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A phenomenological stochastic modelling of the process of thermal and quantal fluc- 
tuations of a damped harmonic oscillator is presented. The divergence of the momen- 
tum dispersion associated with the Markovian limit is removed by a Drude regulari- 
zation. The variances of position and momentum are evaluated in closed form at 
arbitrary temperature and for arbitrary damping. Properties of real and imaginary time 
correlation functions are discussed, and a spectral decomposition of the equilibrium 
density matrix is given. 

1. Introduction 

There has been renewed interest recently in the 
theory of quantum mechanical stochastic processes. 
About two decades ago, the problem to describe 
damping of a quantum system has been investigated 
in detail, mainly in the context of quantum optics 
and spin relaxation theory. The results of these stud- 
ies have been presented in various books and re- 
view articles [1-4]. However, apart from formal 
work, most of the results were restricted to very 
weakly damped systems, where the relaxation times 
are long compared with the periods of the reversible 
motion and also long compared with the "thermal 
time" h/kBT. Therefore, these methods cannot be 
used to treat systems at low temperature. 
On the other hand, progress in cryogenic engineer- 
ing has motivated recent work on the influence of 
damping on low temperature quantum systems 
[5, 6]. Numerous further articles are quoted in the 
paper by Caldeira and Leggett [6] which also may 
serve as a general introduction into the field. Most 
of these approaches originate from the functional 
integral techniques developed by Feynman [-7, 8]. 
While these sophisticated methods are very powerful 
indeed, several interesting properties of quantum 
stochastic processes at low temperature can be ob- 
tained by extending the phenomenological methods 
familiar from the theory of classical stochastic pro- 
cesses [9] to the quantum regime. 
In this article, we investigate the quantum dynamics 

of a damped harmonic oscillator. A detailed review 
of previous work on this problem has been given by 
Dekker [10]. Most of the phenomenological models 
are in contradiction with general principles, and 
those derived from microscopic models are based on 
approximations that cannot be made at arbitrary 
temperature. In Sect. 2 we present a consistent sto- 
chastic modelling of the process of thermal and 
quantal fluctuation using phenomenological conside- 
rations. The resulting position autocorrelation func- 
tion" of the damped harmonic oscillator is discussed 
in Sect. 3. 
In the theory of classical Markov processes it is well 
known that higher order sum rules are divergent. In 
the quantal case, such a divergence is already met 
with the sum rule for the momentum dispersion [6]. 
In Sect. 4 we study in detail a regularization of this 
divergence. This is necessary in order to have a well- 
defined equilibrium state, the properties of which are 
discussed in Sect. 5. It is shown that the ground state 
of a damped oscillator is not a pure state. Finally, in 
Sect. 6 we present our conclusions. 

2. Stochastic Modelling 

For classical systems whose deterministic irreversible 
equations of motion are known, a stochastic theory 
including thermal fluctuations can be formulated on 
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the basis of phenomenological considerations [9, 
11]. This stochastic modelling of classical irrever- 
sible processes is possible because of the intimate 
connection between thermal fluctuations and dissi- 
pation [12, 13J. For quantum systems a general 
method for the formulation of the stochastic theory 
has only been given in the limit of a weak damping 
[1-4]. In this case one has 
7~COo 

and 

(2.1) 

h7 ~ kB T (2.2) 

where ? is a typical damping constant (inverse relax- 
ation time) and ~o o is a typical frequency of the 
reversible motion. These inequalities do not exclude 
quantum phenomena since we may have ha) 0 >kBT. 
However, they do exclude an application of the ap- 
pr.oach to low temperature phenomena. If the in- 
equality (2.2) ceases to hold, there arises a com- 
plicated interplay between thermal and quantal fluc- 
tuations which seems to require a statistical- 
mechanical treatment in general. 
On the other hand, a damped harmonic oscillator is 
a system simple enough to enable a study of its 
quantum-mechanical stochastic process by using 
only phenomenological considerations for the whole 
range of the dimensionless parameters 

