγ, · · ·)) and

ATCm =
(
· · · , OUTPUT

(
· · · , ATCδ, · · ·

))
then γ 6= δ.

During the first step we don’t take care of the propagation. For this reason we can ignore

the parameter t: F
(
ATCN (t)

)
= F

(
ATCN

)
. We define the cost function as a sum over the

number of ATCs:

F
(
ATCN

)
=

N∑
n=1

F (ATCn) + F0 (5)

From assumption [4.2.4] it follows that the running time does not depend on the type of the

ATC. In fact only the horizontal position within the time slot matrix and the length of the

IO-lines contribute to the cost function. Exchanging the positions of two concurrent ATCs or

moving an ATC vertically has no effect on the cost function. Therefore we can remove the ATC

type from its parameter list:

F (ATCn (type, · · ·)) = F (ATCn (· · ·)) (6)

The parameters INPUT
(
ATCα, ATCβ, · · ·

)
and OUTPUT

(
ATCα, ATCβ, · · ·

)
specify con-

nections for the data input and data output respectively. The union set of the inputs and

outputs is the same:

N⋃
n=1

INPUT (ATCα, · · ·) =
N⋃

n=1

OUTPUT (ATCα, · · ·) (7)

4 TIMING OF CLOCKED CIRCUITS 71

On that account it is sufficient to consider either the inputs or the outputs. Hence we restrict

ourselves to the inputs. This yields the following dependence:

F (ATCn) = F
(
ti, ij, INPUT

(
ATCα, ATCβ, · · ·

))
(8)

The contribution of each ATC to the cost function depends on its position within the time slot

matrix ti, ij and its input connections INPUT
(
ATCα, ATCβ, · · ·

)
.

We use the following approach for F (ATCn):

• The function F depends linearly on the sequential position ti.

F (ATCn) ∼ ti (9)

• A quadratic contribution is added due to input connection length.

F (ATCn) ∼ max
i6=j

(ti − tj)
2 (10)

if ATCn is connected to an ATC located in row tj of the time slot matrix. We use a

quadratic dependence for the wire length, since in real silicon the routing of very long

wires is very difficult. Long wires also reduce the maximum data input frequency, since

the data has to be latched for a long time. Therefore we gain in total running speed if we

can avoid very long wires. Refer to Fig. 17. We examine the cost function for the ATC

Figure 17: Wire length term of the cost function

with index n (ATCn). We assume that this ATC has two inputs. The data are generated

by ATCm and ATCo. Only the longest link has to be considered (in our sketch the link

between ATCm and ATCn). The column index of ATCm is 0 whereas the column index

of ATCn is 9. The difference is 9. The cost function calculator will include the following

factor in the cost function of ATCn:

max
i6=j

(ti − tj)
2 = 92 = 81 (11)

Example: Consider the following time slot configuration (Fig. 18) as a starting point

for the optimization. At the beginning all the functional modules (ATCs) are ordered

4 TIMING OF CLOCKED CIRCUITS 72

sequentially. One can see that this configuration takes 6 cycles to generate its outputs,

assuming that each of the modules takes exactly one cycle (assumption 4.2.4).

Figure 18: ATC optimization; starting point

Without the contribution due to input connection length the first optimisation step yields

(Fig. 19):

Figure 19: optimized ATC; without consideration of the connection length

The input connections contribution increases the cost function. Therefore this configura-

tion change will not be done. Instead the following will happen (Fig. 20):

Figure 20: optimized ATC; with consideration of the connection length

Find below (Fig. 21) the final configuration with and without the input connection costs

(on the left hand respectively on the right hand).

The output of the ATC2 on the left hand side has to latch its outputs for 3 cycles. It is

free to process new data just after ATC6 has finished its calculations. On the right hand

side the latch time of ATC2 is only 2 cycles. The second one allows a higher external

clock speed, since the outputs of ATC2 is latched for a shorter time.

Summation of the different cost function components yields the following function for each

ATC:

F (ATCn) = A ∗ ti + B ∗max
i6=j

(ti − tj)
2 if

ATCn = (ti, ij, INPUT (tj)) (12)

4 TIMING OF CLOCKED CIRCUITS 73

Figure 21: optimized ATC; with and without consideration of the connection length

Summation over the number of ATCs:

F (ATCN
1) =

N∑
n=1

(
A ∗ tni + B ∗max

i6=j

(
tni − tmj

)2
)

(13)

⇒ F (ATCN
1) =

A ∗
imax∑
i=1

jmax∑
j=1

ti + B ∗max
i6=j

(
tni − tmj

)2

5 EXPERIMENTAL RESULTS 74

5 Experimental results

We will demonstrate in this section the mode of operation of the compiler, considering as ex-

amples the matrix multiplication and the determinant calculation. The program multiplies two

matrices and calculates the determinant of the result. The calculation is demonstrated with

and without optimization.

Refer to appendix 9.2 for the source code of the matrix multiplication. We discuss in this

section two milestones of the compilation process:

• The intermediate code

• The final silicon design and the ARM assembler code (the assembler code is trivial for

experienced assembler programmer; it is mentioned only for completeness)

5.1 Compiler inputs and outputs

Please refer to section 3.7.1 for a detailed list of the command line options and the default

settings. The simplest shell command using the default settings is:

Example 47:

>cchw matr2Mult.hc

A more usual program call will use the optimizer. The shell command in this case is:

Example 48:

>cchw -edf -x Xilinx -O2 -trg nl matr2Mult.hc

We’ve used the hardware target (-trg nl). This selection is arbitrary in this section, since the

intermediate code is identical for both targets. An EDIF file will be generated (-edf) and the

selected target device vendor is Xilinx (-x Xilinx). The most important compiler switch is -O2.

It selects the optimizer. The optimizer stage 2 is for future use.

The compiler’s response is the following:

Example 49:

Net list generation

===================

Found 4 functional blocks.

Optimization

============

5 EXPERIMENTAL RESULTS 75

matr2_Det 7 iterations

dummy 2 iterations

matr2Mult_1elem 7 iterations

main 823 iterations

Timing

======

Global clock frequency is 300 MHz

Longest path = 6 cycles (max. input frequency 50 MHz)

Circuit delay = 12 cycles (40.00 nanoseconds)

Edif file generation

====================

Link 3 user defined functional blocks.

Link 13 primitives from the ATC library.

Link 5 primitives from the Xilinx library.

The compiler messages are split into 4 parts:

• The net list generator (synthesizer)

• The net optimizer

• The timing analizer

• The edif file generator (linker)

The source code used in this example contains 4 functional blocks (functions) but only 3 are

used (one dummy function was inserted for demonstration purposes). 13 additional modules

are linked in from our internal library and 5 from the Xilinx library.

The optimizer messages give us the number of iterations for each module (a module corresponds

to a function in the source code).

The most interesting parts are the timing messages. They contain the main timing information:

the circuit delay and the longest path. Refer to section 4 for details on the circuit timing. The

circuit delay in our example is 12 cycles (corresponds to 40 nanoseconds if a 300 MHz clock is

used). That means that the output values are generated 40 nanoseconds after the circuit was

activated. The longest path in our example takes 6 cycles to forward the data from the start

to the end point. That means that the circuit may be reactivated every 6 cycles even if it has

not been finished at this time.

5 EXPERIMENTAL RESULTS 76

5.2 Intermediate code

As already mentioned, the intermediate code is identical for both targets (hardware and soft-

ware). We start without intermediate code optimization. Please find below the intermediate

code for our sample application. Please notice that the index listed in the first row does not

determine the real time slot index. It is only a sorting index.

Example 50:

matr2_Det

=========

(0) (TS) 1 <--| A00 <--| A01 <--| A10 <--| A11 <--|

(1) (TS) 2 <-- [1] (*) CCHW_TMPVAR_18 <-- [A10 A01]

(2) (TS) 3 <-- [2] (*) CCHW_TMPVAR_17 <-- [A00 A11]

(3) (TS) 4 <-- [3] (-) buf1 <-- [CCHW_TMPVAR_17 CCHW_TMPVAR_18]

(4) (TS) 5 <-- [4] (+) buf1 <-- [buf1 A11]

(5) (TS) 6 <-- [5] (=) buf2 <-- [buf1]

(6) (TS) 7 <-- [6] (=) RFS_VAR_NAME <-- [buf2]

(7) (TS) |<-- [7] (RFS) [RFS_VAR_NAME]

dummy

=====

(0) (TS) 1 <--| A00 <--| A01 <--|

(1) (TS) 2 <-- [1] (*) buf <-- [A00 A01]

(2) (TS) 3 <-- [2] (=) RFS_VAR_NAME <-- [buf]

(3) (TS) |<-- [3] (RFS)

matr2Mult_1elem

===============

(0) (TS) 1 <--| A0 <--| A1 <--| B0 <--| B1 <--|

(1) (TS) 2 <-- [1] (*) CCHW_TMPVAR_31 <-- [A1 B1]

(2) (TS) 3 <-- [2] (*) CCHW_TMPVAR_30 <-- [A0 B0]

(3) (TS) 4 <-- [3] (+) buf <-- [CCHW_TMPVAR_30 CCHW_TMPVAR_31]

(4) (TS) 5 <-- [4] (=) RFS_VAR_NAME <-- [buf]

(5) (TS) |<-- [5] (RFS) [RFS_VAR_NAME]

main

====

(0) TS) 1 <--| inp0_00 <--| inp0_01 <--| inp0_10 <--| inp0_11 <--|

5 EXPERIMENTAL RESULTS 77

inp1_00 <--| inp1_11 <--| inp1_01 <--| inp1_10 <--|

(1) TS) 2 <-- [1] (=) inp1Buf_00 <-- [inp1_00] (=) inp1Buf_11 <-- [inp1_11]

(2) TS) 3 <-- [2] (=) inp1Buf_01 <-- [inp1_01] (=) inp1Buf_10 <-- [inp1_10]

(3) TS) 4 <-- [3] (BS) buf_00 <-- [(inp0_00,inp0_01,inp1Buf_00,inp1Buf_10)]

(4) TS) 5 <-- [4] (BS) buf_01 <-- [(inp0_00,inp0_01,inp1Buf_01,inp1Buf_11)]

(5) TS) 6 <-- [5] (BS) buf_10 <-- [(inp0_10,inp0_11,inp1Buf_00,inp1Buf_10)]

