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We give a proper definition of a quantum Gauss process. From there we derive the 
generator (dissipative Liouville operator) of a Gauss Markov process for a quantum 
oscillator without using a microscopic model. Dissipative Liouville operators derived 
from microscopic models are recovered as special cases. The dynamics following from the 
generator is investigated by studying the relaxation of the first moments and equilibrium 
correlations. 

1. Introduction 

Various attempts have been made to describe damp- 
ing phenomena within a quantum theoretical frame- 
work. 
Time dependent and nonlinear Schr6dinger equa- 
tions have been proposed to describe friction in 
quantum systems ([1] may serve as a review). How- 
ever, these modified Schr6dinger equations yield dif- 
ferent results for the same simple models [1], and, 
moreover, there is no microscopic foundation of these 
equations [2]. 
If one assumes that damping is caused by an in- 
teraction of the system with its environment usual 
quantum mechanics applies for the system combined 
with its environment. Radiation damping of a har- 
monic oscillator [31 and of an atom [4] are early 
examples of this method. 
There exist two different reduced descriptions in 
which the explicit appearence of the environment is 
eliminated: In one description the Heisenberg equa- 
tions are modified in a way analogous to classical 
Langevin equations [5, 6]. For the other description 
the Schr6dinger picture is used and the Liouville-von 
Neumann equation is modified by additional terms 
which cannot be cast in the form of a commutator  
with a Hamiltonian. Such equations have been de- 
rived from microscopic models e.g., by use of pro- 
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jection operators [7]. Under certain conditions the 
resulting generalized master equations can be sim- 
plified to yield Markovian master equations [8]. 
For classical systems where the corresponding master 
equation has the form of a Fokker Planck equation it 
is generally not necessary to resort to the microscopic 
physics when dealing with concrete models, rather 
the theory of stochastic processes forms a broad and 
well founded basis for a phenomenological approach 
[9, 10]. Much of the earlier work along those lines 
has been confined to Gauss Markov processes, also 
referred to as Ornstein Uhlenbeck processes, which 
form the basis of standard irreversible thermody- 
namics [11, 12]. There is no comparable theory for 
quantum systems which deals with all the comli- 
cations due to quantum fluctuations. 
In this paper we examine a quantum mechanical 
Gauss Markov process without using a microscopic 
model. Starting from Gaussian expectation values 
and correlation functions we construct the most gen- 
eral generator (dissipative Liouville operator) for a 
quantu~n Gauss Markov process. In a sequel of this 
paper we shall examine restrictions like the quantum 
analogue of the reciprocity relations which are con- 
sequences of general physical principles. 
In a recent paper [13] the Gaussian property of 
expectation values has been utilized to investigate the 
Brownian motion of a quantum oscillator. However, 
in that paper a certain form of the dissipative Liou- 
ville operator has been put in as an assumption. Since 
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we start from a proper definition of a quantum Gauss 
Markov process there is no need for any extra as- 
sumptions in order to get the generator of the pro- 
cess. Moreover, we can be sure that the totality of 
quantum Gauss Markov processes is exhausted by 
the generator we have found. 
The paper is organized as follows: In the next section 
we give a definition of a classical Gaussian process 
which easily can be transferred to the quantum 
mechanical case. 
In Sect. 3 Gaussian distributed annihilation and crea- 
tion operators are introduced and the most general 
Gaussian density matrix is determined. Some proper- 
ties of quantum mechanical Markov processes which 
will be needed in the following are summarized in 
Sect. 4. 
In Sect. 5 the generator of a quantum mechanical 
Gauss Markov process is derived in its most general 
form. The dynamics which follows from this dissi- 
pative Liouville operator is investigated in Sect. 6 by 
studying the relaxation of the first moments and the 
equilibrium correlations. 

2. Classical Gaussian Process 

Usually a Gaussian process is characterized by a 
Gaussian conditional probability, Since the concept 
of conditional probabilities can not be transferred to 
the quantum mechanical case we give a characteri- 
zation of a Gauss process, based on mean values and 
correlation functions. These are well defined quan- 
tities both in the classical and quantum mechanical 
context. 
First we note that a Gaussian distributed random 
variable is entirely characterized by its first two mo- 
ments. Without loss of generality the first moment 
may be put to zero. Then the second moment coin- 
cides with the variance: 

( x )  =0  (2.1) 

(X 2 ) = 0  "2. (2.2) 

Higher moments are determined by the following 
recursion relation: 

(x  k) = ( k -  1) a2 (x  k 2). (2,3) 

For a process x(t) to be Gaussian it suffices that 
every sequence of random variables x(t,), x(t2) . . . .  x(t,) 
at fixed instants of times t 1, t 2, ... t, is Gaussian dis- 
tributed. The correlation functions of the Gaussian 
process are the moments of these random variables, 
and hence, they obey recursion relations which are 
the multidimensional generalization of (3): 