? 
tc = (2.3) 

2~o 0 

and 

ho) o a=~cB~. (2.4) 

We base the stochastic modelling upon the following 
three principles: 
(i) The mean values obey the classical equations of 
motion according to the Ehrenfest theorem. 
(ii) The response functions and the equilibrium cor- 
relation functions are related by the fluctuation- 
dissipation theorem (FDT). 
(iii) The stochastic process is a stationary Gaussian 
process. 
While the first two principles are of general nature, 
the Gaussian assumption can only be made for lin- 
ear systems with linear damping. 
For a harmonic oscillator of mass M, coordinate q, 
and momentum p, which is damped by a frictional 
force - 7P, the classical equations of motions read 

1 c ) = ~  p (2.5) 

~= - M o ) 2  q -  yp. 

Thus, by virtue of Ehrenfest's theorem, we obtain for 
the average position (q(t)) of a damped quantum 
oscillator the equation of motion 

2 1 (q(t)) + ~ (O(t)) + COo (q(t)> = ~ F(t) (2.6) 

where we have added an external force F(t). The 
response of (q(t)) to this force is given by 

+co 
(q(t))= ~ dsz(t-s)F(s) (2.7) 

-co  

where 
1 _ L  t )~(t)=O(t) ~ e 2 sinh((t) (2.8) 

is the response function. Here 0(t) is the unit step 
function 

0( t )=~l  for t > 0  (2.9) l0 for t < 0  
and 

( = ] / ~ - c o g .  (2.10) 

As is well-known, the response function (2.8) of the 
quantum oscillator coincides with the classical re- 
sponse function [6]. 
The dynamic susceptibility 

)~(co) = ~ d te  i~ )~(t) (2.11) 
0 

takes the form 

1 1 
)~(60) = ~  c9~_ co2 _ i7 c9 = Z'(co) + iZ"(~o). (2.12) 

Its imaginary part 

1 760 
if(co) = M (co 2 - oo2) 2 + 7 2 (.0 2 (2.13) 

iS related to the spectral density 
+co 

J(co)= ~ dt e'~ q(O)) (2.14) 
--09 

of the position fluctuations in thermal equilibrium 
by the FDT [14 3 

. 1 Z ( c o ) = ~  (1-e-~r'~ (2.15) 

where fi = 1/k B T. 
From (2.14-15) we can determine the position auto- 
correlation function, and find that it may be written 
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h e - i a ,  t +oo do) Z"(r e_,a ~ (2.16) (q(t)q(O))= [. ~ 1 -  
- o o  

which combines with (2.13) to yield 

h ~ dco 7co e-~~ 
( q ( t ) q ( O ) ) = ~ _ ~  ~ (co2 co2)2+72co2 l_e_t~ho ,. 

(2.17) 
Because of gl=p/M, the other pair correlation func- 
tions are given by 

(p(t) q(O)) = M  ~ (q(t) q(O)) 

(q(t) p(O)) = - M  ~[ (q(t) q(O)) (2.18) 

( p ( Q p ( O ) ) = _ M  2 ~32 ~ 2  (q(t) q(O)) 

where we have made use of (q(t) c1(0)) = - (gl(t) q(O)) 
which is a consequence of the stationarity of the 
stochastic process, that is 

( q(t) q(t') ) = ( q ( t -  t') q(O) ). (2.19) 

In view of the Gaussian property, correlation func- 
tions of an odd number of position and momentum 
variables are vanishing, while correlation functions 
of an even number are given by the sum of all 
factorized pair correlation functions where the order 
of the variables of each pair has to be preserved 
[15]. For example: 

( q(t) p(t') q(t") p(O) ) = ( q(t) p(t') ) ( q(t") p(O) ) 
+ (q(t) q(t")) (p(t') p(O)) 
+ (q(t) p(O)) (p(t') q(t")). (2.20) 

Hence, the quantum-mechanical stochastic process 
of the damped harmonic oscillator is determined 
completely by the aforementioned principles. 

