Phase Transition of a Dicyanamide with Rutile-like Structure: Syntheses and Crystal Structures of α - and β -Cd[N(CN)₂]₂

Barbara Jürgens, Elisabeth Irran¹⁾, Henning A. Höppe²⁾, and Wolfgang Schnick

München, Department Chemie der Ludwig-Maximilians-Universität

Abstract. Cadmium dicyanamide Cd[N(CN)₂]₂ was synthesized through aqueous ion exchange at room temperature. A reversible phase transition was detected by in situ X-ray powder diffractometry above 55 °C. The crystal structures of both phases were determined by X-ray powder diffraction (β -Cd[N(CN)₂]₂: T = 22 °C, a = 621.60(3), b = 748.76(4), c = 770.21(5) pm, $\beta = 91.784(3)^\circ$, $P2_1/n$ (no. 14), $Z = 2, wR_p = 0.063, R_p = 0.050, R_F = 0.059$; α -Cd[N(CN)₂]₂: T = 150 °C, a = 624.62(5), b = 752.92(6), c = 768.30(7) pm, *Pnnm* (no. 58), $Z = 2, wR_p = 0.083, R_p = 0.064$,

 $R_{\rm F} = 0.087$). Both polymorphs consist of Cd²⁺ and bent planar $[N(CN)_2]^-$ ions. α -Cd[$N(CN)_2$]₂ crystallizes analogously to rutile and is isotypic with M^{II}[$N(CN)_2$]₂ (M = Mg, Cr, Mn, Co, Ni, Cu). The monoclinic low-temperature polymorph β -Cd[$N(CN)_2$]₂ is closely related to that of the orthorhombic high-temperature polymorph α -Cd[$N(CN)_2$]₂ by a translationengleiche transition of index 2.

Keywords: Cadmium; Dicyanamide; Phase transition; Rutile structure type

Phasenumwandlung eines Dicyanamides mit Rutil-artiger Struktur: Synthese und Kristallstrukturen von α - und β -Cd[N(CN)₂]₂

Inhaltsübersicht. Cadmiumdicyanamid Cd[N(CN)₂]₂ wurde durch wässerigen Ionenaustausch bei Raumtemperatur erhalten. Eine reversible Phasenumwandlung wurde mittels *in-situ*-Röntgen-Pulver-diffraktometrie oberhalb von 55 °C nachgewiesen. Die Kristallstrukturen beider Phasen wurden mittels Pulver-Röntgenbeugung bestimmt (β -Cd[N(CN)₂]₂: T = 22 °C, a = 621,60(3), b = 748,76(4), c = 770,21(5) pm, $\beta = 91,784(3)^\circ$, $P2_1/n$ (Nr. 14), Z = 2, $wR_p = 0,063$, $R_p = 0,050$, $R_F = 0,059$; α -Cd[N(CN)₂]₂: T = 2

Introduction

In the last few years the coordination chemistry of the bent dicyanamide $[N(CN)_2]^-$ ion has been studied intensively [1-3]. Many complexes with the common formula $\{M^{II}[N(CN)_2]_2(\text{solvent})_x\}$ have been characterized and

* Prof. Dr. W. Schnick, Dipl.-Chem. B. Jürgens Department Chemie der Ludwig-Maximilians-Universität Butenandtstraße 5-13 (D)
D-81377 München, Germany Fax: +49-89-2180-77440
E-mail: wolfgang.schnick@uni-muenchen.de

¹⁾ Dr. E. Irran
Institut für Chemie – Anorganische Festkörperchemie, Sekr. C2, TU Berlin
Straße des 17. Juni 135
D-10623 Berlin, Germany

²⁾ neue Adresse: Dr. H. A. Höppe Inorganic Chemistry Laboratory South Parks Road Oxford, OX1 3QR, UK 150 °C, a = 624,62(5), b = 752,92(6), c = 768,30(7) pm, *Pnnm* (Nr. 58), Z = 2, $wR_p = 0,083$, $R_p = 0,064$, $R_F = 0,087$). Beide Polymorphe enthalten Cd²⁺ und gewinkelte [N(CN)₂]⁻-Ionen. α-Cd[N(CN)₂]₂ kristallisiert analog Rutil und ist isotyp mit M^{II}[N(CN)₂]₂ (M = Mg, Cr, Mn, Co, Ni bzw. Cu). Die orthorhombische Hochtemperaturform α-Cd[N(CN)₂]₂ leitet sich strukturell von der monoklinen Tieftemperaturform β-Cd[N(CN)₂]₂ durch einen translationengleichen Übergang vom Index 2 ab.

