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The Markovian description of  open quantum systems, which conventionally  is defined by
the quantum regression hypothesis, is investigated. We show that for a system staying in ther-
mal equilibrium with its environment this hypothesis leads to a violation of  the KMS con-
dition, the fluctuation dissipation theorem, and under certain conditions to a violation of  the
principle of  detailed balancing. This implies that quantum Markovian processes do not allow
for basic physical principles. Also its quantitative predictions are not reliable in general.
                           

1. INTR~~XJCTION

There are various physical phenomena which result from an interplay of a truly
quantum mechanical behavior of a system with a few  degrees of freedom and of the
interaction with its environment causing an exchange of energy and a partial or
even total destruction of phase relations within the considered system. We only
mention a few  examples: an initially excited atom interacting with the elec-
tromagnetic field [l, 21, nuclear spin relaxation in condensed matter [3], a laser
[4], the movement of Frenkel excitons in a molecular crystal [S], tunneling centers
in ionic crystals [6], phase slips of the macroscopic wave function in a supercon-
ducting interference device (SQUID) [7], the dynamics of collective nuclear coor-
dinates in nuclear reactions [S], Schrodinger’s cat [9], etc.

Classical physics provides different methods to deal with the influence of the
environment on a system. Phenomenological deterministic equations represent the
coarsest way of description of an irreversible time evolution. On a liner level the
irregular action of the environment on the system must be taken into account. This
goal was first achieved by Einstein [lo]. The therefrom emerging theory of
stochastic processes has gained steadily increasing importance since then. As a
review  of the first 40 years of this development [ 111 may serve, for the modern
trends, see [ 12-181.

Statistical mechanical considerations have shown that within the framework of
continuous Markovian processes the problem of stochastic modelling can be solved
uniquely for equilibrium systems and for certain nonequilibrium systems [ 19-231.

Various attempts have been made to describe damping phenomena within a
quantum mechanical framework.

OOO3-4916/86 $7.50
                                        
                                                

390



                                 

Time-dependent and nonlinear Schrodinger equations have been proposed to
describe friction in quantum systems ([24] may serve as a review). However, these
modified Schriidinger equations yield different results for the same simple models
[25]. Moreover, the description of an open system by a pure state is doubtful.

In principle it is always possible to apply usual quantum mechanics to the system
combined with its environment. Radiation damping of a charged harmonic
oscillator [26] and of an atom [ 11 are early examples. The treatment of elementary
excitations and quasiparticles in many-particle systems by Green’s functions [27]
has to be mentioned in this context, too.

There exist different reduced descriptions in which the explicit appearance of the
environment is eliminated. In one description the Heisenberg equations are
modified in a way analogous to classical Langevin equations [4,28-301. For
another description the Schrodinger picture is used and the Liouville von Neumann
equation is modified by additional terms which cannot be cast in the form of a
commutator with a Hamiltonian [31]. Feynman’s path integral formulation of
quantum mechanics can be generalized by an additional term in the action which
cannot be written as a time integral of a Lagrange function [32,33].

In the framework of the first two methods it is straightforward how  to make a
Markovian assumption. Because classical Markov processes are both of particular
simplicity, compared with general processes, and, as already mentioned, have
proved to be very useful, their transfer to quantum mechanics is very tempting and
has been performed by several authors [3436]. The assumption of a quantum
Markov process is known under the term quantum regression hypothesis, too.

However, the confirmation of this hypothesis from microscopic models
[4, 34, 311 relies on assumptions which are not very convincing, as the repeated
random-phase approximation and the assumption of a thermodynamically unstable
environment. Rigorous proofs are lacking. The semigroup dynamics of the density
matrix which must hold for a quantum Markov process can be proved only on the
basis of the rather restrictive assumption of weak coupling, and, in general, only
holds for the dynamics averaged over the free (i.e., undamped) motion of the system
c371.

It is the aim of the present paper to investigate the quality of the quantum
regression hypothesis thoroughly. For this purpose we ask whether equilibrium
correlation functions obtained from the quantum regression hypothesis obey those
general symmetries following from statistical mechanics. In the case of an aflir-
mative answer, we could hope that these properties would provide powerful means
for a phenomenological modelling, as, e.g., in the classical case the Onsager Casimir
relations do, which are implied by the principle of detailed balance. However, it
comes out that none of these general physical properties are obeyed, and hence the
quantum regression hypothesis fails in describing open systems in thermal
equilibrium. Because in general nonequilibrium systems contain equilibrium
situations as limiting cases one must expect the failure of this hypothesis in these
cases, too.

The paper is organized as follows. We begin the next section with some



                

preparatory remarks on classical Markov processes, then formulate the quantum
regression hypothesis, and discuss its general properties. In Section 3 we derive the
class of stationary Gauss Markov processes of a single quantum oscillator by
purely phenomenological considerations. For various other treatments of a damped
harmonic oscillator see Ref. [38]. Mainly for this special class of processes we
investigate in Sections 4, 5, and 6 the principle of detailed balancing, the KMS con-
dition, and the fluctuation dissipation theorem, respectively, however, with a
negative result in each case. Because there are only two assumptions from which the
considered class of models follows, namely, the Gaussian assumption and the
regression hypothesis, and because the Gaussian assumption is known not to be in
any conflict with general physical properties, this failure must be due to the quan-
tum regression hypothesis, as already mentioned above. In Section 7 we compare
the quantum regression hypothesis with other different approaches and, finally,
find that this hypothesis also yields quantitatively wrong results under most cir-
cumstances.

2. REGRESSION HYPOTHESIS

2.1. Classical Markov Processes

A stochastic process x(t)’ can be characterized by its multitime joint probabilities
W”‘( XI > t, ; x2, t, ;- x,, t,) dx, dx?...dx,, n = 1, 2 ,..., for finding the process at the
different instants of time t,, r2 ,..., t, in the intervals (x1, x, + dx,), (x,, x2 + dx,) ,...,
(x,, x, + dx,), respectively. From these the conditional probabilities are deter-
mined, e.g.,

P(x, t I x1, t, ; x2, t,;... x,, t,)
= wn+yx, t; x1, tl;... x,, t,~)/W’“‘(x,t,; x,t2;... x,, t,). (2.1)

If the observation time t is later than all times ti, by definition, for a Markov
process the conditional probability depends on the condition at the latest time, say,
t,, only

P(x, t 1 x, ) t I;... x,, L)=W, t--11x,) for tat,a.... (2.2)

For the sake of simplicity we consider time-homogeneous processes only, i.e.,
processes for which the conditional probabilities are invariant under time trans-
lations.

For a Markov process any joint probability can be represented as a product of
conditional probabilities with the one-time probability W(‘)(x,, t,) at the earliest

’ We consider scalar real processes only. Generalisations to more complicated cases are
straightforward.