3. The Position Autocorrelation Function 

In the quantal case, the position autocorrelation 
function 

J (t) = ( q(t) q(O) ) (3.1) 

is a complex valued quantity. From (2.16) we see 
that J(t) can analytically be continued to complex 
times z=t - ihc~  where 0__<c~<fi. The integral 

-t-oO d(z)= ~ do) hz"(co )e - i ~  
~z l --e -~h~ (3.2) 

- c o  

may be evaluated by contour integration. In the 
lower half-plane, )('(co) has two poles at c o = - i 2 1 ,  2 

where 
7 

21, 2 =~-+ ~ (3.3) 

are the roots of the characteristic equation of the 
damped oscillator, while [ 1 - e - ~ ~  -1 has an in- 
finite sequence of poles at c o = - i v ,  (n= l ,  2, ...) 
where 

2n 
v , = ~  n. (3.4) 

By summing up the residues, we find for t > 0 

ih ( e-;o~ ~ e-~2~ ~ 
J ( z ) = ~ M  ~ \l-er~ffx, 1 ~ ]  

27 ~, v, e-'"~ 
Mfi (v~ 2 2 2 '  (3.5) .=1 - 2 J ( v . - 2 9  

Since Z"(-co)=-Z"(co) ,  it is readily seen from (3.2) 
that 

J ( t -  ihfl) = J (  - t)--- (q(0) q(t)). (3.6) 

Furthermore, (3.2) gives 

J(z) = J(--c*)*. (3.7) 

Hence, for imaginary times z = - i h c r  the correlation 
function Y(r) is real and periodic, d(-ihfl)=d(O), 
and it can be expanded into a Fourier series. The 
last term in (3.5) is already of this form, while the 
remaining terms may be written 

ih [ e -; '~ e -z2~ 
2 M (  ~ l - e  i ~ '  1 ~ - ; S ]  

1 +r e -v~z  K ~  
(3.8) 

Mfl . Z .  co ( v . -  2 , ) ( v . -  22) 

which combines with (3.5) to yield 

1 +~o e - V ~  

J ( Z ) = M f l , = _ Z  cg{+v~+Tlv.I (3.9) 

for z =  - i ha ,  O<-_a<fi. The Fourier coefficients 

1 1 
J(v , )=Mfl  2 2 (3.10) c%+v. +Tlv~ 

of the imaginary time correlation function can be 
related directly to the dynamic susceptibility X(co). 
From (3.2) we have 

fl~ fl +~~ dco Z"(co) Y(v,,) = ~ d~e-i""~' J ( - i h ~ )  . . . .  
o _~ 7C CO+iv n 

+~ dco coX(co) 1 Im f (3.11) 0 ) 2  2 fi _ ~ +v ,  
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where we have made use of Z"(co)=-Z"(-co). The 
last integral may be evaluated by contour integra- 
tion. Since Z(co) is analytic on the upper half-plane, 
we have 

= J ( -  v,)=~ z(iv,) (3.12) J(v,) 

for v>=0. 
The real time correlation function J(t) is con- 
veniently written as 

J (t) = S(t) + iA(t). (3.13) 

In view of (3.7), the real part S(t) is the symmetrized 
correlation function 

S(t) = S ( -  t) =  89 < q(t) q(O) + q(O) q(t) > (3.14) 

while the imaginary part is connected with the ex- 
pectation of the commutator 

A(t)= - A ( - t )  = 1  <[q(t), q(0)]>. (3.15) 

