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We apply the Rayleigh—Ritz variational principle to the inverse of the Smoluchowsky operator in order to calculate the
lowest non-vanishing eigenvalueof the Smoluchowsky equation. In contrast to former variational calculations the newmeth-
od is very insensitive to the choiceof the test function. We obtain the asymptotic expansion of the eigenvalue in the limit
of vanishing diffusion.

The motion of a bistable systemmay be influenced with this essential singularity: WKB and path integral
decisively by random perturbations, even when they calculations [2—4],projection operators [5], and
are small: the decay of the system from the point of other methods [6—81have been used to substantiate
instability is initiated by fluctuations and when the and refine Kramers’ early calculation of the escape
system has reached a stable point of the deterministic - rate [1].
motion it does not stay there because of fluctuations. As a particularly simple and successful technique the

A famous example is a brownian particle moving Rayleigh—Ritz variational principle can be applied to
in a bistable potential [1J.In the high friction limit the Smoluchowsky operator. The difficulty in these
the motion is described by the Smoluchowsky equa- calculations is that the eigenvalue to be calculated is
tion: much smaller than the others. In order to compensate

for the smallness one has to have detailed knowledge
aP(x, t)/at = (a/ax)[U (x) + ea/ax]P(x, t). (1)

about the eigenfunction, and choose a test function
P(x, t) is the probability density for the position of which approximates the eigenfunction extremely well.
the brownian particle at time t. The systematic force In this paper we apply the variational principle not
acting on the brownian particle is derived from a to the Smoluchowsky operator itself, but to the in-
“viscous potential” U(x) and is given by —U’(x). For verse of it. What was the smallest eigenvalue of the
a bistable system the potential has two minima. The Smoluchowsky operator becomes the largest one of the
diffusion e is assumed to be small. inverse operator, and the result of the variational cal-

When the particle has reached the bottom of the culation depends only weakly on the test function
well it does not stay there as it would in the absence chosen. Therefore the main difficulty of the former
of fluctuations, but can escape over the barrier. The variational calculation turns into a major advantage of
escape rate is closely related to the lowest non-vanishing the new one.
eigenvalue in the eigenvalue problem associated with In Kramers’ barrier penetration problem one re-
the Smoluchowsky equation. quires natural boundary conditions at infinity:

The eigenvalue cannot be expanded in powers of the
diffusion because there is an essential singularity for lim [U’(x) + ea/ax]P(x, t) = 0 . (2)

-~ 0. Various methodshave been proposed to cope X~±°~

With these boundary conditions the unnormalized
~Work supported by the Deutsche Forschungsgemeinschaft. stationary solution of the Smoluchowsky equation is

                                                               



                                          

w(x) = exp[—U(x)/e] . (3) lowest eigenvalue in the unrestricted space is A0 = 0
with eigenfunction ~Ji0(x)= 1 corresponding to the

With the ansatz stationary distribution.
In this form the variational principle has been

P(x,t)=w(x)i~1i(x)e t, (4)
used many times to calculate the eigenvalue, either ap-

the Smoluchowsky equation is transformed into the plied to the operatorL [10—13],or, equivalently, to
eigenvalue problem one of the closely related operators mentioned before.

= (5\ We propose to apply the variational principle to thek k k ‘ ~ ‘ inverse of the operator L:
where

= max I(~,L-’~)j/(~,~). (10)
L = —U’(x)a/ax + e3

2/ax2 , (6)

and the boundary conditions are The space of test functions has to be restricted as be-
fore, because the inverse of L can only be defined on

w(x) a~(x)!ax= 0. (7) the space orthogonal to i~i~according to the Fredholm
alternative. In the unrestricted space one can still

The Smoluchowsky operatorL is selfadjoint with find an operator that is the right inverse ofL:
respect to the scalar product

Ff(x)=-e~ f w~(y)dy f w(z)f(z)dz, (11)
(f, g) = f w(x)f(x)g(x) dx, (8) 0 y

but is no longer a left inverse. The projection of F
which contains the stationary distribution as a weight on the space orthogonal to ~ is the unique inverse of
function. Therefore the eigenfunctions form a com- L in this restricted space:
plete set in the space of functions which are square in- L—1 = [1 — I I] F[l — I i,Li