Scheme 1

classified by their coordination modes (scheme 1). Coordination through both the terminal N atoms (modes 1 and 2) as well as the bridging N atom (mode 3) is possible. Additionally, both types of N atoms can coordinate the metal ions simultaneously (modes 4-6).

For M = Cd only a few coordination compounds were synthesized as yet, i. e. $\{Cd[N(CN)_2]_2(phen)\}$ with phen = phenanthroline, $\{Cd[N(CN)_2]_2(2,2'-bipy)\}$ with bipy = bipyridine) [4], $\{Cd[N(CN)_2]_2(HL)_2 \cdot 2 H_2O\}$ with HL = 4-aminobenzoic acid) [5], $\{Cd(dadpm)[N(CN)_2]_2\}_n$ with dadpm = 4,4'-diaminodiphenylmethane, and $\{Cd(dadpm)_2-[N(CN)_2]X\}_n$ with X = Cl, Br [6].

Besides solvent containing complexes, the chemistry of solvent-free ternary dicyanamides was studied as well: The salts $M^{II}[N(CN)_2]_2$ (M = Mg, Cr, Mn, Co, Ni, Cu) were found to crystallize in a rutile-analogous structure type [7–10]. The structure of $M^{II}[N(CN)_2]_2$ (M = Ba, Pb) [10–12] derives from the cotunnite structure type (PbCl₂), whereas $M^{II}[N(CN)_2]_2$ (M = Ca, Sr) form a new structure type [10].

Surprisingly, during the detailed investigations of the divalent dicyanamides a phase transition only was observed for Zn[N(CN)₂]₂ [13,14]: Orthorhombic β -Zn[N(CN)₂]₂ (space group: *Pnma*) reversibly transforms into the high-temperature polymorph α -Zn[N(CN)₂]₂ (space group: *Cmcm*) at about 215 K. Contrarily, none of the intensively studied dicyanamides M^{II}[N(CN)₂]₂ (M = Mg, Cr, Mn, Co, Ni, Cu), which crystallize analogously to rutile, seems to show any phase transition. *Köhler* [15], *Jensen* [14], and *Miller* [2] et al. reported about α - and β -Co[N(CN)₂]₂, however these two compounds have been synthesized by quite different syntheses, and they do not exhibit a reversible transition induced by temperature or pressure.

Herein we report about the crystal structures of α - and β -Cd[N(CN)₂]₂ and their temperature-dependent phase transition.

Experimental

Syntheses

β-Cd[N(CN)₂]₂ was synthesized by aqueous ion exchange: A column with an ion exchange resin (Merck, Ionenaustauscher I, Art. 4765) was completely filled with a solution of 3 CdSO₄ · 8 H₂O (Merck, puriss.). An excess of the sulfate was removed by washing with water. Subsequently, a solution of Na[N(CN)₂] (Fluka, ≥ 96%) was poured onto the column and the eluate was collected and dried in different experiments at room temperature and at 10 °C leading to a colorless microcrystalline product of phase pure β-Cd[N(CN)₂]₂.

The formation of α -Cd[N(CN)₂]₂ only has been observed in situ during heating β -Cd[N(CN)₂]₂ above 55 °C utilizing a STOE Stadi P powder diffractometer equipped with a computer controlled STOE furnace.

X-Ray Structure Determination.

It was impossible to isolate single crystals suitable for single-crystal X-ray diffraction. Because of the insufficient quality of the obtained crystals X-ray powder diffraction investigations were performed. A sample of β -Cd[N(CN)₂]₂ was enclosed in a glass capillary with 0.3 mm diameter and investigated at room temperature in Debye-Scherrer geometry on a STOE Stadi P powder diffractometer with Ge(111)-monochromatized Mo-K α_1 radiation.

The powder pattern was indexed with a monoclinic unit cell. The ab-initio structure determination of β -Cd[N(CN)₂]₂ was possible using the program EXTRA [16] for extraction of the integrated intensities and SIRPOW [17] for direct methods. The results of the

Figure 1 Observed (crosses) and calculated (line) X-ray powder diffraction patterns as well as difference profile of the Rietveld refinement of β-Cd[N(CN)₂]₂. The powder pattern was obtained with a STOE Stadi P powder diffractometer ($\lambda = 70.93$ pm) at 22 °C.

Table 1 Crystallographic Data for α -Cd[N(CN)₂]₂ and β -Cd[N(CN)₂]₂.