                                 

time of observation. Moreover the conditional probability determines the time
evolution of the one-time probability W”‘(x, t) = W(x, t):

and, hence, it is the kernel of the propagator G, defined by

G,h(x)=jf’(x, ~IY)~(.Y)~Y (2.4)

with an arbitrary integrable function h. Using the adjoint propagator G: the mean
value of an arbitrary function f of the process x(t) reads

<f-i> = j Wx, 0) G:f(x) dx. (2.5)

Multitime correlations of functions f, g,... of the process x(t) are given by G:, too,
e.g.,

<l-t g,> = j- w(x, s) g(x) %f(x) dx

= I Wx, 0) G; gG;p,f(x) dx. (2.6)

Consequently, G, determines the complete dynamics of a Markov process. Because
G, itself is known from the dynamics of all mean values, the whole dynamics of a
Markov process is already determined by the time evolution of the mean values.
This fact is known as the regression theorem [34]. For a stochastic process with
linear dynamics, as, e.g., an Ornstein Uhlenbeck process, this theorem implies that
the regression of fluctuations is governed by the macroscopic equations [ 191.

There are some general properties of the generator which are important for quan-
tum mechanical Markov processes, too:

(i) The propagator is a linear operator, which maps positive on positive
functions.

(ii) The integral of a function is invariant under the propagator (conser-
vation of total probability)

j- G,f(x) dx = jfb, dx.

(iii) The propagator at t =0 is the identity

(2.7)

G,=l. (2.8)



                

(iv) The propagators G,, t > 0, form a semigroup:

G,Gs= G,,,, t, s 2 0. (2.9)

The adjoint propagator G: has the same properties except for (ii) which is replaced
by

(ii’) Gi maps the constant function onto itself:

G;l = 1. (2.10)

Under weak additional assumptions concerning the continuity of G, and the
function space on which G, acts, it follows from the properties (i), (ii), and (iv) that
the propagator G, and consequently the single-event probability obey linear
equations of motion of first order in time [39]:

6!, = rGt, (2.11)

P(t) = mqt). (2.12)

r is the generator of the considered Markov process. It is defined by

r= lim t-‘(G,-1). (2.13)r-o+

Equation (2.12) is the master equation, and (2.11) is the equation for the respective
Green’s function from which the foreward and (by adjoining) the backward
equations for the conditional probability follow. The integration of Eq. (2.11) with
the initial condition (2.8) yields a solution with the semigroup property (iv)
provided r obeys certain regularity conditions [39].

2.2. Quantum Mechanical Markov Processes

In the following we will always assume that the observables of the considered
open quantum system S act as hermitian operators on a Hilbert space JZ” and, vice
versa, that all hermitian operators of Xs are observables of S.

As in the classical case the time evolution of an open system is completely deter-
mined only if both the dynamics of the mean values and the dynamics of the
correlation functions of its observables are known. Again a quantum process will be
called Markovian if the dynamics of all mean values determines already the
dynamics of the correlation functions. This fact is known as quantum regression
hypothesis. Again, as a consequence of this hypothesis for a linear process the
regression of fluctuations is governed by the macroscopic equations. The precise
meaning of the regression hypothesis in the general case is stated in Section 2.2.2
after some preparatory comments in Section 2.2.1 about the dynamics of the mean
values.



                                 

2.2.1. Dynamics of Mean Values
In the following we shall assume that the Hilbert space of the system is separable.

Then every state of the system is uniquely characterized by a density matrix p
which is a positive operator with unit trace [40]. As is well known the mean value
of an observable u of the system in the considered state is then given by

(24) = tr up. (2.14)

Because classically the observables correspond to functions on the state space, p is
the quantum analogue of the single-time probability W(x, t) at a fixed time t, and
the trace corresponds to the state space integral. In analogy to the classical master
equation (2.12) the dynamics of a quantum Markov process is given by a first-order
differential equation in time

b(t) = Tdt), (2.15)

where r is called the dissipative Liouville operator. f is a linear superoperator, i.e.,
it acts on operators in the Hilbert space SS.

Because of its linearity the solution of the quantum master equation (2.15) can be
written asz

~(0 = GAO), (2.16)

where the propagator G, is the solution of

Gt = l-G, (2.17)

with the initial condition

Go=l. (2.18)

1 is the unit superoperator.
Obviously the quantum propagator G, has corresponding properties as the

classical one:

(i) G, is a linear operator, which maps positive on positive Hilbert space
operators.*

(ii) The trace is invariant under the propagator

tr G,p = tr p. (2.19)

(iii) Go is the unit operator (2.18).
(iv) The propagators G,, t > 0, form a semigroup

G,G,= G,,,. (2.20)

‘There are good arguments that this requirement of  positivity  must be replaced by  the stronger
requirement of  complete positivity  [42]. However, we do not want to go into these technical details.



                

For a discussion of the mathematical aspects of the semigroup theory of open quan-
tum systems we refer to the literature [41,42]. Mean values of observables at time
t follow  from (2.14) and (2.16),

(u,> = tr uG,dO)
= tr p(O) G:u, (2.21)

where the adjoint propagator G: is defined with respect to the functional (U 1 p ) =
tr up, u being bounded and p of the traceclass [41].

Cl shares the properties with G, except for (ii), which is replaced by (ii’):

(ii’) G;l = 1, (2.22)

where 1 is the unit Hilbert space operator.
As an example of a semigroup we mention the time evolution of a closed

Hamiltonian system. Then r is the Liouville von Neumann operator

rH. = -; [H, . J, (2.23)

where H is the Hamiltonian of the system. G,H and G;“+ govern the dynamics in the
Schrodinger and Heisenberg pictures, respectively:

G;Hp = e- (i/h)Hr peWW~, (2.24a)
GHtU = e(i/fi)Hf

f
ue ~ (i/fiWr (2.24b)

In this particular case G, is a unitary group.
In the following we will call GNU a Heisenberg operator even if the dynamics is

dissipative and, consequently, G:u is no longer unitarily equivalent to U. The
classical analogue of a Heisenberg operator is the conditional expectation of a ran-
dom variablef(x) evaluated at time t for known x at time t,=O:

f,(x) = j P(Y, tlx)f(v) dy = W-(x).

2.2.2. Dynamics of Correlation Functions
For a Hamiltonian system we define the correlation function of two observables u

at time t and v at time s to be the mean value of the product of the Heisenberg
operators u(t) = eWfiWUe- (ilfrW* and v(s) averaged with the density matrix p of the
system at time to = 0:

(u(t) v(s))~ = tr u(t) v(s) p. (2.25)

In general this correlation function is different from (v(s) u(t))” because of the
noncommutativity of quantum observables. There even are many other functions



                                 

describing the mutual dependence of observables u and u at different times t and s,
respectively, which all approach the same classical correlation function in the
classical limit. Some are discussed in Ref. [43]. However, none of these quantum
correlation functions can be interpreted as a correlation function of a classical
process [ 43 1.