Because of 

1 1 1 ( 2  ) 1 - e  -eh'~ = 2 + 2  coth flhco (3.16) 

and Z"(-co)= -)('(co), we find from (2.16) 

h +f do)Z,,(co)coth(~fihco)cos(cot) (3.17) 7-  
and 

h +~ do) Z" (co) sin (co t). (3.18) A ( t ) = - ~  -~o ~ -  

The last integral gives 

h A(t)=- - A ( - t ) =  - ~  Z(t) (3.19) 

for t=>0. From (3.15) and (3.19) we see that the 
response function Z(t) is related to the expectation of 
the commutator Eq(t), q(0)] in the familiar way 

i Z(t) = O(t) ~ ([q(t), q(0)]>. (3.20) 

For z= t>0 ,  the real part of (3.5) gives for the sym- 
metrized correlation function 

ih [coth (~ flhA2) e_Z~ ts(t) 

-coth (~ flh2~) e-X~']-C(t) (3.21) 

where 

27 vn e -v~t 
n = l  2 - - / ] ' 1 )  (Idn - -  ~ 2 )  " 

(3.22) 

The RHS of (3.21) is real since 21 and 22 are real or 
complex conjugate quantities, respectively. 
At finite temperatures, F(t) decays as exp(-vl t) .  
Hence, for hT~kBT it decays much faster than the 
remaining terms and may be disregarded. On the 
other hand, since v 1 =2~kBT/h, the part F(t) domi- 
nates the long time behaviour of S(t) at very low 
temperatures. In particular at T=0 an asymptotic 
analysis shows that 

h7 1 
S(t)~ 7zMco4 t2 for t--~oo. (3.23) 

This algebraic decay for long times is an interesting 
quantum phenomenon. 

4. Dispersion and Drude Regularization 

The dispersion of the position in the equilibrium 
state is given by 

1 +~ 1 
( qZ>= d (O)-M fl ,=~-oo CO2o + V2 + 7 Iv, I (4.1) 

where we have made use of (3.9). This may be trans- 
formed to read 

{q2) Mflco~ t - ~ -  ~ . (4.2) - . = 1  v . + ; o 2  v,+21 
Now, by use of the formula [16] 

(_ 1 n lz2) :O(z2)_O(zO,  (4.3) 
n=O \l~ + Z I 

where the psi function is the logarithmic derivative 
of the gamma function, we obtain from (4.2) 

1 h <q=> = ~ + @  [~#(i + 2z/v ) -  ~(I + 22/v)] 
(4.4) 

where v = v 1 =2~/hfi. 
From (2.10) and (3.3) we have 

fih2a,2 = 0.(~c + l / ~ -  1) (4.5) 

where the dimensionless parameters ~ and a have 
been introduced previously. Thus, for high tempera- 
tures (a = flhco o ~ 1, 0.~ =  89 ~ 1), we may expand 
the psi functions in (4.4) about 1 to yield 

2 kBT [1 +0(0.3)] (4.6) <q > = ~ z  ~ +112 0 .2 



                                              

On the other hand, for low temperatures (~r, o~:>> 1) 
we may use the asymptotic expansion of the psi 
function to find 

[; In 
h 

( q 2 ) - 2 M 0 ) o  V~2 1 + ~ - ~  2 + 0   9 

4.7) 

The zero temperature (a=oo) result for (q2)  has 
also been given by Caldeira and Leggett [6J. We 
note that for ~c < 1 

1 In [(~c +1/ /~  - 1 ) / ( ~ - 1 / ~ -  1)] 

1 (2  
1 --n arc tan (4.8) 

so that (4.7) gives the correct dispersion (q2) 
= h/2M0) o of the position of an undamped oscillator 
0c=0) in its ground state. For finite ~ the dispersion 
(qZ) is diminished. 
Using (2.18) and (3.2), we find that the dispersion of 
the momentum in the equilibrium state is given by 
the sum rule 

( p 2 ) =  _ M  2 ~2 = M  2 do) h0)2X"(0)) (4.9) 
~t ~J(0l t=o ~ 7 1 - e  -p~'~' -oo  