( xkn('t n) Xk~- l('t n- 1)"" Xkl (~1)) 
= ( k  n -- 1)0.(tn, tn)2 (X kn 2(tn) Xkn-~'(tn_ 1) " '  Xkl(tl)) q- .." 
-~ kn- 1 0. (tn, tn- 1)2 (xkn- l(tn) Xkn t -- 1(r _ 1)"" Xkl (t 1)) 

-~kl ~(tn, t1)2( Xkn- i(tn) Xkn I(tn- 1)"'" XkI -1(tl)5" (2.4) 

For simplicity we have assumed that the first mo- 
ment of x(t) vanishes for arbitrary times t: 

(x ( t ) )  =0. (2.5) 

Then a(t,, tk) is given by 

a( t,, t 0 = ( x(t,) x(tk) ) ~. (2.6) 

Recursion relations of the type (2.3), (2.4) will provide 
for the basic definition of quantum mechanical Gauss- 
ian processes. 

3. Ganssian Density Matrices 

First we transfer the concept of Gaussian distributed 
random variables to quantum mechanics. 
Let a and a + denote the annihilation and creation 
operators, respectively, which obey the Bose com- 
mutation relation [a, a +] =1. Without loss of gene- 
rality their first moments may be put to zero: 

( a )  = 0  (3.1) 

(a  +)  =0. (3.2) 

The second moments are 

(a  + a)  = n (3.3) 

(a  +2) =fi (3.4) 

(a 2) =fl*. (3.5) 

In the following angular brackets denote quantum 
mechanical expectation values, defined as the trace 
over the operator to be averaged multiplied by a 
density matrix p: 

( u )  = tr up. (3.6) 

The density matrix p has to be normalized 

tr p = 1 (3.7) 

and has to be positive. From the positivity it follows 
that the second moments n and ~ obey the inequality 

n(n + 1) _->lfi t 2. (3.8) 
Now, we give the definition of Gaussian distributed 
annihilation and creation operators. 



                                         

The annihilation operator a and the creation opera- 
tor a § are Gaussian distributed, if the expectation 
value of any product with finite but arbitrarily many 
factors a and a § factorizes into a sum of products of 
n, /3 and /3* according to the following recursion 
relation: 

i r k  
i t p  

+ 2 (upuk) ui (3.9) 
k = p + l  i = 1  

i t-k 
iSFp 

where {u~} is an arbitrary sequence of annihilation 
and creation operators. 
The result of the recursion (3.9) is independent of the 
choice of the p's in the consecutive steps of factori- 
zation. Note, that (3.9) defines a complex Gaussian 
distributed random variable ~ if a and a + are re- 
palced by c numbers c~ and ~*, respectively. Hence, 
(3.9) is a proper generalization of the classical de- 
finition of Gaussian random variables. 
Further, we remark that (3.9) is compatible with the 
commutation relation of a and a § Consequently, it 
suffices to consider in (3.9) normal ordered products 
of annihilation and creation operators. In this case 
(3.9) reads: 

(a+ka z) 

= ( k - 1 ) f l ( a + k - 2 d ) + l n ( a  +k-1 a 1-1) (3.10) 

(a+ka z) 

=(l--1)/3*(a+ka l 2>+kn(a+k lal-l>. (3.11) 

In (3.10) we have factorized with respect to a creation 
operator and in (3.11) with respect to an annihilation 
operator. 
Our next aim is to determine the form of a Gaussian 
density.matrix, i.e., a density matrix p whose expec- 
tation values fulfill (3.10) and (3.11). 
From the (3.6) and (3.10) we get 

t ra+k-~d{pa++/3[a,p]+n[p,a+]}=O, (3.12) 

where we have used the invariance of the trace under 
cyclic permutations and the commutation relation of 
a and a § Equation (3.12) holds for all integers k>  1 
and l>0.  Since the ordered products a +k- ~ a t form a 
complete set of operators, the second factor in (3.12) 
must vanish. Hence, a Gaussian density matrix solves 
the equation: 

pa + +ilia, p] +n [p,a +] =0. (3.13) 

By the same arguments we get from (3.11) the equa- 
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tion 

ap+f*[p ,  a +] +n[a, p] =0. (3.14) 

As it is shown in the Appendix A (3.13), (3.14) have 
at most one normalized solution p. 
As an ansatz for p we put: 

p = Z  le-ae (3.15) 

with 

~ = x ( ~ a + a +  8 9 1 8 9  +2) (3.16 t 

and 

Z = t r e  -~e. (3.17) 

To show that this ansatz solves the problem we first 
transform (3.13), (3.14) by multiplying both equations 
with p -  1 from the left, to yield 

/ 3 p - l a p - n p  la+ p = / 3 a - ( n + l ) a +  (3.18) 