	β -Cd[N(CN) ₂] ₂		α -Cd[N(CN) ₂]
M_r / g mol ⁻¹		244.46	
crystal system	monoclinic		orthorhombic
space group	$P2_1/n$ (no. 14)		Pnnm (no. 58)
radiation λ / pm	1 ()	Mo-K α_1	(70.93)
temperature / °C	22		150
lattice parameters:			
a / pm	621.60(3)		624.62(5)
b/pm	748.76(4)		752.92(6)
c / pm	770.21(5)		768.30(7)
β/°	91.784(3)		90
$V / 10^{6} \text{ pm}^{3}$	358.30(3)		361.32(6)
Z	2		2
$\rho_{\rm c}$ / g cm ⁻³	2.266		2.247
profile range	$2 \le 2\theta \le 50$		$6 \le 2\theta \le 35$
no. of data points	4800		2900
no. of reflections	633		131
positional parameters	15		8
profile parameters	6		4
reduced χ^2	0.794		1.920
R values			
wRp	0.063		0.083
R_n^r	0.050		0.064
R_F^{ν}	0.059		0.087

Table 2 Atomic coordinates and displacement factors (in pm²) for α -Cd[N(CN)₂]₂ and β -Cd[N(CN)₂]₂.

atom	Wyckoff position	х	У	Z	$U_{\rm iso}^{[a]}$
Cd (β)	2 <i>a</i>	0	0	0	227(3)
$Cd(\alpha)$	2a	0	0	0	320(10)
C1 (β)	4 <i>e</i>	0.239(3)	0.365(2)	0.128(2)	200(60)
C2 (β)	4 <i>e</i>	0.226(2)	0.357(2)	-0.169(2)	270(60)
C (α)	8h	0.268(4)	0.362(2)	0.138(2)	270(70)
N1 (β)	4e	0.147(2)	0.302(1)	-0.017(2)	510(90)
N1 (α)	4g	0.190(3)	0.300(3)	0	270(70)
N2 (β)	4e	0.282(2)	0.412(1)	0.275(2)	260(50)
N3 (β)	4e	0.291(2)	0.392(2)	-0.291(2)	350(50)
N2 (α)	8 <i>h</i>	0.287(2)	0.390(2)	0.288(1)	250(50)

^[a] $U_{\rm iso}$ is defined as exp $(-8\pi^2 U_{\rm iso} \sin^2\theta / \lambda^2)$.

subsequent Rietveld refinement performed with the program GSAS [18] are given in Figure 1. Details of the crystallographic data are listed in Table 1, the refined atomic coordinates are given in Table 2.

Figure 2 Observed (crosses) and calculated (line) X-ray powder diffraction patterns as well as difference profile of the Rietveld refinement of α -Cd[N(CN)₂]₂. The powder pattern was obtained with a STOE Stadi P powder diffractometer ($\lambda = 70.93$ pm) at 150 °C.

The diffraction data of α -Cd[N(CN)₂]₂ were collected at 150 °C with a STOE Stadi P powder diffractometer with monochromatized Mo-K α_1 radiation using a graphite heating equipment. The obtained diffraction pattern of the high-temperature phase is very similar to that of M^{II}[N(CN)₂]₂ (M = Mg, Cr, Mn, Co, Ni, Cu), and it could be indexed with similar lattice constants and in the same space group (*Pnnm*) as these dicyanamides. Therefore, all these compounds were assumed to be isotypic. The Rietveld refinement was successful using the atomic coordinates of Mg[N(CN)₂]₂ as starting values (Figure 2). Information about the crystallographic details and the atomic coordinates are given in Tables 1 and 2.

Further details of the crystal structure investigations reported in this paper may be obtained from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, Germany, by quoting the depository numbers CSD-413334 (α -Cd[N(CN)₂]₂) and CSD-413333 (β -Cd[N(CN)₂]₂).

The comparison of the structural data of both phases exhibits their structural relation: The cell volumes of monoclinic β -Cd[N(CN)₂]₂ and orthorhombic α -Cd[N(CN)₂]₂ are quite similar (ca. 360 · 10⁶ pm³). Additionally, the lattice parameters *a*, *b*, and *c* resemble each other, the angle β (β -Cd[N(CN)₂]₂) differs only slightly from 90°. This situation is comparable to that found for α - and β -Na[N(CN)₂] and the phase transition between these two polymorphs [19].

Results and Discussion

The crystal structures of both α - and β -Cd[N(CN)₂]₂ consist of Cd²⁺ and bent [N(CN)₂]⁻ ions. The dicyanamide anions are nearly planar (point symmetry: C₁) in β -Cd[N(CN)₂]₂ and exactly planar in α -Cd[N(CN)₂]₂ (point symmetry: C_s). In Figure 4 the changes of the atomic parameters during the phase transition are given.