The integral is logarithmically divergent which is a 
consequence of the fact that we have treated a Mar- 
kovian model with frequency-independent damping. 
In reality, the damping coefficient approaches zero 
at high frequencies. In the following, we shall treat a 
Drude-model with the frequency-dependent damping 
coefficient 

y(0))_ 70)B (4.10) 
0)D--i0) 

which is associated with the classical equation of 
motion 

t 1 
q(t)+0)Z q(t)+ 7 ~ dS0)De-o'(t-S) gl(S)= M F(t). (4.11) 

- o o  

The Drude frequency 0)B is supposed to be much 
larger than 0)o and 7 so that the memory is short on 
the time scale of interest. 
The line of reasoning followed in the preceeding 
sections can easily be transferred to the case of 
frequency-dependent damping. The dynamic suscep- 
tibility now takes the form 

1 1 
X(0)) = ~  cog_ 0)2 _ i0) ?(0))' (4.12) 

91 

For the Drude model (4.10),)~(c0) has three poles in 
the lower half-plane at 0 ) = - i 2  k (k= l ,  2, 3), where 
the 2 k are the roots of the cubic equation 

23 - - 0 ) D  "~2 -t-(0)02 + 7 0)D) "]~ -- 0)D 0)~ =0 .  (4.13) 

These roots satisfy the relations 

21 +22+23=0)D 
21 22 + 22 23 + 2a 21 = 0)2 + 7 0)B (4.14) 
21 22 J,3 = 0)D 0) 2  9 

For 0)D>>0)0, 7, one finds that the roots are approxi- 
mately given by 

7 (4.15) ;~2=~-~ 
 9 ;L3 = 0 ) D - -  7 

where terms of order 0)o/0)v and Y/0)D have been 
disregarded. 
By virtue of (3.12), the imaginary time position auto- 
correlation function may be written 

1 +0o e-V.~ 
d(Z)=Mfl nYoo 0)2 +V2 + 70)DIVnl/(0)D+IV.[) (4.16) 

where z = - i h a ,  O<a<fi. From (4.16) we obtain for 
the dispersion of the position in the ground state 

1 +co 1 

(q2)=Mfi ,=~_~ 0)2_}_V2 q_ 70)DIVnI/(0)Dq_IVn[). (4.17) 

This sum may be written 

1 0 
( q 2 ) _  - -  lnZ'  (4.18) 

M/?0)o •0)o 

where 

Z ' -  v, (4.19) 
h~0)o .=1 0)2o + V~ + 70)~lv.I/(0)D +lv.I)" 

Furthermore, by means of an infinite-product repre- 
sentation of the gamma function [16] and the re- 
lations (4.14), we find 

z ' -  h/~0)o r(;1/v) r( ;dv) r ( q / v )  (4.20) 4/'C 2 /'(0)O/V) 

Using the approximate roots (4.15), one may easily 
show that (4.18) and (4.20) yield for (q2 )  the pre- 
vious result (4.4) apart from corrections of order 
0)0/0)B and 7/0)D. 
From (4.16), the imaginary time momentum cor-  
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relation function is found to read 

Jp(z) = - M  2 02 Y(z) 
c~,c 2

_ m +co~ Vn2 e--Vnz 

fi .:  -~o co~ + v2. + ~coolv.lAcoo +lv.I) (4.21) 

for z =  -ihot, 0<c~<//. The Fourier series (4.16) con- 
tinues the correlation function d(z) periodically to 
all imaginary times z=- ihc~ ,  while it provides an 
analytical continuation of the real time correlation 
function in the interval 0<c~<//, only. As a con- 
sequence of this continuation beyond the physical 
region, J(z) has cusp singularities at r=ih//n, (n=0, 
_+ 1, _+ 2 . . . .  ) which lead to 6-function singularities of 
dp(z). To obtain the dispersion of the momentum in 
the equilibrium state, we must take the limit 