(n + 1) p-  1 ap - #* p -  l a+ p = n a - #* a + . (3.19) 

From there we find 

n2-1/U /~* 
- a + (3.20) p lap n(n+l)_l f l l  2a-t n(n+l)_l f i l  2 

_ (n+ 1)2-1/~12 a + /3 
p-Ia+ p n(n+ 1)-]/312 n ( n + l ) - I # l  2a (3.21) 

provided that n(n + 1) 4:1/312. 
Using the ansatz (3.15)-(3.17) p tap and p - l a + p  
may be viewed as functions of x : p - a a p = a ( x ) ,  
p-~ a+p =a+(x).  By differentiation with respect to x, 
we obtain with (3.15, 16) a pair of linear differential 
equations: 

d 
d~ a(x) = - ] / 1  + Izl 2 a ( x ) -  za + (x) (3.22) 

d 
d~ a+ (x) =] /1  + Izl 2 a + ( x ) -  z* a(x). (3.23) 

The solution of these equations with the initial con- 
ditions a (0)=a  and a+(0)=a  § reads: 

p l a p = [ c h x - ] / l + [ z l 2 s h x ] a - z s h x a  + (3.24) 

p- la+ p = [ c h x + l / l + l z l  z s h x ] a + + z * s h x a  (3.25) 

Comparing the right hand sides fo the (3.20, 24) and 
(3.21, 25) we find after some algebra 

Z = - - / 3 "  1-(///-}-  89 2 - -  1/312] -  89 (3.26) 

X 2 [_(n _t_  89 1/312]  89 (3.27) cth ~ = 
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In order to calculate the partition function defined in 
(3.17) we make use of the fact that the unitary opera- 
tor U defined by 

{ Y(d~a+2+e-i~a2)}  (3.28) U = exp - 

tgh2y=lz l  (1 +lzl) -~ . (3.29) 

~0 = arg z + ~ (3.30) 

diagonalizes ~f :  

UNt " U  + =xEa + a+ 89 - 1 + ~ ) ]  (3.31) 

which can be shown by differentiating UaU + and 
Ua + U + with respect to y and integrating the result- 
ing differential equations. 
Because of the unitary invariance of the trace, the 
partition function may now be written as 

Z = tr exp { - x  [a+ a + 89 + 1z12]} 

= ( 1 - e - X )  -1 exp t - 2  ( 1 - ] / 1  +[z]2)} (3.32) 

Using (3.26), (3.27) we get 

Z=(1/(n+ ~)z-1912 + 1) 
n+ 89 1 

. / ] / ( n +  8 9 1 8 9  2 (3.33) 
\1/(n+ 89189 

which combines with (3.15, 16, 26, 27) to 

p = (g(n  +3) 2-1912 +3) 
n+~- i 

 9 (/(,r/+ 89 ]912  89  2 
\]/(n +3) 2 -1912 + 1 /  

2 artgh [2l/(n + 3)2 -1912D 
exp 3 - 

I/~I = 
% 

2 ~ , +2 ] (  . . . .  [(n+ 89 a+ a aft a 29 a ; .  (3.34) 

As an example we put 

hr 
n = (eV~- 1)- 1 (3.35) 

and 

9 = 0 .  (3.36) 

Then we find from (3.34) the well known canonical 
density matrix 

ho) _fiO~a+ a 
p =(1 - e - k ~ )  e kr (3 9 

Hence, the thermal equilibrium state of a harmonic 

oscillator with frequency co at temperature T is a 
Gaussian density matrix 9 
For all parameters n, fi with n(n+l)- j f i l2>O (or 
equivalently (n + 3) 2 - 1912 >  88 z is finite, x is positive 
and finite and the ansatz (3.15) leads to a positiv 
normalized density matrix. In the limiting case n(n 
+ 1)=]fl] 2 the parameter x diverges and hence, (3.15) 
is of no use. One can show that in this case p is the 
projection operator 10)(0t on the ground state 0 of 
the annihilation operator b given by 

b=eiZ ]/n + l a -  l fna  + (3.38) 

where 

Z = arg 9- (3.39) 

Hence, we have found exactly one density matrix 
belonging to a particular choice of the parameters n 
and fi within the physial range n(n + 1)=> ]fl]2. 

4. Correlation Functions of Quantum Mechanical 
Markov Processes 

In this section we summarize some properties of 
quantum mechanical Markov processes for later use. 
For a quantum mechanical Markov process the cor- 
relation function of two operators u and v at different 
times is given by I-7]: 

=~truG(t -s )vG(s)p  o t>__s (4.1) 
<u(t)v(s)) ~trva(t_s)(G(t)po) u s>=t 

where Po is the density matrix of the system at time t o 
= 0  and where G(t) is the propagator of the Markov 
process in question. G(t) maps linearly any density 
matrix at time s on the corresponding one at the later 
time t + s: 

p (t + s) = G (t) p (s). (4.2) 

Obviously, the propagator must have the following 
properties: 
(i) G(t) preserves normalization: 

tr G(t) p = tr p. (4.3) 

(ii) G(t) preserves positivity: 

p >0  implies G(t) p > O. 