(6) TS) 7 <-- [6] (BS) buf_11 <-- [(inp0_10,inp0_11,inp1Buf_01,inp1Buf_11)]

(7) TS) 8 <-- [7] (=) out_00 <-- [buf_00]

(8) TS) 9 <-- [8] (=) out_01 <-- [buf_01]

(9) TS) 10 <-- [9] (=) out_10 <-- [buf_10]

(10) TS) 11 <-- [10] (=) out_11 <-- [buf_11]

(11) TS) 12 <-- [11] (BS) CCHW_TMPVAR_49 <-- [(buf_00,buf_01,buf_10,buf_11)]

(12) TS) 13 <-- [12] (=) RFS_VAR_NAME <-- [CCHW_TMPVAR_49]

(13) TS) |<-- [13] (RFS) [RFS_VAR_NAME] [out_00] |--> [out_01] |-->

[out_10] |--> [out_11] |-->

The example code has four modules (one of them (dummy) is not used; since it is not invoked

by any other function, the linker ignores it). Each one has its corresponding function in the

source code. We take a look at the first module called matr2 Det. It calculates the determinant

of a 2x2-matrix. The first line (with index 0) contains the four input values (components of

the matrix). They are read concurrently, since the input values are uncorrelated even if the

optimizer is not activated. The second and the third commands (indices 2 and 3) calculate the

two multiplications of the diagonal components. These two multiplications may be calculated

at the same time but in this example we did not switch on the optimizer. The results are

stored in the temporary variables CCHW TMPVAR 15 and CCHW TMPVAR 16. The return

variable is buf. In this case the return value is stored in a variable defined in the source code.

But the return value may also be stored in a temporary variable. The last command is always

RFS followed by a return value or not. If a return value is required it is always copied to a

temporary variable called RFS VAR NAME. A C function may have two or more conditional

return statements. In this case all these values are copied to RFS VAR NAME. Refer to the

following example:

Example 51:

static UINT8 dummy(UINT8 A0, UINT8 A1)

{

UINT8 buf0, buf1;

buf0 = (A1-A0);

buf1 = (A0-A1);

5 EXPERIMENTAL RESULTS 78

if (buf0 > buf1)

return buf0;

if (buf0 < buf1)

return buf1;

}

The intermediate code for this short dummy example is listed below.

Example 52:

dummy

=====

(0) (TS) 1 <--| A0 <--| A1 <--|

(1) (TS) 2 <-- [1] (-) buf0 <-- [A1 A0]

(2) (TS) 3 <-- [2] (-) buf1 <-- [A0 A1]

(3) (TS) 4 <-- [3] (>) CCHW_TMPVAR_27 <-- [buf0 buf1]

(4) (TS) 5 <-- [4] (if) [CCHW_TMPVAR_27 6]

(5) (TS) 6 <-- [5] (=) RFS_VAR_NAME <-- [buf0]

(6) (TS) 7 <-- [6] (<) CCHW_TMPVAR_29 <-- [buf0 buf1]

(7) (TS) 8 <-- [7] (if) [CCHW_TMPVAR_29 9]

(8) (TS) 9 <-- [8] (=) RFS_VAR_NAME <-- [buf1]

(9) (TS) |<-- [9] (RFS) [RFS_VAR_NAME]

Depending on the values of variable buf0 and buf1 either the value of buf0 is returned or the value

of buf1. Formally both values are copied to the temporary return variable RFS VAR NAME.

The RFS statement of the main function has a special feature. The common return variable

RFS VAR NAME of the main function in example 50 is followed by four additional output

values out 00, out 01, out 10 and out 11. These variables are defined as outputs; refer to

section 2.1.3. Within the intermediate code they are always part of the RFS statement of the

main function. The input variables are always part of the input statement of the main function

(the first line after the function name with index 0).

5.3 Software target

As already mentioned, the C compilation process for software targets is nowadays a well known

task. Normally each assembler statement may be assigned a source code line (this may not be

the case in some highly optimizing compilers). This feature is used by debuggers to highlight

the currently active source code line in a debug session. The users of our compiler can use

the -i option to interleave the C source code lines as comments and the assembler code in the

assembler file; refer to section 3. Take a look at the code snippet in example 53. The additional

assembler statements (i.e. STMDB SP!,R1-R3,LR) are part of the function invocation process

and inserted automatically by the code generator. These parts of the assembler code may be

5 EXPERIMENTAL RESULTS 79

much more complicated for example if parameters are pushed onto the stack. Our example is

simple, since the parameters are already stored in the right registers.

Example 53:

;static UINT8 matr2_Det

; (

; UINT8 A00, UINT8 A01,

; UINT8 A10, UINT8 A11

;)

matr2_Det PROC

STMDB SP!,{R1-R3,LR} ;Save the used registers

; buf1 = (A00*A11) - (A10*A01);

MUL R1,R2,R1

MUL R0,R3,R0

SUB R0,R0,R1

; return buf1;

|LABEL.matr2_Det.4|

LDMIA SP!,{R1-R3,LR} ;Restore the used registers

BX LR ;Return from subroutine

ENDP

The code snippet above is the assembler code for the determinant calculation. The source

code has two statements, the calculation itself (two multiplications and one addition) and the

return statement. These source code lines are interleaved as comments (lines starting with the

comment delimiter ;) followed by the corresponding assembler statements.

5.4 Hardware target

We start the discussion without optimization. The compiler generates a circuit that processes

the algorithm almost fully sequentially. Only the input and output channels are activated con-

currently. Refer to the sketches in Fig. 22 (Figures 22, 24, 25 and 26 are screen shots).

The first sketch is the determinant calculation and the second one the matrix multiplication

(we did not print the schematic of the main routine, since it does not fit on the screen).

Now we switch on the optimizer. One can see that the circuit delay decreases, since some cir-

cuits are processed concurrently if possible. Refer to the sketches in Fig. 24, Fig. 25 and Fig. 26.

5 EXPERIMENTAL RESULTS 80

Figure 22: Determinant calculation and matrix multiplication without optimization

5.4.1 Simulation

The model simulation is the easiest way to verify the generated design. We have used a digital

simulator called ModelSim20 from Mentor Graphics. The simulator is fed with two input files:

• The design file contains the generate design.

• The test bench contains the input parameters and the timing constraints.

The simulator calculates the logic levels of the signals as a function of time and draws them to

the wave window. A snapshot of the wave window is given in Fig. 23. It shows the signals over

a period of 200 nanoseconds. Only the input and output signals are given. In our simulation

the circuit was activated after 100 nanoseconds (see the signal with label act). The calculation

is finished 80 nanoseconds after its activation (see signal with label act out). The input clock

frequency was 100MHz (see the signal with label clock).

20ModelSim XE III/Starter 6.0d, Revision: 2005.04, Date: Apr 26 2005

5 EXPERIMENTAL RESULTS 81

Figure 23: Simulation of the matrix multiplication

One can see, that the calculated values are correct and the circuit delay corresponds to the

number of operations needed for a 2x2 Matrix Multiplication. The circuit terminates later

(refer to signal

/matr_mult_tb/act_out

) because the determinant of the generated matrix is also calculated (but not displayed in the

wave window).

Please refer to appendix 9.4 for the test bench used.

5.5 Timing constraints

In this section we show the usage of timing constraints within accesses to input/output chan-

nels. Without additional timing constraints the access to the channels is done immediately

after the circuit is activated. Sometimes it is necessary to read or write the data of different

variables via the same channel. In this case the data for different variables is provided by the

external circuit at different times (time slicing). Therefore the data must be read and stored

in the corresponding variable at the right time. This situation is given for example if the data

is read or written via an external bus. Refer to the following example:

Example 54:

input inp1;

UINT8 matr2Mult

(

UINT8 inp0_00,

UINT8 inp0_01,

UINT8 inp0_10,

UINT8 inp0_11

5 EXPERIMENTAL RESULTS 82

)

{

UINT8 buf_00;

UINT8 buf_01;

UINT8 buf_10;

UINT8 buf_11;

UINT8 inp1Buf_00, inp1Buf_01, inp1Buf_10, inp1Buf_11;

inp1Buf_00 = inp1;

inp1Buf_01 = inp1;

inp1Buf_10 = inp1;

inp1Buf_11 = inp1;

buf_00 = matr2Mult_1elem(inp0_00, inp0_01, inp1Buf_00, inp1Buf_10);

buf_01 = matr2Mult_1elem(inp0_00, inp0_01, inp1Buf_01, inp1Buf_11);

buf_10 = matr2Mult_1elem(inp0_10, inp0_11, inp1Buf_00, inp1Buf_10);

buf_11 = matr2Mult_1elem(inp0_10, inp0_11, inp1Buf_01, inp1Buf_11);

out_00 = buf_00;

out_01 = buf_01;

out_10 = buf_10;

out_11 = buf_11;

return matr2_Det(buf_00, buf_01, buf_10, buf_11);

}

The circuit in example 54 has the same core functionality as the example in appendix 9.2;

it calculates the product of two matrices. The only difference is that the components of the

second matrix are read via the same channel (represented by the external variable inp1). The

code in example 54 works only if the four input statements are executed sequentially. This is

the case only if the optimizer is switched off and the four statements are not embedded in a

par-block. Otherwise the four values are read at the same time. This, of course, is not possible

via the same channel.

The easiest way to avoid this problem is shown in example 55. We assume that the external

circuit provides the components sequentially at tc0 = 0 clock cycles, tc1 = 1 clock cycles, tc2 = 2

clock cycles and tc3 = 3 clock cycles.

Example 55:

......................

inp1Buf_00 = inp1 <0 clocks>;

5 EXPERIMENTAL RESULTS 83

Figure 24: Determinant calculation

inp1Buf_01 = inp1 <1 clocks>;

inp1Buf_10 = inp1 <2 clocks>;

inp1Buf_11 = inp1 <3 clocks>;

......................

In this case we specify the clock index. The specified clock cycles must be different for each

of the statements. Please notice that in this case it makes no difference if the statements are

embedded in a par-block or not.

The second option that has no unique timing constraints is shown in example 56.

Example 56:

......................

inp1Buf_00 = inp1 <0>;

inp1Buf_01 = inp1 <3 nanoseconds>;

inp1Buf_10 = inp1 <6 nanoseconds>;

inp1Buf_11 = inp1 <9 nanoseconds>;

......................