The distances and angles are similar to that of other dicyanamides (Table 3). The distances C-N from the bridging N atoms are longer (121 - 134 pm) than those to the terminal N atoms (107 - 118 pm). The N-C-N angles are al-

Figure 3 Crystal structure of β -Cd[N(CN)₂]₂ (view along [100]).

most linear (159 – 176°), whereas the C-N-C angles are 115 – 118°. The distances from the terminal N-atoms to the Cd²⁺ ions are 226 – 245 pm (β -Cd[N(CN)₂]₂) and 226 – 255 pm (α -Cd[N(CN)₂]₂). These values are comparable to the Cd-N distances found in Cd(CN)₂ (220 pm) [20], CdCN₂ (238 pm) [21] and in {Cd(dadpm)[N(CN)₂]₂}_n (232–238 pm) [6].

Crystal structure of β *-Cd*[$N(CN)_2$]₂

The crystal structure of β -Cd[N(CN)₂]₂ can be derived from the rutile structure type (Figure 4). It crystallizes in a subgroup (*P*2₁/*n*) of the space group of α -Cd[N(CN)₂]₂ (*Pnnm*). The phase transition between the two polymorphs can be described as a translationengleiche transition of index 2 (t2). During heating the local point symmetry of the dicyanamide ions changes from C₁ to C_s and the angle β of the monoclinic crystal system changes to 90°, leading to an orthorhombic structure (Figures 4 and 5). In β -Cd[N(CN)₂]₂ the Cd²⁺ ions are coordinated by both terminal N atoms N2 and N3 as well as bridging N atom N1 (Scheme 1, mode 5).

Crystal structure of α *-Cd*[$N(CN)_2$]₂

α-Cd[N(CN)₂]₂ crystallizes isotypically with the dicyanamides of divalent metals M^{II}[N(CN)₂]₂ (M = Mg, Cr, Mn, Co, Ni, Cu). By replacing the dicyanamide ions by their centres of gravity these crystal structures can be derived directly from the rutile structure type (space group *P*4₂/*mnm*) by a translationengleiche transition of index 2. With respect to the ionic radii of the metal ions M²⁺ (CN: 6) (Mg²⁺: 86, Cr²⁺: 87, Mn²⁺: 81, Co²⁺: 79, Ni²⁺: 83, Cu²⁺: 87 pm) it is unexpected that the cadmium salt in spite of the large ion radius of Cd²⁺ (109 pm) forms the same structure as the dicyanamides mentioned above. In α-Cd[N(CN)₂]₂ the Cd²⁺ ions are octahedrally coordinated by six N atoms, the dicyanamide ions [N(CN)₂]⁻ are bound to three Cd²⁺ ions. Analogously to β-Cd[N(CN)₂]₂ the anions exhibit the same coordination mode 5 (see Scheme 1).

Thermal Behavior

Thermoanalytical measurements were performed with a DSC 25 (Mettler) as well as with a DSC 141 (Setaram) in

Figure 4 Group – sub-group relation between α - and β -Cd[N(CN)₂]₂ (left) in comparison to the atomic coordinates of rutile (right). The indices of the translationengleiche (t) transitions as well as the unit cell transformations are given.

Table 3 Bond distances (in pm) and angles (in °) in α -Cd[N(CN)₂]₂ and β -Cd[N(CN)₂]₂.

	β -Cd[N(CN) ₂] ₂ (22 °C)	α-Cd[N(CN) ₂] ₂ (150 °C)
Cd-N1	244.6(1)(2x)	254.8(2) (2x)
Cd-N2	226.5(1)(2x)	226.3(1) (4x)
Cd-N3	225.6(1)(2x)	_
C-N1	_	125.5(2)
C-N2	_	117.7(2)
C1-N1	132.7(2)	_
C1-N2	120.7(2)	_
C2-N1	134.0(2)	_
C2-N3	106.6(2)	_
N1-C-N2	_	158.8(3)
N1-C1-N2	166.1(2)	_
N1-C2-N3	176.2(2)	_
C-N1-C	_	115.0(3)
C1-N1-C2	117.7(2)	_

Figure 5 Crystal structure of β -Cd[N(CN)₂]₂ (view along [001], left) and of α -Cd[N(CN)₂]₂) (view along [001], right).

order to analyze the phase transition of β - into α -Cd[N(CN)₂]₂. Samples of β -Cd[N(CN)₂]₂ were heated from room temperature to 500 °C using closed alumina crucibles (heating rate: 10 °C · min⁻¹). Neither during heating nor during subsequent cooling any remarkable thermal effect was observed. According to the observed reversible character of the displacive phase transition between α - $Cd[N(CN)_2]_2$ and β - $Cd[N(CN)_2]_2$, the heat of reaction seems to be very small.