Since the process is Markovian, the propagator ful- 
fiIls a first order differential equation: 

G(t) =ra(t)  (4.4) 

with the initial condition 



                                         

G (0) = 1 (4.5) 

where F is the genera tor  of  the M a r k o v  process. 
The  adjoint  p ropaga to r  G+(t), defined with respect  to 
the scalar p roduc t  

(u, p) = tr u * p (4.6) 

allows for a descript ion of the process within a 
Heisenberg  picture. The  observables  and not  the den- 
sity mat r ix  are dynamica l  quanti t ies:  

u (t) = G § (t) u. (4.7) 

Now, the proper t ies  (i) and (ii) cor respond  to: 
(i') G§ maps  the identity on the identity: 

G+(t) 1 : 1 (4.8) 

(ii') G§ preserves posi t ivi ty 

u > 0  implies G§ u > 0 .  

As a consequence of (ii') G+(t) maps  selfadjoint oper-  
ators on selfadjoint opera tors ;  therefore 

G+(t) u + =(G+(t)  u) + (4.9) 

holds. The t ime evolut ion of the adjoint  p ropaga to r  is 
given by 

G§ (t) = G + (t) F + (4.10) 

with the initial condit ion 

G + ( 0 ) = I .  (4.11) 

In the Heisenberg picture the correlat ion function 
(4.1) for a s ta t ionary density matr ix  p reads 

~tr u ( t - s ) v p  t > s  
( u ( O v ( s ) ) = [ t r u v ( t - s ) p  t < s  (4.12) 

where we have used (4.7), (4.9). 

5. T h e  G e n e r a t o r  o f  a S t a t i o n a r y  G a u s s  
M a r k o v  P r o c e s s  

For  a Gauss ian  process we may  restrict ourselves to 
correlat ion functions of two opera tors  at different 
t imes since more  compl ica ted  mul t i t ime expectat ions 
can be de te rminded  by means  of  the Gauss ian  prop-  
erty. Fo r  a s ta t ionary  M a r k o v  process these cor- 
relat ion functions are given by (4.12). They are de- 
termined by the density matr ix  and  the p ropaga to r  
G§ For  a s ta t ionary  Gauss  M a r k o v  process we 
already know the density matrix.  It  is our  next a im to 
character ize the p r o p a g a t o r  of  such a process. 
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First  we give a definition of a q u a n t u m  mechanica l  
Gauss  process of  a single oscil lator:  
The  annihi lat ion opera to r  a and the creat ion opera-  
tor  a + form a s ta t ionary Gauss  process if the cor- 
relat ion functions of two ordered products  of a and 
a + at different times tx = t + z  and t 2 = t  factorize into 
a sum of products  of  (a  + (ti) a + (tj)), (a + (t~) a(tj)), 
(a(ti) a + (t~)), (a(t~) a(tj)) with i , j  = 1, 2 according to 
one of the following equivalent  recursion relations:  

((a +k d)('c) a +p a q) 
= (k - 1)/~ ( (a  + k- 2 d) ( r )  a + p a q) 
+In((a  +k-1 a t 1)(z)a+Paq) 
+ p ( a  + (r)a + ) ((a+k- 1 al)(~) a+p-1 a q) 

+ q ( a  + (z) a )  ( ( a  + k - 1 a z) (z) a + p a q - 1 ) (5,1 a) 

=kn  ((a +k- 1 d -  1) (z) a +p a q) 
+ (1 - 1) fl* ( ( a  + k a z - 2) (z) a + p a ~ ) 

+ p ( a ( r ) a + ) ( ( a + k d  1)(r)a+P-l a ~ 
+ q (a(z)  a )  ( (a  +k a t-  1)(z) a +p a q- 1). (5.1 b) 

In (5.1a) we have factorized with respect  to one of the 
a+ ' s  in the produc t  (a+kd)(z) and in (5.1b) with 
respect  to one of the a's in the same produc t  
(a+kd)(z). The corresponding factorizat ions with re- 
spect to an a or a + in the p roduc t  a+Pa ~ are also 
possible, because they lead to the same  result as 
(5.1 a, b). 
Gauss ian  correlat ion functions of  opera tors  with 
more  than two times can be found by analogous  
factorizat ion procedures  but  we will not  give them 
here since their form is obvious.  
For  z = 0  (5.1a, b) can be obta ined directly from 
(3.9) so tha t  (5.1a, b) lead to the same s ta t ionary  
density matrix,  of course. 
Further,  we remark,  that  the above  definition of a 
quan tum mechanical  Gauss  process is not  restricted 
to the M a r k o v i a n  case. In order  to get a Gauss  
M a r k o v  process, the corre la t ion functions must  have  
the special form (4.12). Since the p r o p a g a t o r  G+(t) is 
uniquely determined by the genera tor  F +, it is suf- 
ficient to look at the t ime rates of change of the 
correlat ion functions at ~ = 0. Therefore,  we differenti- 
ate (5.1a) with respect  to z > 0  and put  z = 0  after- 
wards. Using (4.10-12), the cyclic invariance of the 
trace, and the c o m m u t a t i o n  relat ions of a and a + we 
get: 