In this case we use nanoseconds, seconds etc. This specification is not unique, since the com-

piler has to round the timing constraints to the finest time step which is one clock cycle. The

timing constraint in example 57 has the same timing behaviour as in example 56 even though

they are not identical. The timing delay in both examples is one clock cycle, since the cycle

duration is 3.33 nanoseconds if an external clock of 300 MHz is assumed.

5 EXPERIMENTAL RESULTS 84

Figure 25: Matrix multiplication

Example 57:

......................

inp1Buf_00 = inp1 <0>;

inp1Buf_01 = inp1 <3 nanoseconds>;

inp1Buf_10 = inp1 <7 nanoseconds>;

inp1Buf_11 = inp1 <10 nanoseconds>;

......................

It is evident, that the relative timing behaviour does also depend on the input clock frequency

if nanoseconds, microseconds etc are used.

All the examples above generate the same circuit if the frequency is fixed to 300 MHz; If the

frequency is much lower than that the compiler will insert wait states into the second and the

third circuits between the inputs of the different values.

5.5.1 Inappropriate timing constraints

In most cases one will use the optimizer in order to get an optimal circuit. In this case the user

does not know anything about the timing behaviour of the final circuit. It may be possible

that useless constraints are specified. If input constraints only are used the situation will be

quite easy. The user has only to take care that the same input channel is not accessed twice

at the same time. The compiler prints a warning in this case. It does not print an error, since

sometimes it is desired to assign two different variables the same input value.

5 EXPERIMENTAL RESULTS 85

Figure 26: Main routine

The situation is more difficult if output timing constraints are used; and the most difficult

situation arises if input and output timing constraints are used. The example in Appendix 9.2

takes 12 clock cycles for execution.

If the user specifies that one of the outputs must be written after less than 12 clock cycles, it

will not be possible, since the value has not been generated at this time. This situation causes

the compiler to generate an error. The user is forced to change his constraints.

5.5.2 Relative output timing constraints

The timing constraints are always given relatively to the circuit activations. This is useful for

input channels in most cases, since reading the input values is usually the first thing to do. The

situation is different for output channels. In many cases it is not important to write the output

values after an exact number of clock cycles, but in an exact relation to each other. This is

the case when using the same channel for more than one variable (i.e. an external data bus is

used). Therefore the timing constraints may also be given relative to the output ready signal

5 EXPERIMENTAL RESULTS 86

(refer to section 3.10.3 for details on ready/busy signals).

Refer to example 58.

Example 58:

OUTPUT UINT8 out;

INPUT UINT8 inp1;

.......................

UINT8 main

(

UINT8 inp0_00,

UINT8 inp0_01,

UINT8 inp0_10,

UINT8 inp0_11

)

.......................

buf_00 = matr2Mult_1elem(inp0_00, inp0_01, inp1Buf_00, inp1Buf_10);

buf_01 = matr2Mult_1elem(inp0_00, inp0_01, inp1Buf_01, inp1Buf_11);

buf_10 = matr2Mult_1elem(inp0_10, inp0_11, inp1Buf_00, inp1Buf_10);

buf_11 = matr2Mult_1elem(inp0_10, inp0_11, inp1Buf_01, inp1Buf_11);

out = buf_00 <0 clocks relativeOut>;

out = buf_01 <1 clocks relativeOut>;

out = buf_10 <2 clocks relativeOut>;

out = buf_11 <3 clocks relativeOut>;

return matr2_Det(buf_00, buf_01, buf_10, buf_11);

........................

In this example the output lines are driven 0, 1, 2 and 3 clock cycles after the outputReady-

signal is activated. The value of buf 00 is posted to the external bus (variable out) shortly after

the output ready signal is activated.

Input channels must not be accessed relative to the output ready signal, since this does not

make sense.

6 RELATED WORK 87

6 Related work

A widespread approach for C based silicon design is SystemC [23]. SystemC provides an

interoperable modelling platform which enables the development and exchange of very fast

system-level C++ models. It also provides a stable platform for development of system-level

tools. SystemC provides language constructs to implement algorithms at different levels of ab-

straction. System engineers usually start at a very high level of abstraction. SystemC defines

an abstraction level on top of the synthesisable register transfer level (RTL)21. The so-called

Transaction-Level-Modelling22 may be subdivided into a non-cycle-accurate (packet level) and

a cycle-accurate level (cycle level).

6.1 TLM

The TLM is a very good approach for simulation and to find system bottlenecks at a very early

stage of development. But, the TLM is not a synthesisable model. For real synthesisable code

the TLM model has to be converted into a RTL model. The RTL model can be implemented

using any HDL23. But, it may also be implemented in SystemC. Usually the TLM model is

implemented by as System engineer whereas the RTL model is implemented by a hardware

engineer with detailed knowledge of the underlying hardware. The RTL model developer has

to implement the same functionality as the TLM model developer. This phase of development

is supported by the SystemC RTL synthesis guideline [24].

6.1.1 A smart TLM methodology

A smart methodology which enables the designer to reason about the architecture of a very

complex system was proposed by Rainer Leupers et al. [25]. It is based on the SystemC

2.0 library. The methodology also provides capabilities for co-simulating multiple levels of

abstraction. The main idea of this methodology is a channel library which has been developed

to enable the exploration and co-verification at two levels of abstraction:

• Packet level

• Cycle level

21In RTL design, a circuit’s behaviour is defined in terms of the flow of signals or transfer of data between
registers, and the logical operations performed on those signals. RTL is used in hardware description languages
like Verilog and VHDL to create high-level representations of a circuit, from which lower-level representations
and ultimately actual wiring can then be derived.

22TLM emphasizes verification centric design whereby a system is composed of models that form a core
reference framework within which to explore system architecture and verify functionality. A consistent TLM
reference framework improves collaboration between the traditionally diverse disciplines of SW / HW design,
modeling, verification and implementation. This maximizes reuse and minimizes error, leading to better designs
with reduced risk.

23HDL = Hardware Description Language

6 RELATED WORK 88

The objects of this library are token producing and consuming processes connected to each

other by intelligent channels. The processes model the functional behaviour whereas the chan-

nels take care of the specific timing. Due to this separation it is possible to map the functional

correct system model easily to different target architectures.

6.1.1.1 Disadvantages As already mentioned in the last paragraph, it is still necessary to

convert the high level architectural model into a lower-level RTL model in order to generate a

synthesised silicon net list. This process is error-prone. It may be a big step to close this gap

by an automatic tool. That means, it may be better to generate silicon net lists directly from

the high-level behavioural description. This is what our work is focused on. Another approach

to close this gap was proposed by Ian Page et al. [1].

6.1.1.2 Intermediate code comparison In this thesis an intermediate code is proposed

that bears a resemblance to the three address code [26]. It’s format consists of a sequence of

statements each of which references at most three statements. It provides constructs for con-

current execution and timing. In this document we have proposed an intermediate code that

can be translated efficiently to silicon net lists and to assembly language. Aother intermediate

code called IR-C was presented by Rainer Leupers et al. [27]. It retains the executability24.

The key idea is to represent the intermediate code itself in C syntax. Since the intermediate

code still is a C program it can be translated to assembly language using a common C compiler.

In fact it may be possible to use IR-C as an input to our compiler, if our restrictions and

extensions apply to this code. This procedure may have some advantages. First of all, the user

can choose between two levels of abstraction: the top level similar to a normal programming

language and the IR-C which has a lower level of abstraction (comparable to the intermediate

code presented in this thesis). In both cases the same compiler may be applied. A second

advantage belongs to the timing control. According to the assumption 4.2.4 all the ATCs take

the same execution time. Since the modified25 IR-C can be translated to our intermediate code

representation, it is possible to control the timing at source code level. This may be helpful for

problems that require high cycle accuracy. But of course, it is also possible to mix the levels

of abstraction. For instance it is possible to code the IOs (which have usually high timing

requirements) using IR-C and the algorithmic parts at a higher level of abstraction. Refer to

the following example:

Example 59:

INPUT UINT8 A;

24Executability means the source code can be compiled into a machine program and executed for validation
or simulation purposes.

25with our restrictions and extensions

6 RELATED WORK 89

UINT8 main(UINT8 a, UINT8 b, UINT8 c)

{

UINT8 a, b, c, B;

x = a+b;

y = b*c;

z = c-a;

B = A+a+b+c;

return B;

}

A corresponding implementation in IR-C reads as follows (refer to the left column in the fol-

lowing example).

Example 60:

IR-C Our intermediate code

==== =====================

INPUT UINT8 A;

void main(UINT8 a_3,UINT8 b_4,UINT8 c_5) main

{ (0) a_3 <--| b_4 <--| c_5 <--|

int x_7,y_8,z_9,t1,t2,t3,t4 ,t5,t7,B;

t1 = a_3 + b_4; (1) (+) t1 <-- [a_3 b_4]

x_7 = t1 ; (2) (=) x_7 <-- [t1]

t2 = b_4 * c_5; (3) (*) t2 <-- [b_4 c_5]

y_8 = t2 ; (4) (=) y_8 <-- [t2]

t3 = a_3 - c_5; (5) (-) t3 <-- [a_3 c_5]

z_9 = t3 ; (6) (=) z_9 <-- [t3]

t4 = x_7 + y_8; (7) (+) t4 <-- [x_7 y_8]

t5 = t4 + z_9; (8) (+) t5 <-- [t4 z_9]

B = A + t5; (9) (+) B <-- [A t5]

return B; (10) (=) RTS_VAR_NAME <-- [B]

} (11) (RTS) [RTS_VAR_NAME]

Our corresponding intermediate code is given in the right column of the code snippet above.

One can see that it is possible to convert the IR-C code one by one to our intermediate code.

Therefore each of the statements in the IR-C source code takes exactly one clock cycle.

6 RELATED WORK 90

6.2 A mature C based design system

We compare our algorithm to one proposed by Ian Page et. al. which has been implemented

successfully by Celoxica Inc26. The software called SK1 is available on the market as a com-

mercial product. The comparison seems to be difficult, since the two systems (ours and the

Celoxica system) do not have exactly the same goal. The algorithm proposed by Ian Page

is intended to enable software programmers to generate silicon devices whereas our system is

intended to demonstrate an algorithm for Dual Compilation (hardware and software). Even if

the two systems have this difference it is meaningful to compare them for the following reasons:

• Both systems use a sequential programming language.