In contrast to a classical correlation function, (2.25) neither has an immediate
physical interpretation nor is it a measurable quantity in general. For each par-
ticular experimental setup only an investigation of the mutual interactions of the
system and the measuring apparatus can explain which kind of correlation function
is measured [44]. For example, we mention idealized photon counters which
measure normally or antinormally ordered products of creation and annihilation
operators of the electromagnetic field at different space-time points, depending on
whether the counter is operated by absorption or by stimulated emission [45,46].

However, there are important theoretical quantities like, e.g., thermal Green’s
functions and response functions which are determined by correlation functions as
defined in (2.25). Another reason for considering these correlation functions is the
fact that they have simple properties by which they can be characterized. Some of
these properties will be given in the sequel. A more complete discussion is given in
Ref. [47].

A correlation function of observables of an open system S can in principle be
calculated by taking into account the environment R of the system and by employ-
ing Eq. (2.25) with H being the Hamiltonian of the system plus environment, S+ R,
and p being the initial density matrix of S+ R. In order to avoid such complicated
calculations several authors postulated that if the density matrix obeys a
Markovian master equation (2.15), correlation functions are mean values of
products of Heisenberg operators of the open system as introduced at the end of the
preceding section:

(u(t) u(s)) = tr v(s) Gi-,u for t>s (2.26a)

= tr p(t) uGJ- ,u for r<s. (2.26b)

Here tr is the trace over the Hilbert space Z” of the systems, U, v are the operators
representing the considered observables in &“, ps = G,p(O) is the density matrix of
S at time s, G, is the propagator introduced in (2.16), and Gj is its adjoint. Because
the dynamics of such a correlation function is solely determined by that of the mean
values, namely, by the propagator G,, this special form is based on an assumption
analogous to the classical regression theorem and therefore we will call (2.26) the
quantum regression hypothesis. As already mentioned and as will be shown
explicitly for a Gaussian process in Section 3, this hypothesis entails the same
regression of correlations and mean values. Further we note that in the classical
limit (2.26) becomes a correlation function of a classical (2.6) Markov process.

If the observables of the considered open system obey Langevintype equations
with b-correlated fluctuating force the quantum regression hypothesis can be



                

proved to hold [34]. Therefore, it is often called a theorem [34]. By calling it a
hypothesis we do not doubt these mathematical facts; rather we want to emphasize
that it is an assumption to apply to a physical situation.

One can easily show  that the following properties which hold for correlation
functions of Hamiltonian systems and which consequently are exact properties of
correlation functions even of open systems are indeed fulfilled by correlations of the
form (2.26):

(i) Linearity in u and IX

((au1 + h)(t) u(s)) = a<u1(t) u(s))
+B(%(t) u(s)),

<u(t)(au, + h)(s)) = a(u(t) Vl @I)

+P<u(t) b(J))

(2.27a)

(2.27b)

with complex numbers a 1 /I?.
(ii) Compatibilities:

(u(t) $2)) = ((uu)(t)>, (2.28a)

<l(t) u(s)) = (U(S) l(t)> = (u(s)), (2.28b)

where 1 is the unit operator in Hilbert space.
(iii) Hermiticity:

(u(t) u(s))* = (u+(s) U+(t)).3 (2.29)

Correlation functions of more than two operators at different times cannot be
determined by the regression hypothesis in general. However, for an important class
of time orderings it yields a prescription compatible with the properties (i)-(iii)
generalized to higher correlation functions [36]. In the following we will not con-
sider higher than second-order correlation functions and so we do not enter this
discussion.

3. STATIONARY QUANTUM GAUSS MARKOV PROCESSES

In this section we discuss the quantum analogue of a classical two-dimensional
Ornstein Uhlenbeck process, in order both to illustrate the concepts introduced in
the preceding section and to provide a whole class of processes on a purely
phenomenological basis for further investigation.

3 Because of the linearity (i) it is possible to consider arbitrary nonhermitian operators U, v.



                                 

3.1. Gaussian Density Matrices

Let p and q be the momentum and coordinate, respectively, of a spinless point-
like particle obeying the well-known canonical commutation relation [p, q] = fi/i.
The state of this particle is determined by the mean values of all powers pkql
provided they exist. We will speak of a Gaussian state if mean values of higher
powers factorize in sums of products of first and second moments according to
either of the following rules:

(Pkq’)=(k-1)(P2)(Pk-2q~)+~(Pq)(Pk-1q~-1) (3.la)

=k(pq)(JJ-‘q’-‘) -I- (f- l)(q2>(pkq’-‘>. (3.lb)

Here we have assumed that the first moments vanish

Some comments are in order.

<P> =o,

(9) =a

(3.2a)

(3.2b)

-Both rules of factorization yield the same result.
-The Gaussian factorization of an arbitrarily ordered product of p and q is com-

patible with the canonical commutation relations.
-Conversely, any pair of operators which is Gaussian distributed and the

powers of which form a complete operator basis must have a commutator propor-
tional to the unit operator.

From the general form of a mean value (2.14), the cyclic invariance of the trace,
the canonical commutation relation, and from (3.la, b) it follows that a Gaussian
density matrix obeys two homogeneous equations

(3.3a)

(3.3b)

where

These equations have a unique solution with unite trace:

pst =Z-‘eCh 2

(3.4a)

(3.4b)

(3.5)



                

where h is a quadratic form in the operators p and q,

h=arccthi(2/fi)((pz)(q2)- W(m+v)*)“*~
wP’>(q*> - w(Pq+qP)*)“*

x {<q2)p2+ (P2) q*- 1/2(Pq+qP)(Pq+qP)lY (3.6)

and where Z= tr ePh is the partition function given by

z=fi-‘KP*xq*) - I(Pq)1’)“‘. (3.7)

Note that h is hermitian and bounded from below  and that consequently p is
positive, provided that

(P’)<q*)‘l(Pq)l*. (3.8)

Conversely, from the positivity of p and the Cauchy Schwarz inequality applied to
the inner product (u, u) = (uo) for u =p, v = q, (3.8) follows including equality. In
the latter case Eqs. (3.4) are solved by a pure state 1 $)($I, where $ is the gound
state of the annihilation operator a defined by

a=h<p:)‘,2 KP2) q- (P4) PI. (3.9)

In summary we note that there is exactly one Gaussian density matrix for each
choice of parameters (p’), (q*), (pq) within the physical region (p*)(q*) >
I(Pq

3.2. The Dissipative Liouville Operator

The Gaussian factorization rule and the particular form of Markovian
correlation functions (2.26) uniquely determine the propagator of a time-
homogeneous Gauss Markov process (see Appendix A):

r= Y,X, + YJ,, (3.10)

where X1 and X2 are the superoperators defined in (3.4a, b) and Y, and Y, are
given by

yI=; C’1(L,-R,)+r,(R,-L,)],

Y*=f Cr~(Lp-Rp)+Yq(Ry-Lq)].