(p2)= lim dp(-ihe) (4.22) 
~:~0 + 

which gives 

2 M +0~ co~ + ~cov Iv.I/(cov + Iv.I) (4.23) 
(P } = ~  o=-Y~o co2 + vZ. + ~coolv.I/(cov +lv.I)" 
The same result can be obtained from (4.9) by con- 
tour integration. 
From (4.17) and (4.19), one easily shows that (4.23) 
may be written 

(p2) = M 2 co~ (q2) + A (4.24) 

where 

2M? 0 A =- lnZ'. (4.25) 

Using the approximate roots (4.15), one obtains 
from (4.20) and (4.24) 

A hTM [20 (1+23 /v )_  (1 +2~)~b(1+21/v)  = 

- ( 1 - 2 ~ )  r +22/v)] (4.26) 

where terms of order COO~COD and 7/COD have been 
disregarded. For very high temperatures (//hcoD~l) 
one can expand the psi functions about 1 to give in 
leading order 

A = h 2  YMco~ (4.27) 
12kBT 

Thus A vanishes at high temperatures, and the cor- 
rect classical ratio of @2) and (q2) is recovered 
from (4.24). For lower temperatures where flhcoD>> 1, 

the main contribution to A comes from the first 
term in (4.26) and it reads 

hTM 
A ~ in (//hcoo). (4.28) 

Note that (4.28) may be the dominant contribution 
to (p2) even for temperatures where (qe)  is still in 
the classical region. This is the case in the tempera- 
ture range w h e r e / / h a  D is large while//hco 0 and/~h7 
are small, except for systems where the damping is 
so weak that 

//h 7 In (//hcoD) ~ 1. (4.29) 

This gives a further restriction of the range of va- 
lidity of the weak coupling approximation. 
At very low temperatures, where flhcoo>>l and flh~ 
>> 1, one can use the asymptotic expansion of all psi 
functions in (4.26) to give 

h72M 2 1 r c h v M  @g) A =hTM In cOD - -  In- t-0 (4.30) 
~z coo 4~z~ )~2 30-2 

where terms of order coo/coo, 7~coD and kBT/hco D 
have been disregarded. (4.30) combines with (4.7) 
and (4.24) to yield at zero temperature 

@2) = 89 ~ 

)] l n t c _ ~  4~c co D 
4 - - -  In ( (4.31) 11-2 2) 

The lowest finite temperature corrections are pro- 
portional to T 3. By virtue of (4.8) it is easy to show 
that (4.31) reduces for ~:=0 to the correct momen- 
tum dispersion (pZ)= 89 of an undamped os- 
cillator in its ground state. 

5. The Equilibrium Density Matrix 

Because of the Gaussian property, the equilibrium 
state is completely determined by (pZ) and (q2). 
The equilibrium density matrix pa may be written 

1 p p = ~  e -~n~ (5.1) 

where Z is a normalization factor, and 

1 p2 q2 (5.2) H e f  t = 2Mef f -I- 1Mef f co2ff 

is an effective Hamiltonian. The effective frequency 
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(Def t reads 

(Deff = ~ In h 
l / ( pe )  (q2) - 5  

) --hfi a r  coth ]/(pe) (q2) , (5.3) 

and the effective mass  Mef f is given by 

Ueff=~l ] (p~2) (5.4) 

Since o)ar and Mef f depend on temperature, Hat 
might more appropriately be called the free energy 
operator of the oscillator. 
The density matrix (5.1) can be diagonalized in the 
usual way 

pp = ~ p. In) (hi (5.5) 
n=O 

where we have introduced the eigenstates In) of the 
effective Hamiltonian (5.2) 

H~rr In ) = E, In), (5.6) 

with the eigenvalues 

e ~  h o~o. (,~ + 89 (5.7) 

and where 

1 p . = ~  e - ~ ~  (5.8) 

are the occupation probabilities of these states. In 
coordinate representation we have 

c . . . .  (qln) -- ~ ~ n,(cq) (5.9) 

where the H,  are Hermite polynomials, and where 

c=l M~ffcoo" ( (p2} ]+ (5.10) V h 

Finally, the partition function Z reads 

1 1 / 1  1 
Z=2sinh( 89 - V ~  {pZ) (q2) -4" (5.11) 