• The main difficulty is the hardware compilation, since the generation of microprocessor

code from a sequential description like C is a well known process.

• Even if the Celoxica suite does not generate code for microprocessors, it is possible to

do this by using a different tool (normal commercial Compilers like Ms Dev Studio or

Borland C).

• Both systems are producing Edif net lists. The Celoxica suite may also be used as a C

to VHDL - Translator. This feature will not be discussed within this thesis, since we do

not think that this is a key feature.

The following sections contain a discussion on the advantages, disadvantages, similarities and

differences of the two systems. We choose the algorithm by Ian Page respectively the Celoxica

design suite, since it is available on the market as a commercial product. Therefore we assume

that this system implements a state-of-the-art methodology.

6.2.1 Similarities

As already mentioned in the introduction, the programming language is very similar. In par-

ticular the syntax of the design entry is almost the same. Both systems use a language derived

from ANSI C, since it is wide spread in the software developers community. We assume that

Ian Page and his colleagues had the same motivation to use C (they call it ’Handel C’ [3]).

Handel C has an additional key word which is one of the most important characteristics of

silicon devices. We decided to use the same keyword for this purpose. The second common

item is the compiler output. Both systems generate Edif files at net list level. The net lists are

the lowest possible design level which are device-independent. It is still necessary to map the

cells to a particular device and route the connections between the cells. These two final steps

are highly device-dependent. On the other hand they are well known by the device vendors like

Xilinx or Altera and Software for these steps is provided by them. Therefore files containing

net lists are a good choice for the compiler output.

26Celoxica is one of the technology leader in C design and synthesis

6 RELATED WORK 91

6.2.2 Differences

The two presented systems have several differences. Therefore we have to limit the discussion

to the key differences. First of all, the Celoxica design suite DK is a commercial product

whereas our compiler is just a technology demonstrator. Therefore the stage of maturity is

not comparable. Anyway we will focus the discussion on the differences of the underlying

programming language and compiler algorithm. A compiler discussion is done briefly at the

end of this chapter. We split our discussion into 5 main blocks.

• Concept

• Design entry

• Compilation process

• Compiler output

• Implementation

6.2.2.1 Concept The goal of Ian Pages algorithm is to generate silicon from C respectively

a derivative of C. Anyway it is possible to compile Handel C for a microprocessor by using a

’normal’ compiler. Therefore this method is also useable for hardware/software co-design. In

contrast we developed a method which is able to compile the source code for hardware and

software using the same compiler. Refer to the sketch in Fig. 27 for details.

Figure 27: Conceptual difference

The two sketches above show a typical compilation process. Normally the developer will start

with the software solution. When using the method by Ian Page (hence we call it the reference

method) the developer is using a standard C compiler like Ms Dev Studio or Borland C. On

6 RELATED WORK 92

a computer he is able to test the programmed algorithm. If high execution speed or timing

accuracy is required, he will switch to the second branch and will generate net lists that can

be programmed to a programmable gate array or used to generate an ASIC - device.

In our implementation always the same tool is used for both, hardware and software. A com-

mon intermediate code is generated at the compilation step m (see Fig. 27). This code may be

used for timing prediction for both compilation branches. Since this intermediate code has a

very low abstraction level (it may be compared to the assembler code of a formal machine) it

is possible to predict the timing behaviour even if a software target is chosen. Refer to section

4 for details on the timing of clocked circuits.

The timing itself is one of the major differences of the two concepts. The user of the Handel

C compiler has to calculate the timing at source code level by himself. This procedure is quite

simple. In this particular implementation, all the source code statements consume the same

time. In some cases this procedure wastes time, since the physical implementation of different

operations may take different operation times. Also the programmer can write statements re-

gardless of the source code layout. See the example 59.

Example 61:

//.......

int i, sum=0;

par

{

for (i=0; i<10; i++)

{

sum += i;

}

x = 7;

}

//.......

The two statement blocks within the par block have the same running time. One can see that

the real physical implementation of the second statement (x = 7;) is much faster than the first

one (the loop). Therefore the result of the second statement has to be latched until the result

of the first one is ready for the next clock cycle. Refer to document [5] for details. In contrast

to this method our timing calculator uses the intermediate code. Each of the operations in this

code contains just one operation. Therefore the running time is not dependent on the source

code layout. Refer to the following example.

Example 62:

6 RELATED WORK 93

//.......

{

int var0, var1, var2, var3, var4;

sum = var0 + var1 + var2 + var3 + var4;

}

//.......

{

int var0, var1, var2, var3, var4;

sum = var0;

sum += var1;

sum += var2;

sum += var3;

sum += var4;

}

//.......

We assume that the two blocks above do not run in parallel, but sequentially. One can see

that the two blocks are doing the same calculation. Using our method the two blocks have the

same running time. Using the reference method the running time is different. Since all the

assignments take exactly one clock cycle the first one takes one clock cycle whereas the second

block takes five.

A third major conceptual difference of the two design systems is the way how the synchro-

nization of concurrent blocks is done. The reference algorithm uses synchronization signals

whereas our system uses a global clock. Both methods have advantages and disadvantages. For

a discussion of this item refer to chapter 6.3.

6.2.2.2 Design entry The design entry of both systems is very similar. Both systems use

an algorithmic description. This is a higher level of abstraction than the register transfer or

structural level which is normally used for hardware design. But, the conceptual differences

mentioned in the last chapter yield some syntactic and semantics differences. The reference

design uses signals between concurrent design blocks for synchronization. The programming

language must provide the constructs for the signalling. These constructs are implemented

similar to semaphores in common software development systems. Refer to [3] for details. Our

system uses a global clock for synchronization. In contrast to the synchronization implemented

with signals (semaphores) it is not possible to program a loop without a fix number of repeti-

tions when a global clock is used.

One of the most important requirements when using a global clock is a deterministic timing

behaviour. This means that the timing has to be calculable during the compilation process,

6 RELATED WORK 94

and it must not be dependent on the particular input data and/or operation conditions except

the situation that these conditions are known at the compilation time. Refer to Fig. 28.

Figure 28: Loop generated by the reference design

The output data of block A a has to be latched until the signal from the second (concurrent)

data pipe is sent. This signal is sent after the last iteration of block B. This is a well known

method. It is used in multitasking operating systems. But this may be a non-deterministic

process, since the number of iterations can be variable. Even an endless loop is programmable.

In this case, the result of block A has to be latched forever. One can see that it is not possible

to calculate the timing during the compilation process. It has to be measured with a particular

set of input vectors and operation conditions. In contrary to this method we want to use a

global clock. Using a global clock requires the timing to be calculated at the compilation time.

Therefore we must not use repetitions with a variable number of iterations. In this case the user

does not take care of the synchronization. Therefore synchronization signals are not required

and not provided by our programming language. Refer to example 59. In this example the

numbers from 0 to 9 are added in concurrence to the assignment x=7;. Since the values of x and

the final value of sum are used outside the parallel block, it is necessary to latch the value of x

for 9 cycles (assumed that the assignment and the addition take the same time). This is done

automatically, since the process delay of each block is calculated during the compilation process.

The compiler will produce one of the designs. printed in the Fig. 29 and Fig. 30. Whether the

first or the second design is produced depends on the required optimization method. The first

one (Fig. 29) consumes a smaller number of silicon gates whereas the second one (Fig. 30) has

a higher operation speed in terms of the number of processed data sets per time unit.

The first circuit block in Fig. 29 called D10 is a delay block. It activates the output line ten

clock cycles after its input line has been activated. This is exactly the execution time of the

adder (notice that the adder runs within a loop with ten iterations).

The first row in Fig. 30 is the time steering. It consists of 10 delay elements (D-flip-flops).

Each of these blocks delays the processing exactly for one cycle. The second row consists of

6 RELATED WORK 95

Figure 29: Loop optimized for size

Figure 30: Loop optimized for speed

10 digital adders. Each of them takes the result of the previous block and adds the desired

constant. One can see that there are no synchronization signals in the design and the delay

time can be calculated during the compilation process. It is exact 10 cycles. If the reference

system is used, the user will implement the following example using synchronization signals.

Example 63:

{

signal sync1

sync1 = 1;

int i, sum=0;

for (i=0; i<10; i++)

{

sum += i;

6 RELATED WORK 96

if (x==9)

sync1 = 0;

}

wait sync1;

x = 7;

}

The reference code above has the same function as our code in example 59. The only difference

is the synchronization signal. It is necessary, since the compiler does not calculate the timing.

Our compiler inserts an adequate delay to the global clock for synchronization.

The reference compiler will produce a silicon design comparable to the sketch in Fig. 31. The

circuit is not optimized for speed.

Figure 31: Reference design

The semaphore signal (on top of the schematic) is latched and the succeeding circuit blocks

are blocked until the comparator unblocks them. This happens after the last iteration. Refer

to document [3] for details on the Handel C design entry.

6.2.2.3 Compiler The comparison of the two compiler implementations is not one of the

major goals of this thesis. As already mentioned, the DK1 suite by Celoxica Inc is a commercial

product and available on the software market whereas our compiler was implemented just for

demonstration purposes. Therefore we limit the discussion to the basic concepts. The DK1

suite (that incorporates the compiler) produces two different kinds of outputs. On the one hand

it is able to output VHDL code at RTL level (RTL = Register Transfer Level). This can be

compiled by standard design tools like ISE by Xilinx Inc (refer to document [6] for details on

ISE). If this output is required, the compiler can be considered as a translator, since real silicon

is not synthesized. On the other hand the DK1 suite can synthesize silicon net lists. These are

stored in EDIF files.

6 RELATED WORK 97

Figure 32: Reference compiler design chain

Our compiler was designed for hardware/software co-design. We do not generate VHDL code

or similar hardware descriptions. RTL-VHDL is a high level description language and normally

used as design entry. On the other hand, our compiler can generate microprocessor code for

the ARM architecture (refer to [7] for details on the ARM architecture).

Figure 33: Our compiler design chain

The next interesting difference belongs to the timing behaviour. Our compiler incorporates a

timing calculator. The reference compiler cannot calculate the timing exactly for conceptual

reasons.