(3.11a)

(3.11b)



                                 

Here L,, R, are left and right multiplication operators, respectively,

L,x = ux, R,x = xu, (3.12)

and ri, i= l,..., 4, are real coefficients, which are determined by the time rate of
change of the correlations (q(t)q), (q(t)P), (P(t)q), (P(t)P) at t=O. For a
precise definition see Appendix A.

Because Y, and Yz are linear combinations of commutators it follows from (3.10)
that tr rp = 0 for arbitrary p, and equivalently pl = 0. Further, one finds from
(3.14) and (3.3a, b) that

rpst=o (3.13)

as should be. Hence, pst is a right- and 1 a left-eigenvector of r belonging to the
eigenvalue 0. We will come back to the spectral properties at the end of Section 3.3.

In conclusion we note that in a phase space representation f becomes a
Fokker-Planck-type operator with a linear drift and a constant, but not necessarily
positive diffusion matrix. For example, for the Wigner representation [49] we
obtain

Acting on a quasi-probability distribution f,, yields its time rate of change.

3.3. Mean Relaxation and Stationary Correlation Functions

Both the relaxation of mean values and the dynamics of stationary correlation
functions are given by the Heisenberg operators

q(t) = G:q, (3.15a)

p(t) = G:P. (3.1Sb)

According to (2.17) their equations of motion read

4(t) = GjPq, (3.16a)
d(t) = G;T+p. (3.16b)

595/167/2-12



                

Using (3.3), (3.10), and (3.11) we get

Pq=- r3q-rlp,

r+p=- r4 4 - r2Py

which yields with (3.15) and (3.16)

4(t) = -r3df) - rddf),

b(t) = -r4df) - r2p(t).

The initial conditions are

4(O) = 45

P(0) = P.

Using matrix notation the solution reads

where the relaxation matrix is given by

?= r3 rl .( 1r4 r2

(3.17a)

(3.17b)

(3.18a)

(3.18b)

(3.19a)

(3.19b)

(3.20)

(3.21)

The average of (3.20) over a nonstationary density matrix yields the relaxation of
the mean values of the momentum and coordinate operator from initial non-
equilibrium values (q),,, (P)~:

(3.22)

Hence, we find exponential relaxation for the first moments which extends a well-
known property of classical Gauss Markov processes [SO].

The stationary correlation matrix is given by

C(t)= ( (4(t) 4) (4(f) P>
(p(t)4) > <p(t)p> .

(3.23)

From (2.26) and (3.20) we find the same exponential behavior as for the relaxation
of the moments

C(t) = eCy’C,
= CeY+‘,

t 2 0, (3.24a)

t < 0, (3.24b)



                                 

where C= C(0) is the matrix of stationary second moments and where y + is the
transposed of y.

Again this is in accordance with the classical result [SO]. In passing we remark
that the expressions (A4) for ri, i = l,..., 4, can be obtained in a particularly simple
way by computing the time derivative of (3.23) at t = O+. Equations (3.20) and
(3.24) show  that the mean relaxation from a nonstationary state and the time
evolution of the stationary correlations obey the same law, which means that
Onsager’s regression hypothesis extends to the quantum case literally.

Analogously to a classical stationary Gauss Markov process we may introduce a
matrix L of transport coefficients by

L=yC. (3.25)

The hermitian part of L is the diffusion matrix D

D=$(yC+Cy+) (3.26)

which turns out to be positive even in the quantum case (see Appendix B). In con-
trast to the classical case C, L and D are complex matrices whose imaginary parts
are fixed by the canonical commutation relations and the fact that y must be a real
matrix.

We emphasize that one must not mix up the diffusion as defined in Eq. (3.26)
with an eventually indefinite “diffusion” matrix appearing in a c-number represen-
tation of f, e.g., (3.14). Moreover, a proper Fokker-Planck operator with positive
diffusion matrix interpreted as a c-number representation need not necessarily
define a proper dissipative Liouville operator. For an example see Appendix C.

As for a classical stationary Ornstein Uhlenbeck process the spectrum of r is
determined by the eigenvalues

1, ==;(r,+r,)k [(f--r))* +r,r,]“* (3.27)

of the relaxation matrix y:

Q(T)= (-A+ -m;l- In,m=O, 1,2 ,... }.

Generally these eigenvalues are not degenerate. Then one can show  that r is a
diagonable operator.

r= f (nl++mA-)P,,
n,m=O

(3.28)

with one-dimensional projection operators

(3.29)



                

which are a resolution of the identity

1 P,, = 1. (3.30)
n.m

For the critically damped motion 1, = AP all nonzero eigenvalues are degenerate
and for r there exists a generalized spectral representation analogous to the Jordan
normal form.

4. DETAILED BALANCING

Under the time reversal transformation momenta and spins reverse their sign,
whereas coordinates remain unchanged. For a quantum system this transformation
can be represented by an antiunitary operator 0. For a closed system with a time
reversal invariant Hamiltonian an observable u at time t transforms as4 [55]

Ou(t)O-‘=&,u(-t)), (4.1)

where E, = f 1 is the parity of u under time reversal. A correlation function (u(t) o)
in a stationary, time reversal invariant ensemble coincides with (Ou(t) 110-l )*
because of the time reversal invariance of the ensemble and because of the
antiunitarity of 0. With (4.1) from the stationarity of the ensemble if follows

(u(t) v) =&,&“(u+(t) u+>. (4.2)

This is true for any pair of operators with definite parity in an ensemble with the
quoted properties. In particular, Eq. (4.2) holds for operators of a system which
interacts with another system (a bath) if, e.g., the whole system is in thermal
equilibrium described by a Gibbs state. Obviously (4.2) still holds in the ther-
modynamic limit when the bath becomes infinitely large. Hence, in thermal
equilibrium the correlation functions of an open system must have the property
(4.2) which is known as detailed balancing.

For a classical system detailed balancing may be expressed in terms of the joint
probability

w(*‘(x,, t; x2) = wy2, ; 22, t), (4.3)

where fi is the time-reversed point xi. For a classical Markov process detailed
balancing implies particular forms of propagators and generators for which the
stationary solutions are easily obtained [56-591.

The corresponding conditions for a dissipative Liouville operator of a quantum
Markov process were derived in Ref. [60] and are reviewed in Section 4.1.