tr a+p aq{pF+ a+k a~_flpF+[a ' a+k- 1 a t] 
_ n p  F+[a+k- 1 a l, a + ] +/~ [a, pa +k- 1 a z] 

+fl[a, pF+ a+k- l  d]+/z[pa+k l aZ, a+] 
+ n[pF + a+k- 1 a t, a+l}  = 0 (5.2) 

where we have defined: 
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ti = l i r a  d ~;o ~ (a+ ('c)a) 

/~ = l i ra  d **0 ~-~ ( a + ( r ) a + ) '  

(5.3) 

(5.4) 

Equa t ion  (5.2) must  hold for all integers p, q > 0 .  
Because of the completeness of  the set a+Pa q, p, q 
=0,  1,2 . . . .  the second factor  under  the trace must  
vanish:  

p F  + a +k a l - t i p  F + [a, a +k- 1 a l]  

- n p  F + [a  + k -  i a l, a + ] +/~ [a, p a  + k -  1 a 1] 

+ fi[a, p F  + a +k- 1 d]  + t i [pa  +k- 1 d ,  a + ] 
+ n [ p F  + a+k- 1 d ,  a +] =0 .  (5.5) 

In order  to el iminate the density matr ix  p we mul-  
tiply Eq. (5.5) with p -  ~ and use the expressions for 
p - l a p  and p - l a + p  given in (3.24), (3.25)* to yield: 

(n + 1) [ r  +, L~+ ] + fl[L~ - Ra, V +] + n ERa+ , V +3 
ti[(n + 1) 2 -I/~r 2] - t i f f *  

= n ( n + l ) _ l f i l  2 L . ,  

tiff -4-/J(n 2 --]fi]2) La + ]~R a -  tiRe+ (5.6) 
n(n 4-1) - j i l l  2 

where we have in t roduced the left and right multipli-  
cat ion opera tors  with a and a + : 

L a U = a u (5.7 a) 

R a u = u a  (5.7b) 

La§ u = a  + u (5.7c) 

Ra+ u = u a  + (5.7d) 

where u is an arbi t rary  operator .  
Fur ther  we have used again the completness  of the 
ordered products  of  a and a +. 
(5.6) is a l inear inhomogeneous  equat ion for the 
generator  F + of a Gauss  M a r k o v  process. Besides 
(5.6) F + has to fulfill 

v + 1 = 0 (5.8) 

and 

F + u + = (F + u) + . (5.9) 

Equat ion  (5.8) guarantees  the normal iza t ion  of the 
density matrix.  It follows f rom the p roper ty  (i') of  the 
p r o p a g a t o r  G+(t). (5.9) follows f rom (4.9) and is a 
necessary condi t ion for the posit ivity p rope r ty  (ii') of  
G+(t). In the Append ix  B we show, that  the Eqs. (5.6- 
5.9) have at most  one solution. In the remainder  of  
this section we construct  this solution. 

* Here and in the following we assume n(n + 1)> [fir a

For  this purpose  we first give the c o m m u t a t i o n  re- 
lations of  the mult ipl icat ion opera to rs  (5.7) 

[ L ~ , L ~ + ] = I  (5.10) 

[Ro, Ro+] -- - 1  (5.11) 
[L. ,  Ra] = [La, Ra+] = [L~. ,  R~] 
= [ L . + ,  No+] =0.  (5.12) 

They follow immedia te ly  f rom the definitions and the 
c o m m u t a t i o n  relations of a and a +. 
Since the left hand  side of (5.6) is a sum of com- 
muta to r s  of the unknown F + with the mult ipl icat ion 
opera tors  and since the inhomogenei ty  of  (5.6) is a 
l inear combina t ion  of these mult ipl icat ion opera tors  
F + mus t  be bil inear in the mult ipl icat ion operators .  
Hence,  we are led to a bil inear ansatz  for F+: 

r§ x+, rl+ + X+~ r? (5.13) 

where 

Y1 + =c*(La+ - R a + ) + d * ( R , - L , )  (5.14) 

r2~ = c(R~ - L ~ )  + d(La+ - R .  +) (5.15) 

and where 

X ~  =No + fi*(Lo+ - R~+) + n(R a - La) (5.16) 