6.3 Advantages/Disadvantages

6.3.0.4 Design entry This is the easiest part, since there are just a few minor differences.

The only mentionable once are the design elements that belong to the synchronization of the

concurrent blocks and the time steering. The elements used by the reference compiler are

signals (comparable to the semaphore mechanism of a common programming language). Since

this method is taken from common software development systems it is probably easy to use

for software programmers. Our system is based on exact timing calculation. Therefore we do

not use synchronization signals. Instead we need constructs for the global clock steering. Refer

to 2.2.4 for details. This procedure is used in some high level hardware description languages

like VHDL (refer to [16] for details on VHDL). Software programmers are not used to these

design elements. ASIC and FPGA designers are used to this procedure. Summing up, we can

say that the design entry of the reference design is more software-like whereas ours is more

hardware-like.

6 RELATED WORK 98

6.3.0.5 Compilation Process When using the reference method, different compilers have

to be used for hardware and software target. This may cause some inconsistencies, since the

design entry for hardware targets is Handel-C whereas the common software compiler inputs

ANSI-C source codes. When using our algorithm, this problem is ruled out, because the same

compiler is used for both targets. Refer to Fig. 34 and Fig. 35.

Figure 34: Reference design chain

Figure 35: Our design chain

In general the developer starts with a software target (microcontroller) because these targets

have better debugging and testing opportunities. If necessary, he will switch to a hardware

target. If the reference method is used, it will probably be necessary to make some adap-

tations, since a different compiler is used. Our compiler has the same design entry for both

targets. The branch is done as a later stage (see Fig. 35). This is an enormous advantage, since

no adaptations are necessary when the target is switched (from a microcontroller to a silicon

device). For this purpose, we have developed an intermediate code (see section 3.2.1). This

6 RELATED WORK 99

code is common for both targets. It contains atomic design blocks. They may be compared to

a common assembler language. Some additional constructs are necessary for the time steering

and for concurrent execution. This intermediate code is highly suitable for timing control, since

the exact running time of these design blocks is known. These blocks are atomic. They have

no separable substructure. See the following two simple statements.

Example 64:

x = a+b;

y = a*b + c*d;

The first statement takes 2 cycles whereas the second one takes 9 cycles27. The reference

implementation takes the same time for both source code statements. Refer to Fig. 36.

Figure 36: Running time

Of course, the calculations in the second statement take more time. Therefore the result of the

calculation in the first statement has to be latched until the second one is finished.

27The 8 bit multiplication consumes 7 clock cycles

7 OUTLOOK AND FUTURE RESEARCH 100

7 Outlook and Future Research

The main task of this thesis was to develop a programming language that is suitable for

hardware/software-codesign. Since the work has a theoretical character, it was not a major

aim to write a compiler that implements all the aspects of the proposed language or the sili-

con synthesizer and the software code generator respectively. The software written during the

thesis is only for demonstration purposes. The most important work in the future may be the

implementation of a smart compiler in order to evaluate the language and compiler algorithm

for real hardware and software implementations.

7.1 Methodology items

One of the most important areas covered in this thesis is the timing of the synthesized silicon or

the generated code respectively. The algorithm is intended to produce time-accurate designs.

Especially silicon devices require this accuracy, since they are mostly used to implement real

time systems (i.e. lower layers of communication devices, devices for steering and controlling

etc). Therefore it is highly interesting to test the timing in real implementations. For these

tests it is necessary to implement a fully functional compiler and test bench.

Another interesting point for future research is the question: Is it possible to bring the two

approaches - one proposed by Ian Page et. al. and ours - together, in order to take advantage of

the powers of both systems? As already mentioned in section 6.3 both approaches have advan-

tages. The reference method for example is easier to understand for pure software developers,

whereas ours implements some design elements taken from hardware description languages. If

it is possible to bring together the two approaches, it will really close the gap between hardware

and software development.

Our algorithm uses a mixture of automatic and manual parallelization. In order to accelerate

the development it is desired that the automatic part be as large as possible. Especially when

using complex data structures or non-static dereferences (refer to example below) it is very

difficult to automate the parallelization. This is a very important item for future research.

Example 65:

input int a, b;

//............

int var[5];

{

var[a] += a;

var[b] += b;

//........

7 OUTLOOK AND FUTURE RESEARCH 101

}

//............

The example above shows a situation where the two statements may not be parallelized easily.

It may be possible that var[a] and var[b] point to the same memory (if a=b).

7.2 Additional compiler issues

Although the compiler was developed to demonstrate the capabilities of the proposed design

language, it may be extended to a fully featured development tool. In this section we present

the most important things to do in order to achieve this.

7.2.1 Optimizer

How to develop a high efficiency optimizer for the software target is a well known task. There-

fore we focus our interest on the hardware target.

In the current implementation the silicon optimization is done separately for each function. In

many cases this does not yield an optimal circuit. Refer to the following short example:

Example 66:

#include "mytypes.h"

clock { frequency = 300; }

static UINT8 dummy(UINT8 A00, UINT8 A01, UINT8 A10, UINT8 A11)

{

UINT8 buf, buf1;

buf = (A00*A11) - (A10*A01);

buf1 = A00 + A01 + A10 + A11;

return buf + buf1;

}

UINT8 main(UINT8 inp_00, UINT8 inp_01, UINT8 inp_10, UINT8 inp_11)

{

UINT8 buf_00;

UINT8 buf_01;

UINT8 buf_10;

UINT8 buf_11;

7 OUTLOOK AND FUTURE RESEARCH 102

UINT8 det0, det1;

/* Get the transpose of the input matrix. */

buf_00 = inp_00;

buf_01 = inp_10;

buf_10 = inp_01;

buf_11 = inp_11;

/* Calculate the determinant of the transposed matrix. */

det0 = dummy(inp_00, inp_01, inp_10, inp_11);

det1 = dummy(buf_00, buf_01, buf_10, buf_11);

return det0 + det1;

}

The compiler generates and optimizes the main function and the function dummy separately.

The results are given in Fig. 37 and Fig. 38.

Figure 37: Separately optimized functions (main)

One can see easily that the circuit is not optimal. The addition of the four input components

done within the dummy function may start at the beginning of the circuit. But in our imple-

7 OUTLOOK AND FUTURE RESEARCH 103

Figure 38: Separately optimized functions (func1)

mentation it starts one cycle later. The optimal circuit is given in Fig. 39.

An easy way to achieve the optimal circuit is to replace the function call by its body (refer to

example 65).

Example 67:

UINT8 main(UINT8 inp_00, UINT8 inp_01, UINT8 inp_10, UINT8 inp_11)

{

UINT8 buf_00;

UINT8 buf_01;

UINT8 buf_10;

UINT8 buf_11;

UINT8 det0, det1;

UINT8 buf, buf1;

/* Get the transpose of the input matrix. */

buf_00 = inp_00;

buf_01 = inp_10;

buf_10 = inp_01;

buf_11 = inp_11;

buf = (inp_00*inp_11) - (inp_10*inp_01);

buf1 = inp_00 + inp_01 + inp_10 + inp_11;

det0 = buf + buf1;

7 OUTLOOK AND FUTURE RESEARCH 104

Figure 39: Optimal circuit

buf = (buf_00*buf_11) - (buf_10*buf_01);

buf1 = buf_00 + buf_01 + buf_10 + buf_11;

det1 = buf + buf1;

return det0 + det1;

}

This may generate on optimal circuit but of course, is not the best way for many reasons. First

of all, function calls make the source code readable. Usually the functions are used more than

once. Therefore it may be a good habit to encapsulate the code in a function.

We propose two different ways to solve this problem. The first one is taken from normal

compilers. The code is usually optimized at assembler level. For example, if the function body

is short and not used often it will be used as inline code. We can use a similar technique at

the intermediate code level. In this case the intermediate code does not contain any subroutine

calls and the design will be optimal. The disadvantage of this method is a highly increasing

compilation time, since the entire optimization is done in one step. A second and probably

better method is a post-link optimization. That means that a second optimization is done after

the different modules are linked together.

7 OUTLOOK AND FUTURE RESEARCH 105

7.2.2 Synthesizer

In the current compiler version, re-usage of circuits has not been implemented. In the example

in appendix 9.2 the function that performs the matrix multiplication is invoked four times,

once for each of the four components. The circuit synthesizer generates always four instances

of this module that run concurrently. This method of course, has the highest performance. On

the other hand it consumes a maximum silicon space. In some cases the timing requirements

are weaker, or a higher clock speed is possible. In this case it may be useful to generate only

one instance of the module and use it four times sequentially. This method saves silicon space.

From a technical point of view this method is quite easy. The simple input wiring must be

replaced by a data multiplexer and the controlling is a simple flip-flop loop. Refer to Fig. 40.

Figure 40: Module loop

The logic timing calculation is also simple. The running time is four times the running time

of the module matr2Mult 1elem. The physical delay of the block may increase (due to an

additional multiplexer and demultiplexer). Therefore the maximum clock is probably lower.

But in most cases the delay of a multiplexer and a demultiplexer is very low compared to other

circuits (i.e. a multiplier). Therefore we renounced to implement this feature. It does not

restrict the statements of our analysis.

7.2.3 Data exchange

The input and output channels are declared as input and output variables. In real devices

these channels are connected to external pins or to internal interface blocks. These blocks are

usually complex circuits (i.e. buffers, input/output busses). The current version of our compiler

does not provide support for implementation, debug or timing analysis of these circuit blocks.

Therefore the generated design will not run on real devices without additional effort for the

implementation of ’real’ IOs. It will run only in simulation mode. From a design point of view

this is not a restriction, since the device vendors (i.e. Altera, Xilinx) provide tools for automatic

7 OUTLOOK AND FUTURE RESEARCH 106

implementation of several types of IOs. But these tools do not provide an elegant method to

calculate the timing behaviour. The IO timing has to be estimated in a simulation. This, of

course, is not our timing approach.

8 SUMMARY 107

8 Summary

We have seen how a high level programming language like C may be used for hardware/software-

codesign. Since the compilation for a software target is a well-known process, we have focused

our discussion on the compilation for a hardware target. We started our work with the pro-

gramming language proposed by Ian Page et. al. [2]. The first step was to figure out the

deficiencies of this programming language (we called it the reference system in our discussion).

