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The mean time for the trajectory of a randomly perturbed system to leave a domain of attraction is determined in the
limit of weak noise. The method applies for the decay of metastable states and it generalizes results of nucleation theory.

The rate of decay of ametastable state is a key ele- equation on the domain of attraction of the metastable
ment in the analysis of various physical phenomena, state.
such as the dynamics of first-order phase transitions, We assume that an autonomous dynamical system
of chemical reactions and of multistable systems in op- in phase space F
tics electronics etc. The state of these systems is sup- x’=K’(x) x(xl x’~)EF (1)
posed to be determined by macrovariables, governed
by a Fokker—Planck equation. In order that metasta- has a connected attractor with a domain of attraction
bility shows up we assume that the noise is weak, and ~2C F. The boundary ~f2is supposed to be smooth.
we focus on the leading terms when the noise intensi- If the system (1) is pertrubed by white noise the dura-
ty ( )goes to zero. In this limit decay rates were eva- tion of stay within ~ is generally finite, even if the
luated by Kramers [1] and for higher-dimensional noise is arbitrarily weak.
systems by Landauer et al. aiid Langer [2]. Their ap- The perturbed motion is described by the Fokker—
proach, based on a current-carrying solution of the Planck operator L
stationary Fokker—Planck equation, has been used e.g. .

L=—a.K’(x)+~ea.a.D”(x) (2a)in nucleation theory. However, its applicability seems 1 1 1
to be restricted to systems with detailed balance and with the adjoint
with essentially one single transition state (saddle L~— K” ~ + ~D’i’ ‘a a
point). These restrictions can be dropped in the frame. — ~ 2 e ~x / . (2b)
work of another approach, the idea of which consists The mean exit time t(x) from the starting point x E ~l
of surrounding the domain of attraction of the meta- is given by [3]
stable state by an absorbing boundary and to consider
the mean time until “absorption” occurs. The resulting L~r= —1, with t 0 ona~. (3)
equation for the mean first passage time is exact for By integrating eq. (3) with a function w(x) that satis-
any noise strength e. In one dimension it can be solv- fies
ed analytically [3], and in the multidimensional case —

with a gradient drift field and withunit diffusion it Lw — 0, (4~
was solved in the limit e -÷0 byMatkovsky and Schuss one obtains
[4]. Steps towards the discussion ofmore general equa-
tions were made by Schuss [5]. ~ f dS~wD’ia1t=_fdnxw. (5)

For the general case we establish a formula for
the leading term of the mean first passage time, in-
volving a solution of the stationary Fokker—Planck For small diffusion (e —~0) a trajectory starting within
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~‘lwill typically first approach the attractor and stay the normal component of the drift is by assumption
within its neighbourhood for a long time (compared
with time constants of the deterministic motion), un- K~= gr°~

(12)
til it is carried back to the boundary by the noise. (g constant with respect to r)
Therefore t~x)assumes the same (large) value T every-
where in ~l, except for a thin layer ~h along the and the gradient of p is obtained from eq. (10) as
boundary, where the small diffusion is still sufficient
to cause a direct exit. Accordingly arp = (2g/Dn/(~) on aci. (13)’

Inserting eqs. (13), (11) and (9b) into eq. (7) gives
t(x) = Tf(x)

(6) T=(2/e(a+ h))0eI(~~1)F(h/(a+ 1)) (14)
withf(x) I for x E ~2—

and X (fd~2xw/f 5rw~1)g1~~~1))Iaii
T = — fd~ixw / ~ f dS~wD&’a1f. (7) Clearly, for an integer a

g=(a!)
1(a )~Kr (15)rSince T’ O(exp c_i) [6], and since ~ shrinks to aci The mean first passage time is thus expressed in terms

for  -~ 0 which will be confirmed below, eq. (3) be- of the function w and of the boundary af2. The transi-
comes tion states may form an arbitrary subset of ~ and no

assumptions have beenmade about the nature of the at-
L~f~0 in ~ withf= 0 on acz tractor. Once the boundary, which is supposed to
andf~1 on the inner boundary of ~ (8) be smooth, is known, D’T, as well as g, are readily eva-

luated. For the function w one may choose any solu-
At ac~the normal component of the drift field vanishes. tion of the stationary Fokker—Planck equation. The
If it decays with power a (a> 0, typically a = 1), an irrelevance of boundary conditions for the mean first
ansatz satisfying eq. (8) in ~ is passage time will be proved elsewhere. A solution is

p (x) trivially found whenL admits detailed balance [7].
f(x) =N f dz exp[_za+l/(a + 1)e] , (9a) Then w takes the form

0 w(x,e)=N(e)z(x)exp[—cb(x)/e] , (16)
with for all e> 0, with ~ and z independent of e.

N~ = e1/(~1)(a+ 1)°/(~’)F[h/(a+ 1)] , (9b) In fact only the leading term of w for  -+0 is requir-
ed, and, whether or not detailed balance holds, the

where in the limit  -÷ 0 p(x) is determined by expression (16) leads to an asymptotic expansion,

Kia~p— ~D’J(a~p)(a
1p)p~= 0. (10) analogous to the WKB or eikonal approximation [8,9].The fact that this ansatz selects a subset of the possible

Bearing in mind that on ac~the normal component of solutions is immaterial in view of the above remark con-
the drift vanishes, one can show that there always ex- cerning boundary conditions, and even convenient
ists a solution of eq. (10) vanishingeverywhere on ~f2 since 0 is a Lyapunov function for the system (1) [91.
and increasing towards the attractor. In eq. (7) only For the boundary integral in eq. (14) only the absolute
the gradient of that solution on ac~is required, since minimum of 0 on acz prevails. If it is assumed at isolat-

ed points, the saddle point method applies. Due to the
a~f=Na~pona~. (11)
Note, that the width of i~ is thusproportional to

*1 We require that the transformation to the new coordina-
as eq. (10) for p does not involve e. In a coor- tes has an inverse in Mi including act. Then the expo-

dinate system in the boundary layer ~ with one axis nent a in eq. (12) as well as the expression (14) for Tare
(r) along Vp and with all other axes lying in a&~~ invariant.
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