X~- =L~+ + f i ( n a - L a ) + n ( L a +  - n a +  ). (5.17) 

c and d are constants,  which are as yet undeter-  
mined. 
Several comment s  are in order:  
Both Y1 and Y2 acting on 1 yield zero; hence, the 
ansatz  (5.13) fulfills (5.8). No te  that  Y1 + acting on an 
arbi t rary  opera to r  u + yields the adjoint  of  Y2 + u. The  
same relat ion holds for X~- and X~-, correspondingly.  
Hence, the ansatz  has the p roper ty  (5.9). F + is the 
adjoint  of: 

r = Y1X1 q- Y2X2 (5 .18)  

where 

Y~ = c ( L ~ -  R.) + d ( R . .  - La+ ) (5.19) 

Y2 = c* (R.+ - L~+) + d* (Lo - Ra) (5.20) 

and where 

X 1 =R~+ + f i ( L a - n ~ ) + n ( R a .  - L . + )  (5.21) 

X 2 = L~ + fi* (R~ + - La+) + n(L. - R.). (5.22) 

Both X1 and X 2 acting on the s ta t ionary  density 
matr ix  p yield zero 

X 1 jO = X 2 f l  = 0 (5.23) 

as one finds f rom (3.13, 14). 
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Hence,  F vanishes when acting on the s ta t ionary 
density matr ix :  

rp =0.  (5.24) 

To find the as yet unde te rmined  constants  c and d we 
insert the ansatz  (5.13) with (5.14-17) into (5.6). Using 
(5.10-12) and the linear independence of the multipli-  
cat ion opera tors  (5.7) we get: 

f i ( n + l ) - f i f i *  
c=  n(n+ l )_ l f i l  2 (5.25) 

ri* f l * - / ~ * n  (5.26) 
d - n ( n  + l ) -  ]fil2 " 

Combin ing  (5.18-22) we obta in  the mos t  general gen- 
era tor  of  a s ta t ionary  quan tum mechanica l  Gauss  
M a r k o v  process for a single ha rmon ic  oscil lator with 
vanishing first moments .  It  reads:  

r = [c*(L~+ - R a + ) + d * ( R a - L a )  ] ERa+fl*(L.+ -Ra+)  
+ n(Ro - L ~ ) ]  + [c(R.  - L a )  +d(L.+ - R~ +)] 

. [L.+ +f i (Ro-L~)+n(Lo+ -Ro+) J  (5.27) 

where c and d are given in (5.25, 26). No te  that  F is 
expressed complete ly  in terms of the static second 
m o m e n t s  n and fi and the t ime rates of change of the 
s ta t ionary correlat ions (a+( t )a )  and (a+( t )a  +) at t 
= 0  -u" 
For  the case of non vanishing first m o m e n t s  

c ~ = ( a )  (5.28) 

c~* = ( a  + ) (5.29) 

we find for the cor responding  genera tor  F~ an ad- 
di t ional  t e rm 

F~=_F-(c~* + dc~)(La- R,)  
+ (c* ~ + dc~*)(La + - R~ +) (5.30) 

where F is given by Eq. (5.27) and  where n and fi now 
have the meaning  of Second cumulants  

n = ( a  + a )  - I cq  / (5.31) 
fl = ( a  + 2) _ ~,  2. (5.32) 

c and d are still given by (5.25) and (5.26). The  
addi t ional  te rm in (5.30) may  be writ ten as a com- 
m u t a t o r  with a Hami l t on i an  H a 

F~ = F  - i E H  ~, -] (5.33) 

describing the coupl ing of a constant  external force 
F:  

H a = F *  a + Fa  § (5.34) 

of the form 

F=i (c~*  +d* ~). (5.35) 

6. The Mean Relaxation and Stationary 
Correlation Functions 

Both, the relaxat ion of the first m o m e n t s  f rom a 
nonequi l ibr ium state and the dynamics  of the sta- 
t ionary correlat ion matr ix  are governed by the 
Heisenberg opera tors  a(t), a + (t): 

a(t)=G+(t)a,  a+(t)=G+(t)a +. (6.1) 

According to (4.10) the equat ion of mo t ion  for a § (t) 
reads 

d + ( t )=  G +(t) F + a +. (6.2) 

Using (5.13-17) we get 

F+ a + = - c a  + - d *  a (6.3) 

which yields with (6.1), (6.2) 

d + (t) = - ca + ( t ) -  d* a(t). (6.4) 

With (4.9) we immedia te ly  find the equat ion  of mo-  
tion of a(t): 

a(t) = - da § ( t ) -  c* a(t). (6.5) 

The initial condit ions are 

a + (0) = a + (6.6) 

a(0) =a .  (6.7) 

Using matr ix  nota t ion  the solut ion reads 

(a+(t) 1 = e - ~ t  ( a+ ) (6.8) 
\ a(t) ] 

where 

The  eigenvalues of the matr ix  7 are found to be 

21 ,2=  -~c + _ i ] ~ - I d l  2 (6.10) 

where ~c and - c o  denote  the real and imaginary  par t  
of c, respectively 

c =  - ico + ~c. (6.11) 

The  stability of  the s ta t ionary solut ion requires a 
posit iv to*. 