For a damped system, Z differs from the quantity Z' 
which has been introduced previously. 
The coordinate representation of the density matrix 
is given by [8] 

(q[ Pa Iq') 
C c z 

- - Z ~  e 2sinhO [ (qZ+q'a)c~ (5.12) 

where 

• = flh(Def f . (5.13) 

By virtue of (5.3), (5.10) and (5.11), we find that (5.12) 
may be transformed to read 

1 ~ [(q -t-q')2 - . . . . . . .  (q_q,)2] 
{qI p~ Iq') - ~  e 2 t 4~V*"  ~p * (5.14) 

which clearly gives the correct variances of p and 
q. 
At high temperatures, the effective quantitites (.0ef f
and M e f  f approach their bare values c0 and M, while 
at low temperatures they undergo strong modifica- 
tions caused by the damping. Using (4.7) and (4.31) 
we obtain from (5.3) for the effective frequency near 
zero temperature 

he) eff= 2kB TAr eoth / f  (K) [4~ ln (~o ) + ( l -  2~2) f (~c) ]

(5.15) 
where 

f(~) = 1  In [(~c +] /~2 _ 1 ) / ( ~ c - ] / ~ -  1)] (5.16) 
~1/~-- 1 

Hence, for a damped oscillator, the energy levels 
(5.7) becomes very narrowly spaced near zero tem- 
perature, and the occupation probabilities (5.8) re- 
main finite in the limit T-*0. This shows that the 
ground state is not a pure state but a mixture. 

6. Conclusions 

Starting from basic principles we have examined the 
process of spontaneous thermal and quantal fluc- 
tuations of a simple damped harmonic oscillator. No 
assumptions about the strength of the damping and 
the range of temperature have been made. Some of 
the results have also been obtained by Schmid [5], 
Caldeira and Leggett [6], and Zwerger [17]. We 
have removed the divergence of the momentum dis- 
persion by treating the non-Markovian case of 
frequency-dependent damping, and explicit results 
have been deduced for a Drude model. The equilib- 
rium state has been shown to be characterized by an 
effective Hamiltonian which has the form of the 
Hamiltonian of the undamped oscillator with modi- 
fied mass and frequency. 
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For high temperatures (kBT>>hCOo, kBT>>hT, kBT 
>>hl/7~DD), one can easily see from (3.21), (4.6), 
(4.24) and (4.27) that the quantum stochastic process 
reduces to the classical Fokker-Planck process of a 
damped harmonic oscillator [-9]. On the other hand, 
for sufficiently weak damping (7~COo, fiT~kBT, 
?ln(/Jhc%)~co o, h?ln(~ho~D)~kBr ) a connection 
between our results and those of the weak coupling 
theory of the damped harmonic oscillator [1-4] can 
be established. 
In a previous study [18], we have determined the 
canonical position autocorrelation function of a 
damped harmonic oscillator by means of a quantum 
master equation based on a kinetic model. Using 
well-known relations between the various types of 
quantum correlation functions [13], it may easily be 
shown that the properties of the position autocor- 
relation function discussed in Sect. 3 likewise emerge 
from the result in [18]. On the other hand, the 
simple approximation for the operator A used in 
[-18] is not accurate enough to calculate higher or- 
der correlation functions directly from the master 
equation unless hT/kBT is small. The connection be- 
tween the present work and the master equation 
approach will be discussed in greater detail else- 
where. 
While the approach to dissipative quantum systems 
presented here is very simple, it is at present restrict- 
ed to linear systems. However, if the nonlinearities 
of a system are entirely due to its reversible motion, 
the same dissipative mechanism as in linear systems 
can be adopted. This makes an extension of the 
approach possible which we hope to discuss in the 
near future. 
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