We figured out that using the reference system prevents the developer from implementing time-

accurate hardware designs. The reference design does not provide any constructs for explicit

timing implementation. It assumes that all the statements at source code level use the same

processing time. For this purpose we implemented a steering mechanism for the timing. Many

expert groups tried to generate silicon net lists from ANSI-C but these approaches lead to

inefficient silicon. We tried to find an optimal compromise between nearness to ANSI-C and

the requirements for efficient silicon compilation.

The second main innovation step was the implementation of an intermediate code. We showed

that this intermediate code enables the system to produce target designs with higher quality

than the direct generation from the source code. An efficient intermediate code is essential for

our system because we want to generate time-accurate systems. The intermediate code pro-

posed in section 3.2.1 meets all the requirements for a precise and efficient timing. Its level of

abstraction is high enough to hide the device specifics28 and low enough to avoid any additional

processing except the routing and placing that is done by the software provided by the device

vendors. The intermediate code is also suitable for high-performance optimizations, especially

for timing optimizations.

Common hardware and software design systems do not take care of the timing analysis during

compilation time. The developers of these systems assume that the user measures the timing

after the design is finished. This is done using simulators at early stages of the design. In later

stages it may be done on the real target. If the design does not meet the requirements it will be

refined. This design loop has to be repeated until the results meet the desired parameters. We

tried to go a different way and calculate the timing during compilation time. This, of course, is

done at intermediate code level. Even if the intermediate code is device-independent, the result

of the timing calculation is not. It depends on the particular hardware or software device that

is used in the final target. For example, if we use an FPGA as a particular target the timing

depends on one hand on the result of the placing and routing and on the other hand on the

latencies of the particular implementation of the Boolean functions. The timing information is

provided by the device vendor (i.e. the latencies of the different atomic design blocks.

The compiler proposed in this thesis is not intended to be finished within the scope of this

thesis. It was implemented just for demonstration purposes. The main aim of this program is

28That means the exact implementation at the gate level.

8 SUMMARY 108

to demonstrate that it is possible to implement a compiler for the proposed algorithm.

A comparison to a similar work has shown that our approach has a lot of advantages. The

main ones are

• Our algorithm can produce hardware and software from the same source code.

• Our algorithm can produce time-accurate designs.

• The designer is not burdened to take care of the synchronization of the different data

paths.

• The optimization and refinement is done at a suitable stage - the intermediate code (a

final optimization is also done at the assembler level or the net list level respectively).

• It is not necessary to measure the timing after finishing the design, since it is calculated

in the compilation process.

9 APPENDIX 109

9 Appendix

9.1 Proof of Equation 4 by complete induction

Assume: F (ATC1
1) = F (ATC1

2) (14)

⇒ A ∗
1∑

n=1

ti1 + B ∗
1∑

n=1

max
n6=m

(tni1 − tmi)2

︸ ︷︷ ︸
= 0

=

A ∗
1∑

n=1

ti2 + B ∗
1∑

n=1

max
n6=m

(tni2 − tmi)2

︸ ︷︷ ︸
= 0

(15)

⇒ t1i1 = t1i2 ⇒ ATC1
1 = ATC1

2 (16)

The equation above says that the two configurations ATC1
1 and ATC1

2 are identical.

Assume: ATCN
1 = ATCN

2 (17)

to show: ATCN+1
1 = ATCN+1

2

if F (ATCN+1
1) = F (ATCN+1

2) (18)

A ∗
N+1∑
n=1

ti1 + B ∗
N+1∑
n=1

max
n6=m

(tni1 − tmi)2 =

A ∗
N+1∑
n=1

ti2 + B ∗
N+1∑
n=1

max
n6=m

(tni2 − tmi)2 (19)

A ∗
N+1∑
n=1

ti1 + B ∗
N+1∑
n=1

max
n6=m

(tni1 − tmi)2−

A ∗
N+1∑
n=1

ti2 + B ∗
N+1∑
n=1

max
n6=m

(tni2 − tmi)2 = 0 (20)

From (17) it follows A ∗
(
tN+1
i1

− tN+1
i2

)
+

B ∗
(

max
m6=N+1

(tN+1
i1

− tmi)2 − max
m6=N+1

(tN+1
i2

− tmi)2
)

= 0

Assume: A > 0 and B > 0 and tN+1
i1 > tN+1

i2

⇒ A ∗
(
tN+1
i1

− tN+1
i2

)
> 0

B ∗
(

max
m6=N+1

(tN+1
i1

− tmi)2 − max
m6=N+1

(tN+1
i2

− tmi)2
)

= 0

9 APPENDIX 110

⇒ Therefore the assumption tN+1
i1 > tN+1

i2 is wrong

Analogously is possible to show that

tN+1
i1

< tN+1
i2

is wrong (21)

⇒ tN+1
i1

= tN+1
i2

⇒ ATCN+1
1 = ATCN+1

2 (22)

9.2 Source code of the matrix multiplication

The following code is used for most of the demo examples. It multiplies two matrices and

calculates the determinant of the resulting matrix.

/**/

/* LOCAL FUNCTION DECLARATION */

/* */

/* Filename : matr2Mult.hc */

/* Version : 1.10 */

/* Date : 20.07.2005 */

/* Author : Ewald Frensch */

/* */

/* Description : Calculate the matrix multiplication of two 2x2 matrices and */

/* the determinant of the new matrix */

/* */

/* CHANGE_NOTES */

/* */

/* date name change */

/* --- */

/* 01.08.2005 EF Initial version */

/* */

/**/

#include "mytypes.h"

/* Interface objects. Use only in main function. */

#ifdef CCHW_TRG_NL

OUTPUT UINT8 out_00, out_01, out_10, out_11;

INPUT UINT8 inp1_00, inp1_01, inp1_10, inp1_11;

#endif

static UINT8 matr2_Det

(

UINT8 A00, UINT8 A01,

UINT8 A10, UINT8 A11

)

9 APPENDIX 111

/*--

** Function: matr2_Det

** Calculate the determinant of a 2x2 matrix

**

** possible return values: determinant of the matrix

**

--*/

{

UINT8 buf1;

buf1 = (A00*A11) - (A10*A01);

return buf1;

}

static UINT8 matr2Mult_1elem

(

UINT8 A0, UINT8 A1,

UINT8 B0, UINT8 B1

)

/*--

** Function: matr2Mult_1elem

** Calculate one element of a matrix multiplication

**

** possible return values: Calculated element

**

--*/

{

UINT8 buf;

buf = (A0*B0) + (A1*B1);

return buf;

}

#ifdef CCHW_TRG_NL

UINT8 main

(

UINT8 inp0_00,

UINT8 inp0_01,

UINT8 inp0_10,

UINT8 inp0_11

)

#endif

#ifndef CCHW_TRG_NL

9 APPENDIX 112

UINT8 matr2Mult

(

UINT8 inp0_00,

UINT8 inp0_01,

UINT8 inp0_10,

UINT8 inp0_11,

UINT8 inp1_00,

UINT8 inp1_01,

UINT8 inp1_10,

UINT8 inp1_11

)

#endif

/*--

** Function: main

** Calculate the matrix multiplication of two 2x2 matrices

** Calculate the determinant of the new matrix

**

** possible return values: determinant

**

--*/

{

UINT8 buf_00;

UINT8 buf_01;

UINT8 buf_10;

UINT8 buf_11;

#ifndef CCHW_TRG_NL

UINT8 out_00, out_01, out_10, out_11;

#endif

buf_00 = matr2Mult_1elem(inp0_00, inp0_01, inp1_00, inp1_10);

buf_01 = matr2Mult_1elem(inp0_00, inp0_01, inp1_01, inp1_11);

buf_10 = matr2Mult_1elem(inp0_10, inp0_11, inp1_00, inp1_10);

buf_11 = matr2Mult_1elem(inp0_10, inp0_11, inp1_01, inp1_11);

out_00 = buf_00;

out_01 = buf_01;

out_10 = buf_10;

out_11 = buf_11;

return matr2_Det(buf_00, buf_01, buf_10, buf_11);

}

9.3 ARM assembler code of the matrix multiplication

EXPORT matr2Mult

CODE32

9 APPENDIX 113

AREA |C$$code|, CODE, READONLY

|x$codeseg| DATA

;static UINT8 matr2_Det

; (

; UINT8 A00, UINT8 A01,

; UINT8 A10, UINT8 A11

;)

matr2_Det PROC

STMDB SP!,{R0-R2,LR} ;Save the used registers

; buf1 = (A00*A11) - (A10*A01);

MUL R1,R2,R1

LDR R2,[SP,#0x0] ;Get the parameter from stack

MUL R0,R2,R0

SUB R0,R0,R1

; return buf1;

|LABEL.matr2_Det.4|

LDMIA SP!,{R0-R2,LR} ;Restore the used registers

BX LR ;Return from subroutine

ENDP

;static UINT8 matr2Mult_1elem

; (

; UINT8 A0, UINT8 A1,

; UINT8 B0, UINT8 B1

;)

matr2Mult_1elem PROC

STMDB SP!,{R0-R3,LR} ;Save the used registers

; buf = (A0*B0) + (A1*B1);

LDR R3,[SP,#0x0] ;Get the parameter from stack

MUL R1,R3,R1

MUL R0,R2,R0

ADD R0,R0,R1

; return buf;

|LABEL.matr2Mult_1elem.4|

LDMIA SP!,{R0-R3,LR} ;Restore the used registers

BX LR ;Return from subroutine

ENDP

;UINT8 matr2Mult

; (

; UINT8 inp0_00,

; UINT8 inp0_01,

; UINT8 inp0_10,

9 APPENDIX 114

; UINT8 inp0_11,

; UINT8 inp1_00,

; UINT8 inp1_01,

; UINT8 inp1_10,

; UINT8 inp1_11

;)

matr2Mult PROC

STMDB SP!,{R0-R8,LR} ;Save the used registers

SUB SP,SP,#0x14 ;Decrement the stack pointer

; buf_00 = matr2Mult_1elem(inp0_00, inp0_01, inp1_00, inp1_10);

MOV R6,R0 ;Claim the parameter register

MOV R7,R1 ;Claim the parameter register

LDR R3,[SP,#0x4] ;Get the parameter from stack

MOV R8,R2 ;Claim the parameter register

MOV R2,R3 ;Store the parameter to the desired parameter registers

LDR R4,[SP,#0xC] ;Get the parameter from stack

STR R4,[SP,#0x0] ;Store the parameter to stack

BL matr2Mult_1elem ;Branch to subroutine

MOV R5,R0 ;Store the return value to the desired register

; buf_01 = matr2Mult_1elem(inp0_00, inp0_01, inp1_01, inp1_11);