After heating the compounds to 500 °C and subsequent cooling to room temperature the products were characterized by IR spectroscopy. The spectra neither show the typical signals of the dicyanamide ion $[N(CN)_2]^-$ nor that of the isolated tricyanomelaminate ions $[C_6N_9]^{3-}$. The spectra show broad signals belonging to $C\equiv N$ and C=N bonds which can indicate a further polymerization of the dicyanamide ions to extended C-N networks of unknown structure. Similar spectra were observed for the thermolysis products of the divalent dicyanamides $M[N(CN)_2]_2$ (M = Mg, Ca, Sr, Ba, Pb, Co, Ni) [10, 11, 22]. Temperature-dependent Xray measurements were performed on a STOE Stadi P powder diffractometer (Mo-K α_1 radiation) with a computer controlled STOE furnace. By heating above 310 °C a sample of Cd[N(CN)_2]_2 became X-ray amorphous.

Acknowledgments. Financial support by the Fonds der Chemischen Industrie, the Bundesministerium für Bildung und Forschung, and the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References

- S. R. Batten, P. Jensen, C. J. Kepert, M. Kurmoo, B. Moubaraki, K. S. Murray, D. J. Price, J. Chem. Soc., Dalton Trans. 1999, 2987.
- [2] J. L. Manson, C. R. Kmety, Q. Huang, J. W. Lynn, G. M. Bendele, S. Pagola, P. S. Stephens, L.-M. Liable Sands, A. L. Rheingold, A. J. Epstein, J. S. Miller, *Chem. Mater.* **1998**, *10*, 2552.
- [3] A. Escuer, F. A. Mautner, N. Sanz, R. Vicente, *Inorg. Chem.* 2000, 39, 1668.
- [4] J.-H. Lua, M.-C. Hong, R. Cao, Y.-C. Liang, Y.-J. Zhao, R.-H. Wang, J.-B. Weng, *Polyhedron* 2002, 21, 893.
- [5] R. Wang, M. Hong, J. Luo, R. Cao, Q. Shi, J. Weng, *Eur. J. Inorg. Chem.* 2002, 2904.

- [6] J. Luo, M. Hong, R. Wang, R. Cao, Q. Shi, J. Weng, Eur. J. Inorg. Chem. 2003, 1778.
- [7] M. Kurmoo, C. J. Kepert, New. J. Chem. 1998, 22, 1515.
- [8] S. R. Batten, P. Jensen, B. Moubaraki, K. S. Murray, R. Robson, *Chem. Commun.* 1998, 439.
- [9] J. L. Manson, C. R. Kmety, A. J. Epstein, J. S. Miller, *Inorg. Chem.* 1999, 38, 2552.
- [10] B. Jürgens, E. Irran, W. Schnick, J. Solid State Chem. 2001, 157, 241
- [11] B. Jürgens, H. A. Höppe, W. Schnick, *Solid State Sci.* 2002, 4, 821.
- [12] Y.-J. Shi, X.-T. Chen, Y.-Z. Li, X.-Z. You, New J. Chem. 2002, 26, 1711.
- [13] J. L. Manson, D. W. Lee, A. L. Rheingold, J. S. Miller, *Inorg. Chem.* 1998, 37, 5966.
- [14] P. Jensen, S. R. Batten, G. D. Fallen, B. Moubaraki, K. S. Murray, D. J. Price, *Chem. Commun.* **1999**, 177.

- [15] H. Köhler, Z. Anorg. Allg. Chem. 1964, 331, 237.
- [16] A. Altomare, M. C. Burla, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moltineri, G. J. Polidori, J. Appl. Crystallogr. 1995, 28, 842.
- [17] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. J. Camalli, *J. Appl. Crystallogr.* 1994, 27, 435.
- [18] A. C. Larson and R. B. von Dreele, General Structure Analysis System. Los Alamos National Laboratory, Report LAUR 86-748; Los Alamos, NM, 1990.
- [19] B. Jürgens, E. Irran, J. Schneider, W. Schnick, *Inorg. Chem.* 2000, 39, 665.
- [20] B. F. Hoskins, R. Robson, J. Am. Chem. Soc. 1990, 112, 1546.
- [21] G. Baldinozzi, B. Malinowska, M. Rakib, G. Durand, J. Mater. Chem. 2002, 12, 268.
- [22] B. Jürgens, M. Kurmoo, W. Schnick, unpublished results.