0)(i~Li0I] . (12)
tegrable with weight w(x). The scalar product of two
functions is the mean value of their product with In the variational functional (10) the operator is sand-
respect to the stationary distribution. wiched between two functions of the space orthogonal

Note that the eigenvalue problem (5) is phrased in to ~o and therefore F can be used in eq. (10) instead
terms of the operatorL appearing in the backward of L*
Smoluchowsky equation, not the forward equation 1
(1). Equivalent choices for the eigenvalue problem are X~ = max I(’~’,Fip) I/(iP, ~/). (13)
also~common: one canmultiply our eigenfunctions by ~
whI2(x) and obtain an operator which is selfadjoint in Clearly, both variational calculations (9) and (10) re-
a scalar product with constant weight function [9]. quire a small mean square deviation of the test func-
Or, if one multiplies our eigenfunctions with w(x) the tion from the eigenfunction. For the new variational
resulting operator is the forward Smoluchowsky principle (10) this necessary condition is also sufficient
operator appearing in eq. (1), which is selfadjoint in while for the old one this requirement is much too
a scalar product withweight function w~(x)[10]. weak: it can be shown that the mean square deviation

The lowest non-vanishing eigenvalue of the of the derivative of the test function from the deriva-
Smoluchowsky equation can now be found by applying tive of the eigenfunction must be small, too.
the Rayleigh—Ritz variational principle to the operator The new variational principle is most powerful

when the lowest eigenvalue X~is much smaller than
the higher ones. This is the case, e.g., in the limit of= mm (ui Lu,li)I/(,li, 1i). (9) . . .

(~)=0 vanishing diffusion. In this limit the corresponding
eigenfunction u~1is almost constant, except in the

The space of test functions has to be restricted to vicinity of the maximum of the potential U(x) where
functions withvanishingmeanvalue because the it changes sign. For simplicity we assume that the p0-

   



                                          

tential U(x) is a symmetric function. From the func- [u”(l) I U”(0)U’i2 e ~ U(0) — U(1)
tional (13) we get the expression Xl ~-‘ ————---— —

f~’dxw(x)u,tii(x)f6 dy w’(y)f’dzw(z)ulii(z) UN
ef~’dx w(x)1~(x) x [1 +(~_J!L UN(O)

(14) L \8[U”(l)]28[U”(0)]2 (17)
for the eigenvalue A

1 in terms of the eigenfunction ~ [u”(l)]
2u1. The denominator of eq. (14) can be evaluated by — ________

the saddle-point method since ~ (x) is almost constant ~ W” (1)] 3) � +

where w(x) is sharply peaked. The numerator can also Note that we were able to derive the asymptotic ex-
be evaluated by this method because each of the in- pansion with very little knowledge about the eigen-
tegrandsof the three integrals to be evaluated succes- function. We only needed to know that the integrals
sively factors into a sharply peaked exponential and appearing in eqs. (14) and (16) can be evaluated by the
a slowly varying function. In the first and third integral saddle-point method. Everything else was done by the
the sharply peaked factor is the stationary distribution, operator F.
while in the second one it is the inverse ofw(x), which In fact the same result could have been obtained by
is peaked at the maximum of the potential. simply using the step function as a test function in the

The asymptotic expansion of the eigenvalue becomes functional (14). In contrast, in the old variational
comes to first order in � principle (9) the step function yields infinity, because

the mean square deviation of the derivatives of the[U”(1)IU”(0)I]V
2 ( U(0)—U(1) \exp

_________________ — __) test function and the eigenfunctions diverges. Ourresult for the escape rate (which is one halfof the

< [~+ ( U~(l) UN(0) eigenvalue A
1 for symmetric potentials) coincides with

8[U”(l)]
2 — 8[U”(o)J2 (15) the one derived in ref. [15]. In a future publication we

will apply our new variational method to calculate the
rate constant in multistable systems with process-

~ i~L(~+~~i(1)I)e+...]. depending diffusion.— 24 [U”(l)]3 [~i
1(l)]
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