4 We do not consider external magnetic fields, etc., because it is clear how to account for them.



                                 

The presence of detailed balancing leads for a stationary quantum Gauss Markov
process to the same properties of the stationary second moments and the transport
matrix as for a classical stationary Gauss Markov process (Section 4.2). We show
that all stationary quantum Gauss Markov processes with detailed balancing are
unitarily equivalent to a model of Weidlich and Haake for the damped motion of a
single mode of the electromagnetic field. This, however, implies that there is no
quantum Brownian oscillator obeying detailed balancing.

4.1. Detailed Balancing for General Quantum Markov Processes

Using the special form (2.26) of the correlation functions of a quantum Markov
process and the symmetries (4.2) for all pairs of operators u, v of the open system,
one finds for the propagator G,

T-‘G,L, T= L,G’ I’ (4.4)

where T is an antilinear superoperator multiplying with 8 and 8-l from the left and
the right, respectively,

T= LsRe-,, (4.5)

and where L, is a linear superoperator multiplying with the density matrix p from
the left.

For t =0 it follows from (4.4) with (2.18) and (4.5) that p is time reversal
invariant

%-‘p&p. (4.6)

Acting with (4.4) on the identity map in the Hilbert space it follows from (4.6) that
p is a stationary state of G,

G,P=P.

Finally, the time derivative of (4.4) at t = Of yields

(4.7)

T- ‘I-TL, = L,l+. (4.8)

One easily shows that (4.6) and (4.8) are equivalent to (4.4). These conditions are
completely analogous to those for propagators and generators of classical Markov
processes with detailed balancing [ 611.

4.2. Detailed Balancing for Stationary Quantum Gauss
Markov Processes

In order to determine the class of Gauss Markov processes with detailed balanc-
ing one could apply (4.8) to the general dissipative Liouville operator (3.14).



                

However, it is much simpler to employ the symmetry (4.2) to the stationary
correlation functions of p and q yielding

C,(t) = EiEjCji( t), (4.9)

where the C,(t) are the elements of the correlation matrix C(t) (3.23) and where
.sq = 1 and Ed = - 1, of course. For a Gauss process (4.9) implies the symmetries of
detailed balancing for all correlation functions. Moreover for a Markov process it is
sullicient to consider (4.9) and its time derivative at t = Of. Using (3.24) one finds

c, = EiEjcji, (4.10)
L, = EiEjL,,' (4.11)

where C,= C,(O), and L, are the elements of the transport matrix L (3.25).
Equations (4.10) and (4.11) are exactly the same conditions for detailed balanc-

ing as for a classical stationary Gauss Markov process [62]. However, because of
the nonvanishing imaginary parts of C and L which are caused by the commutation
relations of p and q for a quantum process the conditions (4.10) and (4.11) are
much more restrictive than they are classically.

From (4.10) and [p, q] =fi/i  it follows

(4.12)

and from (4.11) with (3.21), (3.25), and (4.12) we find

(4.13)

4(r2-r3)=0. (4.14)

In the classical case (4.14) is fulfilled independently of which values are taken by r2
and r3 whereas in the quantum case r2 and r3 must coincide:

r2 = r, = ic. (4.15)

Because of (B5) K is positive. Without loss of generality we may put

(P'> = &jj2
-?a- '

2r,r4= --co.

(4.16)

(4.17)



                                 

Then y reads

y= Ic ( -m  
-1

co2171
.

K )
(4.18)

This dissipative Liouville operator for the quantum Gauss Markov process with
stationary correlation matrix C (4.14) and relaxation matrix y (4.18) follows from
(3.4), (3.10), (3.11), and (3.21):

rwffp= --ida+& PI +YJu-4 pa’1 + CUP, a+])
+Y,(Ca+T PaI + [@‘P, al), (4.19)

where a and u+ are annihilation and creation operators, respectively,

a = (2fimo)-“‘(mwq + ip),

and where

(4.20)

Yt= (y (42) -g K,

Yl=
(
~(q2)+f)K. (4.21b)

The subscript WH stands for Weidlich and Haake, who have derived this generator
from a microscopic model for the damped motion of a single mode of the elec-
tromagnetic field in a cavity [63].

It is well known that the process defined by fWH obeys the symmetry of detailed
balancing [60]. Moreover, we have shown now  that, up to unitary transformations
which map the annihilation operator a on a ch cp + a + sh cp’ with real cp, fwu
generates the only quantum Gauss Markov process with detailed balancing.

According to Ehrenfest’s theorem one expects that the mean values of a quantum
mechanical damped oscillator should obey the classical equations of motion

(4) =m-l(p),

(0) = -mw2X9) -Y&P).

(4.22a)

(4.22b)

However, this is not in accordance with the equations for the mean values of a
quantum damped oscillator with detailed balancing following from (3.21) and
(4.18):

(4) = --K(q) +m-l(p),

(0) = -m@*(q) -K(P).

(4.23a)
(4.23b)



                

This raises the question of which of the assumptions leading to (4.23) is contrary to
the equations of motion (4.22). The assumptions in question are:

1. the Gaussian assumption
2. detailed balancing
3. the Markov assumption.

ad. 1. In order to justify this assumption one may assume that the equations of
motion of the total system are linear and that the density matrix is Gaussian at
some initial time to. Hence, the Gaussian assumption is admissible. It is not in con-
flict with any basic physical principle.

ad. 2. As we have seen above, every system in thermal equilibrium shows
detailed balancing and so must a damped harmonic oscillator.

ad. 3. It has been shown that for a system weakly coupled to a heat bath the
long time dynamics of the reduced density matrix can be approximated by a
Markovian master equation [37]. However, it has not been shown that the
correlation functions can correctly be determined by the master equation. In order
that the regression hypothesis could be derived from a microscopic model
correlations of the system and the bath should be negligible for all times [64]. This
repeated random-phase approximation is not implied by the Markovian
assumption for the dynamics of the density matrix, although this has been claimed
occasionally [ 17, 31, 651. The derivation of the quantum regression hypothesis
from Langevin equations for the coordinate and momentum with operator-valued,
b-correlated forces, as is done in Ref. [34], is merely another formulation of the
Markovian assumption. For a further discussion see Section 7.

In concluding we find that the quantum regression hypothesis leads to the con-
flict of the principle of detailed balancing with Ehrenfest’s theorem.