* A deeper reason for ~c to be positiv lies in the positivity property 
(ii) of the propagator 



372                                          

For o) 2 larger, equal or smaller than ]dl 2 the annihi- 
lation and creation operators in the Heisenberg pic- 
ture display damped oscillatory, critically damped or 
overdamped motions accordingly. For example in the 
case co2> [d[ 2 the time evolution of a+(t) reads: 

a+ (t)=e-~t {a+ (c~ + i ~ sin c% d 

- a  - -  sin coet (6.12) 
cod 

where 

c o d = l / ~ -  Idl 2 . (6.13) 

The average of (6.8) over a nonstationary density 
matrix P0 yields the relaxation of the mean values of 
the creation and annihilation operators from the 
initial nonequilibrium values {a)o, (a +)o: 

a+ (t))~ ( {a+)~ ] (6.14) {a(t))o / =e-' t  \ (a)o ]" 

Hence, we find exponential relaxation for the first 
moments which extends a wellknown property of 
classical Gauss Markov processes [14]. 
The stationary correlation matrix is given by 

((a+(t)a) (a+(t)a+)] (6.15) C(t)= \ (a(t)a) (a(t)a +) ]" 

From (4.12) and (6.8) we find the same exponential 
behaviour as for the relaxation of the moments: 

C.. fe-"C(O) for t > 0  (6.16) 
(t)=lC(O)e-~+l'l for t<0.  

Again, this is in accordance with the classical results 
[14]. 
In passing we remark that the expressions (5.25, 26) 
for c and d in terms of h and fi can be obtained in a 
particularly simple way by computing the time de- 
rivative of (6.16) at t = 0  +. The Eqs. (6.14) and (6.16) 
show that the mean relaxation from a nonstationary 
state and the time evolution of the stationary cor- 
relations obey the same law which means that On- 
sagers regression hypothesis extends to quantum 
fluctuations litterally. 

7. Conclusions 

Starting from Gaussian factorization properties for 
mean values and correlation functions we have de- 
rived the most general form of the stationary density 
matrix and the generator for a Gauss Markov pro- 
cess of a quantum mechanical oscillator. We have 

found that the generator is determined entirely and 
uniquely if the first and second static moments as 
well as the relaxation constants for the first moments 
are known. 
Special cases of the generator derived in this paper 
have previously been obtained from 
based on microscopic models. If we put 

n = y t ( 7 r  -1 (7.1) 
fi =0  (7.2) 
c =  - ico + (7r (7.3) 
d = 0  (7.4) 

calculations 

where 0<7r <yr we find for the generator acting on a 
density matrix p: 

Fwu p = - ico[a + a, p] + 7+ ([a, pa + ] + Eap, a+]) 
+ 77([a +, pa]  + [a* p, a]). (7.5) 

FwH has been derived by W. Weidlich and F. Haake 
[15] for a harmonic oscillator coupled to a heat 
bath. 
For a slightly different coupling to the heat bath G.S. 
Agarwal [16] has derived the generator 

CAp =Fwn p + ~ ([a + p, a + ] + Ea, pa]) 
+ 7r ([ a+, p a+ ] + [ap, a]) (7.6) 

which corresponds to the following particular choice 
of the parameters in our general expression 

n=yl(~r162 -1 (7.7) 
/~ : 0  (7.8) 

c =  - ico +(7r (7.9) 
d=?r -Yt  (7.10) 

where 0<7~ <y , .  
The two particular choices (7.5), (7.6) of Gauss Mar- 
kov generators have been discussed in the literature 
quite frequently [17, 18, 19]. A discussion of the 
general case including the spectral representation of 
the generator (5.27) which allows for an explicite 
construction of the propagator will be given in a 
subsequent paper. 
However, the main dynamical aspects have been dis- 
cussed already in the present paper. The relaxation of 
the first moments is exoonential as it is the case for 
classical Gauss Markov processes and as one hence 
expects from Ehrenfest's theorem. The exponential 
decay of the correlation matrix which we have found 
on the basis of a Gauss Markov assumption can also 
be obtained as a consequence of an assumed expo- 
nential mean relaxation and the quantum regression 
hypothesis [20]. 



                                         

The present work is incomplete in so far as we have 
not fully utilized the positivity property (ii). It re- 
stricts the range of values of the parameters n, fl, c 
and d. For instance, it rules out the choice of parame- 
ters leading to (7.6) which is consequently not a 
wellbehaved propagator.  