MOV R0,R6 ;Store the parameter to the desired parameter registers

MOV R1,R7 ;Store the parameter to the desired parameter registers

LDR R6,[SP,#0x8] ;Get the parameter from stack

LDR R6,[SP,#0x8] ;Get the parameter from stack

MOV R2,R6 ;Store the parameter to the desired parameter registers

LDR R7,[SP,#0x10] ;Get the parameter from stack

STR R7,[SP,#0x0] ;Store the parameter to stack

BL matr2Mult_1elem ;Branch to subroutine

; buf_10 = matr2Mult_1elem(inp0_10, inp0_11, inp1_00, inp1_10);

MOV R4,R0 ;Claim the parameter register

MOV R0,R8 ;Store the parameter to the desired parameter registers

LDR R1,[SP,#0x0] ;Get the parameter from stack

LDR R1,[SP,#0x0] ;Get the parameter from stack

MOV R2,R3 ;Store the parameter to the desired parameter registers

STR R4,[SP,#0x0] ;Store the parameter to stack

BL matr2Mult_1elem ;Branch to subroutine

MOV R3,R0 ;Store the return value to the desired register

; buf_11 = matr2Mult_1elem(inp0_10, inp0_11, inp1_01, inp1_11);

MOV R0,R8 ;Store the parameter to the desired parameter registers

MOV R6,R1 ;Claim the parameter register

MOV R2,R6 ;Store the parameter to the desired parameter registers

STR R7,[SP,#0x0] ;Store the parameter to stack

BL matr2Mult_1elem ;Branch to subroutine

MOV R6,R0 ;Store the return value to the desired register

; out_00 = buf_00;

MOV R2,R5

; out_01 = buf_01;

MOV R2,R4

9 APPENDIX 115

; out_10 = buf_10;

MOV R2,R3

; out_11 = buf_11;

MOV R2,R6

; return matr2_Det(buf_00, buf_01, buf_10, buf_11);

MOV R0,R5 ;Store the parameter to the desired parameter registers

MOV R1,R4 ;Store the parameter to the desired parameter registers

MOV R2,R3 ;Store the parameter to the desired parameter registers

STR R6,[SP,#0x0] ;Store the parameter to stack

BL matr2_Det ;Branch to subroutine

|LABEL.matr2Mult.10|

ADD SP,SP,#0x14 ;Increment the stack pointer

LDMIA SP!,{R0-R8,LR} ;Restore the used registers

BX LR ;Return from subroutine

ENDP

AREA |C$$data|, DATA

|x$dataseg|

END

9.4 Test bench for the model simulation of the matrix multiplication

The following test bench was used for the simulation of the hardware implementation of the

matrix multiplication. It is written in VHDL. Please refer to [19] for details on how to write

ModelSim test benches.

LIBRARY ieee ;

LIBRARY simprim ;

USE ieee.std_logic_1164.all ;

USE ieee.std_logic_arith.all ;

USE simprim.vcomponents.all ;

USE simprim.vpackage.all ;

ENTITY matr2Mult_tb IS

END ;

ARCHITECTURE matr2Mult_tb_arch OF matr2Mult_tb IS

SIGNAL inp0_00 : std_logic_vector(7 downto 0);

SIGNAL inp0_01 : std_logic_vector(7 downto 0);

SIGNAL inp0_10 : std_logic_vector(7 downto 0);

SIGNAL inp0_11 : std_logic_vector(7 downto 0);

SIGNAL inp1_00 : std_logic_vector(7 downto 0);

SIGNAL inp1_01 : std_logic_vector(7 downto 0);

SIGNAL inp1_10 : std_logic_vector(7 downto 0);

SIGNAL inp1_11 : std_logic_vector(7 downto 0);

SIGNAL outp : std_logic_vector(7 downto 0);

SIGNAL out_00 : std_logic_vector(7 downto 0);

9 APPENDIX 116

SIGNAL out_01 : std_logic_vector(7 downto 0);

SIGNAL out_10 : std_logic_vector(7 downto 0);

SIGNAL out_11 : std_logic_vector(7 downto 0);

SIGNAL act : std_logic := ’0’ ;

SIGNAL vcc : std_logic := ’1’ ;

SIGNAL act_out : std_logic ;

SIGNAL gnd : std_logic := ’0’ ;

SIGNAL clk : std_logic := ’1’ ;

COMPONENT matr2Mult

PORT (

gnd : in std_logic ;

vcc : in std_logic ;

clk : in std_logic ;

act : in std_logic ;

inp0_00_0 : in std_logic ;

inp0_00_1 : in std_logic ;

inp0_00_2 : in std_logic ;

inp0_00_3 : in std_logic ;

inp0_00_4 : in std_logic ;

inp0_00_5 : in std_logic ;

inp0_00_6 : in std_logic ;

inp0_00_7 : in std_logic ;

inp0_01_0 : in std_logic ;

inp0_01_1 : in std_logic ;

inp0_01_2 : in std_logic ;

inp0_01_3 : in std_logic ;

inp0_01_4 : in std_logic ;

inp0_01_5 : in std_logic ;

inp0_01_6 : in std_logic ;

inp0_01_7 : in std_logic ;

inp0_10_0 : in std_logic ;

inp0_10_1 : in std_logic ;

inp0_10_2 : in std_logic ;

inp0_10_3 : in std_logic ;

inp0_10_4 : in std_logic ;

inp0_10_5 : in std_logic ;

inp0_10_6 : in std_logic ;

inp0_10_7 : in std_logic ;

inp0_11_0 : in std_logic ;

inp0_11_1 : in std_logic ;

inp0_11_2 : in std_logic ;

inp0_11_3 : in std_logic ;

inp0_11_4 : in std_logic ;

inp0_11_5 : in std_logic ;

inp0_11_6 : in std_logic ;

inp0_11_7 : in std_logic ;

inp1_00_0 : in std_logic ;

inp1_00_1 : in std_logic ;

9 APPENDIX 117

inp1_00_2 : in std_logic ;

inp1_00_3 : in std_logic ;

inp1_00_4 : in std_logic ;

inp1_00_5 : in std_logic ;

inp1_00_6 : in std_logic ;

inp1_00_7 : in std_logic ;

inp1_01_0 : in std_logic ;

inp1_01_1 : in std_logic ;

inp1_01_2 : in std_logic ;

inp1_01_3 : in std_logic ;

inp1_01_4 : in std_logic ;

inp1_01_5 : in std_logic ;

inp1_01_6 : in std_logic ;

inp1_01_7 : in std_logic ;

inp1_10_0 : in std_logic ;

inp1_10_1 : in std_logic ;

inp1_10_2 : in std_logic ;

inp1_10_3 : in std_logic ;

inp1_10_4 : in std_logic ;

inp1_10_5 : in std_logic ;

inp1_10_6 : in std_logic ;

inp1_10_7 : in std_logic ;

inp1_11_0 : in std_logic ;

inp1_11_1 : in std_logic ;

inp1_11_2 : in std_logic ;

inp1_11_3 : in std_logic ;

inp1_11_4 : in std_logic ;

inp1_11_5 : in std_logic ;

inp1_11_6 : in std_logic ;

inp1_11_7 : in std_logic ;

rts_var_name_0 : out std_logic ;

rts_var_name_1 : out std_logic ;

rts_var_name_2 : out std_logic ;

rts_var_name_3 : out std_logic ;

rts_var_name_4 : out std_logic ;

rts_var_name_5 : out std_logic ;

rts_var_name_6 : out std_logic ;

rts_var_name_7 : out std_logic ;

out_00_0 : out std_logic ;

out_00_1 : out std_logic ;

out_00_2 : out std_logic ;

out_00_3 : out std_logic ;

out_00_4 : out std_logic ;

out_00_5 : out std_logic ;

out_00_6 : out std_logic ;

out_00_7 : out std_logic ;

out_01_0 : out std_logic ;

out_01_1 : out std_logic ;

out_01_2 : out std_logic ;

9 APPENDIX 118

out_01_3 : out std_logic ;

out_01_4 : out std_logic ;

out_01_5 : out std_logic ;

out_01_6 : out std_logic ;

out_01_7 : out std_logic ;

out_10_0 : out std_logic ;

out_10_1 : out std_logic ;

out_10_2 : out std_logic ;

out_10_3 : out std_logic ;

out_10_4 : out std_logic ;

out_10_5 : out std_logic ;

out_10_6 : out std_logic ;

out_10_7 : out std_logic ;

out_11_0 : out std_logic ;

out_11_1 : out std_logic ;

out_11_2 : out std_logic ;

out_11_3 : out std_logic ;

out_11_4 : out std_logic ;

out_11_5 : out std_logic ;

out_11_6 : out std_logic ;

out_11_7 : out std_logic ;

act_out : out std_logic);

END COMPONENT ;