5. KMS CONDITION

Because the time evolution operator e -c/*)~’ and the Gibbs state Z-‘CBH are
essentially related by a Wick rotation, the correlation functions of arbitrary boun-
ded operators u and u in a Gibbs state show  particular analytical properties:
(u(t) v ) B = tr e(ilh)Htz4e -(iifi)Ht~Zp ‘ePfiH can be continued to an analytical function
in the interior of the strip S1={zlz=t+iy, -co<ttcc, -@?<~YO}, being
continuous and bounded on the boundary of S, ; for ( VU(~))~ the same properties
hold in Sz= {zlz=t+iy, -cc < t < co, 0 <y <@} [66], and the two functions
are connected by the KMS condition’ [67]:

(u(z)u)fl= (uu(z+i!ip))p (5.1)

J Named after Kubo [72] and Martin and Schwinger [73].



                                 

For the significance and the wide-reaching consequences of the KMS conditions in
statistical mechanics we refere to the literature [27,68-711. In the following sec-
tions we will draw  conclusions from the analyticity and KMS conditions for
Markov processes.

5.1. KMS Condition for Markou Processes

In order that the correlation functions of a quantum Markov process are
analytical as described above, one finds as a necessary condition for the generator I-
of the process and the density matrix pp from which the correlations are calulated

(i) rR pp = - RPB r’, (5.2)

where RPB is the operator multiplying with ps from the right. Equation (5.2) is
proved by choosing a point ZE S, with Re z>O. Then (u(z) u)~ and (u( -z*) v)~
are given by the analytical continuations of (2.26a) and (2.26b), respectively. In the
limit Re z -+ 0 + these expressions should coincide for all (bounded) operators u and
v. Differentiating with respect to Im z in the limit Im z + 0 yields the desired result
(5.2). If (5.2) acts on the identical Hilbert space operator we find with pl = 0 (dif-
ferentiate (2.22) with respect to t at O+) that pg is stationary

(ii) rps = 0. (5.3)

The KMS condition together with the quantum regression hypothesis implies

(iii) LpBGi = RpFGI + ihp, for all z E S1 with Re z > 0,

and

(iv) pg has an inverse.

Corresponding conditions like (iii) exist for z E Si and Re z < 0, but since they do
not contain anything new  we do not give them here.

Choosing z E S1, Re z 3 0 the left- and the right-hand sides of (5.1) are given by
the anaytical continuation of (2.26a), (2.26b), respectively. Using the fact that (5.1)
holds for all bounded operators u and u immmediately yields (iii).

Conversely, the KMS condition (5.1) follows from (iii), if (iii) acts on u and if the
result is multiplied by u and, finally, the trace is calculated.

Part (iv) is proved by’assuming that pa does not have an inverse. Then there are
cp, $E&’ for which p8p=0 and p&=AJ/ with ll#O. Choosing u=I$)(v,I and
v = I cp)($ 1 for z = 0 it follows from the left-hand side of (5.1)



                

and for the right-hand side of (5.1)

where we have used the quantum regression hypothesis. Hence, the assumption that
pg is not invertible leads to a contradiction and consequently (iv) is proved.

Because of p,>O and (iv) ps can be used to define a scalar product of obser-
vables

(u, u)p= cu++. (5.5)

From (iii) it follows that r” is an antihermitian operator with respect to this scalar
product

(u, r+t& = -(I-fu, L$. (5.6)

Hence, the spectrum of P is a part of the imaginary axis and because p is a “real”
operator (i.e., (Pu)’ = T+u+), its spectrum is symmetric to the real axis. This
resembles the spectrum of a Hamiltonian rather than a dissipative system, which
one expects to lie in the complex left half plane. Actually, (i), (iii), and the quantum
regression hypothesis only hold for Hamiltonian systems. This was first shown for
systems in a finite-dimensional Hilbert space [47]. For the proof see Appendix C.
For a general system in an infinite-dimensional Hilbert space a proof is given in
Ref. [74].

As the main reason for this fact one will look upon the analyticity, because, e.g.,
the typical cusp of a Markovian autocorrelation function leads to a branch cut
along the imaginary axis if time is continued to complex values. We can allow  for
these singularities by demanding analyticity in the half stripes S+ =
Sin{z(Rez~0}andS;=Sin{z~Rez~O},i=1,2,separately.If,forthesakeof
simplicity, we consider systems with finite-dimensional Hilbert spaces the
analyticity of Markovian correlation functions in S,% already follows from the con-
tinuity of mean values. However, even in this case, the dissipative Liouville
operator r is strongly restricted by the KMS condition (iv) [47]. In Appendix D
we show  that it is of the form

r. = -f [H,.]-~$~~,,. . (5.7)

Here H is a hermitian operator defined by H= -In ps and nk are positive integers;
Qk, k = l,..., N, is a family of projection (super-) operators partitioning the unity,
which commute with the Liouville operator defined by H:

2 Qk=lr
k=l

(5.8)



                                 

Q& = d/c/Q,, for all k, 1= 1, 2 ,..., N, (5.9)

IIL, - R,, CM = 0, for all k, 1 = 1, 2 ,..., A? (5.10)

The dissipative Liouville operator consists of a reversible Hamiltonian part
- (i/r?)[H, *] and of an irreversible part - CF= i (2nnJ/%) Qk which is a diagonable
operator because of (5.8), (5.9). Of course, the first part is diagonable, too, and due
to (5.10) even f. The spectrum of r consists in points -(i/k)(ai--ai)- (27tnJJBh),
where .si, sj are the eigenvalues of H. Only if one of the nk’s is nonzero is r actually
a dissipative Liouville operator. Then the damping constants are given by K = 2n/kp
or integer multiples of IC. For several reasons this is rather strange:

- The numerical value of rc for temperatures T> lo- ‘K is too large:
rc/Tx 1012 s-‘K-l. In contrast, e.g., atomic relaxation times vary from lo-” s to
10-4s.

-A linear temperature dependence of the damping constant is not observed
experimentally.

-A damping constant measures the effective strength of the interaction of the
considered system and its surroundings. For IC this is not the case, because x is
exclusively determined by the temperature and by Planck’s and Boltzmann’s con-
stants of nature.

Hence, those Liouville operators (5.7), which are actually dissipative, are
unphysical and merely mathematical artefacts. Therefore weakening the analyticity
did not lead to the desired success.

In concluding we find that the quantum regression hypothesis and the KMS con-
dition are compatible for Hamiltonian systems only. The results given so far are for
systems with finite-dimensional Hilbert space. However, for systems with an
infinite-dimensional Hilbert space at finite temperatures the dynamics can be
approximated by disregarding states with an energy much larger than the thermal
energy E% kT. In many cases the remaining states span a finite Hilbert space.
Moreover, in the next section we will draw  the same conclusions as above for a
system with an infinite-dimensional Hilbert space.