It is a pleasure to thank Prof. W. Weidlich for his support and to 
acknowledge valuable comments by Dr. H. Grabert. 

Appendix 1 

Uniqueness o f  the Stationary Density Matr ix  

Let u be an operator with trace equal unity satisfying 
(3.13), (3.14). First we investigate the question if u is 
hermitian. For this purpose we decompose u into a 
hermitian and an antihermitian part: 

u =h a +ih  2 (A1) 

where 

h i = h + i = 1, 2 (A2) 

and 

tr h I = 1 (A 3) 

tr h 2 = 0. (A4) 

One easily finds that h 1 and h 2 satisfy (3.13) se- 
perately: 

hia+ +fi[a,  h i]+n[hi ,  a+]=O, i=1 ,2 .  (A5) 

Since hi and h 2 are hermitean (3.14) is an immediate 
consequence of (A5) and hence, needs not to be 
considered further. 
Now we inspect the expectation values of the powers 
a+ka ~ with respect to  h 2 

G, l= t ra+ka lh2 ,  k, l=0 ,  1, 2 . . . . .  (A6) 

Because of (A2) % ~ obeys the relation 

ck* (A7) l = C l ,  k  9 

Multiplying (A5) with a I from the left and a +k from 
the right one gets 

% l = ( k - -  1) f lG-2,  z + l n G -  1, l-  1 

C 1 , 0 = 0  

c11=lnco, z_l / = 1 , 2  . . . .  

G, o = (k - 1) tick_ 2. o 

k = 2 , 3  . . . .  
I = 1 , 2  . . . .  

k = 2 , 3  . . . . .  

(A 8) 

(A9) 

(AIO) 

(All) 
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From (A4) we find 

Co, o =0. (A 12) 

The recursion relation (A l l )  with the initial con- 
ditions (A9), (A12), yields 

% 0 = 0  k=0 ,  1, 2, ... (A13) 

with (A7) we find from (A13) 

Co, l = 0  /=0,  1,2 . . . .  (A14) 

Now (A10) yields 

Cl , l=0 /=0,  1,2, . .  (A15) 

Beginning with (A14), (A15) we get by induction 
from (A8) 

G ,z=0  k, l=0 ,  1, 2, .... (A16) 

With the definition (A5) and the completeness of the 
ordered products it follows from (A16), that h 2 must 
vanish. Hence, any solution must be hermitean. 
To prove the uniqueness of u we assume that there 
is another solution v different from u. The difference 
x = u - v  is hermitean, has vanishing trace, and fulfills 
(A4). Exactly these conditions forced h a to vanish, so 
x does, contrary to the assumption. Hence, the un- 
iqueness of the solution of (3.13), (3.14) is proved. 

Appendix 2 

Uniqueness o f  the Generator 

In order to prove the uniqueness of the solution of 
(5.6), (5.8) and (5.9) we assume that there is a second 
solution. Then, the difference A of the two solutions 
must be a nontrivial solution of the homogeneous 
equation 

( n + I ) [ A ,  La+]+f i [L~-Ra ,  A ] + n [ R o + , A ] = O  (B1) 

satisfying the constraints 

A1 = 0  (B2) 

Au  + =(Au) +. (B3) 

Acting on a+ka z (B1) yields 

Aa+k+ 1 a f _ a  + Aa+k a I + n([Aa+k d ,  a +] 
_ 1Aa+k a 1 - 1) + fl([a, Aa  +k al] 

- k A a + k - l a Z ) = O  for k , / = 1 ,  2 . . . .  (B4) 

Aa+k+ 1 _ a + Aa+k + n [Aa +k, a + ] + fi([a, A a  +k] 

- k A a + k - 1 ) = O  for k = l ,  2 . . . .  (B5) 
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A a  1 -  a + A a  I + n ( [ A d ,  a +] - l A d -  1) 

+f i[a ,  AaZ]=O for / = 1 , 2  . . . .  

and  

A a  + = 0  

where we have used (B2). 
Star t ing with (B 7) we find f rom (B 5) by induct ion  

(B6) 

(B7) 

A a + k = 0  for k = 0 , 1  . . . . .  (B8) 

Wi th  (B 3) we get 

A a  l=O for l = 0 , 1 , . . .  (B9) 

s tar t ing with (Bg) we find f rom (B4) by induc t ion :  

A a + k d = O  for k , l = 0 , 1  . . . . .  (B10) 

Because of  the comple teness  of the o rde red  p roduc t s  
A vanishes itself: 

A=O.  ( B l l )  

This is in con t rad ic t ion  to the assumpt ion .  Hence,  F + 
given by (5.27) is the unique so lu t ion  of the  (5.6), (5.8) 
and (5.9). 
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