BEGIN

DUT : matr2Mult

PORT MAP (

gnd => gnd,

vcc => vcc,

clk => clk,

act => act,

inp0_00_0 => inp0_00(0),

inp0_00_1 => inp0_00(1),

inp0_00_2 => inp0_00(2),

inp0_00_3 => inp0_00(3),

inp0_00_4 => inp0_00(4),

inp0_00_5 => inp0_00(5),

inp0_00_6 => inp0_00(6),

inp0_00_7 => inp0_00(7),

inp0_01_0 => inp0_01(0),

inp0_01_1 => inp0_01(1),

inp0_01_2 => inp0_01(2),

inp0_01_3 => inp0_01(3),

inp0_01_4 => inp0_01(4),

inp0_01_5 => inp0_01(5),

inp0_01_6 => inp0_01(6),

inp0_01_7 => inp0_01(7),

inp0_10_0 => inp0_10(0),

inp0_10_1 => inp0_10(1),

inp0_10_2 => inp0_10(2),

9 APPENDIX 119

inp0_10_3 => inp0_10(3),

inp0_10_4 => inp0_10(4),

inp0_10_5 => inp0_10(5),

inp0_10_6 => inp0_10(6),

inp0_10_7 => inp0_10(7),

inp0_11_0 => inp0_11(0),

inp0_11_1 => inp0_11(1),

inp0_11_2 => inp0_11(2),

inp0_11_3 => inp0_11(3),

inp0_11_4 => inp0_11(4),

inp0_11_5 => inp0_11(5),

inp0_11_6 => inp0_11(6),

inp0_11_7 => inp0_11(7),

inp1_00_0 => inp1_00(0),

inp1_00_1 => inp1_00(1),

inp1_00_2 => inp1_00(2),

inp1_00_3 => inp1_00(3),

inp1_00_4 => inp1_00(4),

inp1_00_5 => inp1_00(5),

inp1_00_6 => inp1_00(6),

inp1_00_7 => inp1_00(7),

inp1_01_0 => inp1_01(0),

inp1_01_1 => inp1_01(1),

inp1_01_2 => inp1_01(2),

inp1_01_3 => inp1_01(3),

inp1_01_4 => inp1_01(4),

inp1_01_5 => inp1_01(5),

inp1_01_6 => inp1_01(6),

inp1_01_7 => inp1_01(7),

inp1_10_0 => inp1_10(0),

inp1_10_1 => inp1_10(1),

inp1_10_2 => inp1_10(2),

inp1_10_3 => inp1_10(3),

inp1_10_4 => inp1_10(4),

inp1_10_5 => inp1_10(5),

inp1_10_6 => inp1_10(6),

inp1_10_7 => inp1_10(7),

inp1_11_0 => inp1_11(0),

inp1_11_1 => inp1_11(1),

inp1_11_2 => inp1_11(2),

inp1_11_3 => inp1_11(3),

inp1_11_4 => inp1_11(4),

inp1_11_5 => inp1_11(5),

inp1_11_6 => inp1_11(6),

inp1_11_7 => inp1_11(7),

rts_var_name_0 => outp(0),

rts_var_name_1 => outp(1),

rts_var_name_2 => outp(2),

rts_var_name_3 => outp(3),

9 APPENDIX 120

rts_var_name_4 => outp(4),

rts_var_name_5 => outp(5),

rts_var_name_6 => outp(6),

rts_var_name_7 => outp(7),

out_00_0 => out_00(0),

out_00_1 => out_00(1),

out_00_2 => out_00(2),

out_00_3 => out_00(3),

out_00_4 => out_00(4),

out_00_5 => out_00(5),

out_00_6 => out_00(6),

out_00_7 => out_00(7),

out_01_0 => out_01(0),

out_01_1 => out_01(1),

out_01_2 => out_01(2),

out_01_3 => out_01(3),

out_01_4 => out_01(4),

out_01_5 => out_01(5),

out_01_6 => out_01(6),

out_01_7 => out_01(7),

out_10_0 => out_10(0),

out_10_1 => out_10(1),

out_10_2 => out_10(2),

out_10_3 => out_10(3),

out_10_4 => out_10(4),

out_10_5 => out_10(5),

out_10_6 => out_10(6),

out_10_7 => out_10(7),

out_11_0 => out_11(0),

out_11_1 => out_11(1),

out_11_2 => out_11(2),

out_11_3 => out_11(3),

out_11_4 => out_11(4),

out_11_5 => out_11(5),

out_11_6 => out_11(6),

out_11_7 => out_11(7),

act_out => act_out);

clk <= not clk after 5 ns;

act_force: PROCESS

BEGIN

act <= ’0’;

wait for 100 ns;

inp0_00 <= conv_std_logic_vector(2, 8);

inp0_01 <= conv_std_logic_vector(3, 8);

inp0_10 <= conv_std_logic_vector(4, 8);

inp0_11 <= conv_std_logic_vector(5, 8);

inp1_00 <= conv_std_logic_vector(6, 8);

9 APPENDIX 121

inp1_01 <= conv_std_logic_vector(7, 8);

inp1_10 <= conv_std_logic_vector(8, 8);

inp1_11 <= conv_std_logic_vector(9, 8);

act <= ’1’;

--wait for 20 ns;

--act <= ’0’;

WAIT;

END PROCESS;

END ;

9.5 The structure of the internal net list files

The following list is the structure of the internally used net list files. They are inputs to the

linker if the hardware target is selected. We use the C notation.

{

typedef struct

{

char KeyWord[MAX_NAME_LENGTH]; // file Keyword

int fct_Nr; // number of functions

T_ClockInfo globalClock; // clocking information

int fct_symIdx[FCT_NR]; // index of function within the symbol table

int fct_entries_Nr[FCT_NR]; // number of entries per function

T_atm_cmd ATCs[FCT_NR][ENTRIES_NR][ATCs_Nr]; // all the ATCs

}

T_propNetList;

}

The KeyWord and the fct Nr have already been explained in the linker section (refer to 3.10.2).

The component globalClock is a structure that contains all the global clocking information (i.e.

the frequency, which pin is used to connect the oscillator). The fct symIdx points to the name

of each function within the symbol table. The symbols are stored in a different file, since they

are important only for debugging purposes. fct entries Nr are the numbers of rows in the time

slot matrix for each function. T atm cmd is the time slot matrix.

REFERENCES 122

References

[1] Ian Page, Closing the gap between hardware and software: Hardware-software co-synthesis

at Oxford, in ’Hardware-software co-synthesis for reconfigurable systems’ number 96/036 in

Colloquium: Professional Group C2 IEE, Feb 1996

[2] Ian Page, Design Of Future Systems p. 343, Design Automation and Test in Europe (DATE

’98), 1998.

[3] Celoxica, Handel-C Language Reference Manual, Document number: RM-1003-4.2

[4] Celoxica, The Technology Behind DK1 v. 1.1 August 2002

[5] Celoxica, DK Design Suite Datasheet, Version 1.3, 2005

[6] Xilinx, Xilinx ISE7 Software Manuals And Help

[7] ARM Limited, ARM7TDMI Technical Reference Manual

[8] ARM Limited, ARM Instruction Set Quick Reference Card v2.1, Ref: QRC0001H, Issued:

October 2003

[9] ARM Limited, ARM Developer Suite - Version 1.2 - Developer Guide, Ref: DUI0056D,

Issued: 23 November 2001

[10] ARM Limited, SDT2.50 Reference Manual Ref: DUI0041C, Issued: 18 November 1998

[11] Kernighan, Ritchie Programmieren in C

[12] Aho, Sethi, Ullman Compilerbau, 1997.

[13] John R Levine, Tony Mason, Doug Brown UNIX programming tools.

[14] Bronstein, Semendjajew, Musiol, Mühling Taschenbuch der Mathematik.

[15] Alvis J. Evans, Basic Digital Electronics.

[16] Maeder, VHDL Basic Digital Electronics.

[17] EDIF org. EDIF Version 2 0 0, EIA-548

[18] Xilinx ISE, Development System Reference Guide

[19] Mentor Graphics Mentor Graphics Interface Guide,

[20] Prof. Dr.-Ing. Wolfram H. Glauert Very High Speed Integrated Circuit Hardware De-

scription Language, Universität Erlangen-Nürnberg, Lehrstuhl fr Rechnergestützten Schal-

tungsentwurf

[21] Dirk Eisenbiegler Ein Kalkül für die Formale Schaltungssynthese, 1999, 3-89722-197-7

REFERENCES 123

[22] P. Gutberlet, H. Krämer, W. Rosenstiel CASCH, ein Scheduling-Algorithmus für ’High-

Level-Synthese, Forschungsbereich Automatisierung des Schaltungsentwurfs (Prof. D.

Schmid), Forschungszentrum Informatik an der Universität Karlsruhe

[23] SystemC Initiative http://www.systemc.org

[24] V1.0, Synopsys Inc., USA, Describing Synthesizable RTL in SystemC

[25] Tim Kogel, Andreas Wieferink, Rainer Leupers, Gerd Ascheid, Heinrich Meyr, Integrated

Signal Processing Systems, Aachen University of Technology, Germany; Denis Bussaglia,

Manoj Ariyamparambath Intellectual Property and Design Services, Synopsys, Inc. Vir-

tual Architecture Mapping: A SystemC based Methodology for Architectural Exploration of

System-on-Chip Designs

[26] Morgan Kaufmann Publishers, 1997 S.S. Muchnik: Advanced Compiler Design & Imple-

mentation

[27] Rainer Leupers, Oliver Wahlen, Manuel Hohenauer, Tim Kogel, Aachen University of

Technology (RWTH), Integrated Signal Processing Systems; Peter Marwedel, University of

Dortmund, Dept. of Computer Science 12, An Executable Intermediate Representation for

Retargetable Compilation and High-Level Code Optimization

Lebenslauf

Name: Ewald Frensch
Geboren: 25.05.1970
Familienstand: verheiratet mit Monika Frensch geb. Brandmüller
Kinder: eine Tochter, Daniela Frensch, geb. am 18.07.2003
Staatsangehörigkeit: Deutsch

Anschrift: Beethovenstr. 38
D-86438 Kissing

Hochschulabschluss

Oct 1997: Diplom-Physiker, Technische Universität München
Thema: “Generation and Modification of Triangle Meshes from Trinocular Depth
Maps”,
Gutachter: Prof. Dr. Radig (Fakultät für Informatik, Technische Universität
München)
Zweitgutachter: Prof. Dr. Ring (Physik-Department, Technische Universität München)

Beruflicher Werdegang

Nov 1997 - Apr 2000: Softing Ag, Haar bei München, Hardware- und Software-Entwicklung
für industrielle Steuerungen

Mai 2000 - Jun 2006: Siemens Ag, München, Mobile Devices, Grundlagenforschung und
Vor-Entwicklung

seit Jul 2006: MTU Aeoro Engines, München, Entwicklung von Regelungssystemen für
Flugzeugtriebwerke

Hochschulbildung

Dez 1996 - Aug 1997: Diplomarbeit, Siemens Ag, Zentralabteilung Forschung und En-
twicklung, München-Neuperlach im Rahmen des von der Europäischen Union geförderten
Projektes ”Panorama”

Apr 1993 - Okt 1996: Hauptstudium Physik, Nebenfach Informatik, Technische Univer-
sität München

Okt 1990 - Mär 1993: Grundstudium Physik, Nebenfach Informatik, Universität Augs-
burg

Forschungsinteressen

Compilerbau

Hardwarecompilierung

VLSI design

Parallele Programmierung

	diss
	CV_Deutsch