5.2. KMS Condition for Stationary Quantum Gauss Markov Processes

For Gauss processes it is sufficient to demand the analyticity and the KMS con-
dition for the elements of the correlation matrix C (3.23), because then these
properties hold for higher-order correlation functions automatically. From the
analyticity it follows that C(z) is an analytical function on the strip S, . However, in
general for a Gauss Markov process C(z) has a branch cut for Re z = 0 and a
branching point at z = 0. The branch cut does not exist only if C(t) is continuously



                

differentiable at t=O. With (3.28) it follows that this is the case exactly if the dif-
fusion matrix D vanishes

D=$c+Cy+)=O. (5.11)

As one Iinds from (3.4), (3.10), and (3.11) this is the case only if r is a purely rever-
sible, Hamiltonian Liouville operator

l-. = -f [H, .], (5.12)

where

H = (2m) ~ ‘p2 + imo2q2 + ir(pq + qp), (5.12a)

m and w being positive and r real with 1 r 1 < o. Hence, the Markov property and
the analyticity are in conflict in general. Because this is the case for classical
Markov processes, too, where analytical properties of correlation functions are
violated at equal times (violation of higher sum rules [69]), this is not a severe
objection against the quantum regression hypothesis. It merely displays the
approximative nature of a Markovian description of a physical process at short
times. Therefore we weaken the analyticity, by demanding it only in the half stripes
ST and S;, separately, as we already did in the preceding section. However, as a
consequence of (3.24), this is fulfilled for any stationary Gauss Markov process. The
KMS condition (5.2) for the correlation functions of a stationary Gauss process
reads

C(z) = c(z* - i?qq*. (5.13)

Because of (3.24) this implies for a Markovian Gauss process

c = @BYc*. (5.14)

From property (iv) of the preceding section and (3.8) it follows that C is invertible.6
Therefore from (5.14) if follows

cc* - 1 = @Vv. (5.15)

One finds by inspection that CC*-’ is hermitian and even positive definite with
respect to the scalar product

(x~Y)=~xic~lYj~ (5.16)
ij

6 Property  (iii) implies that the state in which C is determined is a mixture because for a pure state pb
would not be invertible. For a mixture the inequality  (3.8) holds. Consequently  the determinant of  C
does not vanish.



                                 

where C-l is used as a metric:

(x, cc* - ‘y ) = (cc* - lx, y), (5.17)

(x, cc* ~ lx) B 0. (5.18)

In this metric CC* - ’ can be diagonalized and, consequently, y too.’ The eigenvec-
tors of y and CC* -’ coincide and for the eigenvalues Al,1 of y it follows

pl,2 = eiWh2, (5.19)

where pi,* are the eigenvalues of CC* -I which are positive because of (5.18). The
product of pL1 and pLz is unity because of det CC* - ’ = 1. Therefore we may put

yielding

2w zAl,* = +io -hp,

where nl,* are integer numbers, which must be positive because of the stationarity
of the process.

The eigenvalues of the relaxation matrix determine the spectrum of the dis-
sipative Liouville operator (3.28). Hence, we have the same results as in the linite-
dimensional case. Again, the damping constants are linear functions of the tem-
perature, independent of any parameter characterizing the coupling strength of the
system and its environment. For the order of magnitude of the damping constant
the same applies as in the finite-dimensional case: e.g., an electromagnetic field
mode in a resonator may have a lifetime of lo-% or even longer.

In contrast to a system with finite-dimensional Hamiltonian for a Gauss process
there should exist a classical limit which formally can be performed by sending
fi + 0. From (5.21) we obtain in this limit the damping constant being either diverg-
ing or zero. In the remainder of this section we will discuss the classical limit of the
KMS condition. It implies that a classical Markov process is purely Hamiltonian
provided that the correlation functions can be differentiated with respect to time.
The latter condition excludes the case of a diverging damping, of course.

First we give the classical limit of the KMS condition. The differentiability with
respect to t implies for small !i

’ Assume y could be transformed to the Jordan normal form y = I1 + N, N # 0, N2 = 0, only. Then
(5.15) implies that CC*-’ = P”(1 + N) cannot be diagonal&d in contradiction to (5.17).



   

and consequently

             

:mp + 0th). (5.22)

In the limit fi + 0 the observables u and u become phase space functions8 and the
commutator multiplied by i//i becomes the Poisson bracket

/irnOi [u, u] = {u, u>, (5.23)

where

(5.23a)

Combining (5.22) and (5.23) yields the classical limit of the KMS condition
[72,75]:

(Ma u)>f?= 9; W)u)p. (5.24)

Now  we may put

p=~-‘e-PH (5.25)

where

Z=SdpdqFV (5.26)

Then for the mean value of the Poisson bracket it follows

( We 4 >fl= w+(Q? w )/P (5.27)

For a classical Markov process the time derivative of a correlation function is given
by (2.6), (2.11):

; (vu(t)> = <ur+u(t)), (5.28)

where f’ is the generator of the Markov process. Because (5.24) should hold for all
differentiable phase space functions u we find with (5.27), (5.28)

f u= {H, u} (5.29)

* For a more precise formulation of the classical limit see Ref. [76].



                               

for all differentiable phase space functions U. Hence, the dynamics is Hamiltonian.
This implies that the Poisson brackets of observables at different times cannot be
described correctly in the Markovian approximation.

However, this is not a serious drawback because for a classical stochastic process
the Poisson brackets have no special significance. This is rather different in the
quantum case: here the KMS condition links different time orderings of correlation
functions and represents an important symmetry of these correlation functions
which, however, is violated by the quantum regression hypothesis.

6. LINEAR RESPONSE AND FDT

For a Hamiltonian system which is initially prepared in a thermal equilibrium
state and which is disturbed by small external forces F,(t) acting via the
Hamiltonian -xi Fi(t) ui, the mean values of the observables ui deviate from their
equilibrium values by

where the response function xii(t) is given by the equilibrium expectation value of a
commutator [72]

Here O(t) is the unit step function and 6~ denotes the deviation of the operator u
from its equilibrium mean value.

As is well known, the KMS condition relates the Fourier transform of the dis-
sipative part of the response function

rt(')=~(x,(r)x,,(-f)), (6.3)

with the Fourier transform of the symmetrized correlation function

s,(t)=~(8ui(t)6uj+6uj6ui(t)),

by the fluctuation dissipation theorem (FDT) [68, 721:

(6.4)

(6.5)

The classical limit of the FDT reads

(6.6)



                

yielding in the time regime

x&(t) = -p?(t)& S,(t). (6.7)

As for the KMS condition, the FDT still holds in the thermodynamic limit. Hence,
for an open system being in thermal equilibrium with its surroundings the linear
response to external forces acting on operators of the system is still determined by
(6.1) and the FDT is valid in its present form (6.5).

For a classical process in thermal equilibrium the description by a continuous
Markov process (i.e., by a Fokker-Planck equation) is compatible with the classical
FDT [77]. This is not obvious because the classical KMS condition on which the
proof of the classical FDT may be based is violated by any classical, non-
Hamiltonian Markov process, as we have shown at the end of the preceding sec-
tion. In deriving the FDT it is crucial to couple the external forces in the
Fokker-Planck equation appropriately [23, 781. Because the change of the trans-
port coefficients due to the external forces turns out to be immaterial for the linear
response, the stationary distribution function in the presence of constant external
forces already determines the Fokker-Planck equation in the form of a transport
equation [20-221 as far as it is needed in order to determine the linear response. In
the remainder of Section 6 we will transfer these ideas to the quantum case and will
determine the linear response of a quantum Gauss Markov process.

6.1. The Linear Response for a Stationary Quantum Gauss Markov Process

From microscopic considerations it is known that external forces acting on a
classical open system alter both the stationary distribution of the system and the
transport coefficients [78]. The same is true for quantum systems and in the case of
a stationary quantum Gauss Markov process we must allow  for changes both of
the operators Xi determining the statics and of the operators Y, determining the
mean relaxations:

x{ = xi + sxy, (6.8a)

Y;l= Y,+SY;/. (6.8b)

We recall that Xi, Yi, i  = 1, 2, defined by (3.4), (3.11), determine the dissipative
Liouville operator f = Y,X, + Y,X, [3.10] in the absence of external forces. The
deviations SX{ and 6 Y{ are zero for vanishing external forces and they are nonlinear
functionals of these forces in general. For the linear response the linear
approximation in the forces is sufficient, of course. In the following we will denote
the linear deviations by the same symbols as the exact ones, since there may be no
confusion.



                                 

Before switching on the external forces the system is supposed to stay in the unper-
turbed stationary state

P(O) = Pst, (6.9)

where
fp,, = 0. (6.10)

Using (6.8a, b) in linear approximation in the external forces it follows from (2.15),
(3.10) for the time rate of change of the deviation 6 p(t) = p(t) - pst :

sp(t)=r6p(t)+(Y,C!%{+ Y,MJ)p,,. (6.1 I)

We note that the SY;/‘s do not contribute to the linear response. Hence, it is suf-
ficient to know  SX{, which turn out to be already determined by the stationary den-
sity matrix in the presence of constant external forces.

6.1.1. Stationary Density Matrix with External Forces
Constant external forces acting on the coordinate and momentum operator of a

Gaussian oscillator influence the stationary mean values of these operators but
leave their variances unchanged. Hence, the stationary density matrix in the
presence of external forces reads

pf= Z-le~P(H-Hex’) (6.12)

H is a quadratic form in q and p, which according to (3.6) is determined by the
variances of q and p. Note that in contrast to (3.6) a factor /? is extracted from the
exponent, nevertheless H will be a function of /? in general. H”“’ is linear as well in q
and p as in the external forces f,, f,:

H”“’ = -f4q -f,p. (6.13)

f, and f, do not exactly coincide with the forces of the underlying microscopic
model, rather they are renormalized by the system-bath interaction. We will deter-
mine the response to the forces appearing in (6.13). It is related to the response to
the bare forces by a linear time-independent transformation which has to be deter-
mined from the microscopic model.

The mean values of coordinate and momentum with respect to d are linear in
the external forces:

=/IN-l(arccthN)‘f(C+C*)

where

(6.14)

(6.15)

595/167/2-13



                

and where C are the stationary second moments in absence of the forces. Clearly p’
and pst are connected by the unitary tranformation U, which shifts the mean values
of coordinate and momentum by - (q), and - (P)~, respectively:

udJ+ =(I- Wf7 (6.16)

UP,’ =P- (P)]., (6.17)

Ups, u+ = p< (6.18)

Replacing p and q in X, by its shifted values (6.16), (6.17) yields the desired
operators Xi:

q= x, - (P),., (6.19a)

Xi=&-<S>f. (6.19b)

By construction we have
X$‘= 0. (6.20)

For the deviations it follows from (6.19)

w= - (P)f, (6:21a)

sx4= -(q)p (6.21b)

Using (3.11), (6.21) the inhomogeneity in the equation of motion of the perturbed
density matrix (6.11) can be written as the commutator with a hermitian operator
Hf:

Y,dX{+ Y,6X{= +Hf;], (6.22)

where

Hf= (r~(q)f+ r3 OOf)p
-(~2(q)f+r‘s(P)f)q. (6.23)

Hf is linear in both q and p and the external forces f, and fP. H/ and He"' do not
coincide in general. Hence, one cannot couple the external forces by merely adding
-(i/h)[H”“‘, a] to the dissipative Liouville operator.

6.1.2. The Linear Response
The functional dependence of X;’ on the external forces is independent whether

the forces are constant or time dependent. Using (6.21), (6.11) may be integrated
with the initial condition (6.9) to yield

6p(t) = -J; ds e -r(‘-S)KP)f(s) y, + (4)f(S, Y2) Pst. (6.24)



                                 

Using the commutation relations of Xi and the symmetrized multiplications with q
and p

Cx,,L,+R,I=(Pq)+(qp), (6.25a)

LX*, L, + &I = 2(q2h (6.25b)

[IL~,+4J=2~P2), (6.25~)

C~2Jp+4J=(Pq+qP) (6.25d)

yields

w, + RJ Pst = Yl [Xl 3 L, + &I Pst + y, L-x*, L, + &I Pa

= (Pq+qP) Wst+2(q2) Y2Pst, (6.26)

and a similar equation for T(L, + RP) pSt ; these equations may be solved for Y,p,, :

Y* Pst
( ) =(C+C*)-’ ( 

~(4Pst + r&q)
YIPS, 1T(PPst + PstP) .

(6.27)

Combining (6.14) and (6.27) yields

<P >rcs, y, + (4 > f(sj Y, = +fiNPr(arccth N))’

Xr{(qPst+Psts)f,(s)+(Pp,,+p,,P)f,(s)}. (6.28)

Now  the linear response follows from (6.24), (6.28) and (6.26),

(6.29)

where the response function is given by

x(t)= -j3NP1(arccthN)-’ H(t)-$i(C(f)+C*(f)). (6.30)

Consequently, the Fourier transform of the dissipative response function (6.3) reads

x”(o) =f (Narccth N))’ OS(O), (6.31)

where S(w) is the Fourier transform of the symmetrized correlation matrix
f(C(t) + c*(t)).

In the classical limit, A + 0, the factor N arccth N becomes unity and the classical
FDT (6.6) is recovered. For a Hamiltonian oscillator with frequency w0 the sym-
metrized correlation matrix S(w) consists of two b-functions at +-a,,.

S(w) = Sf6(0- 00) + s-6(w  + coo), (6.32)



                

and N follows from (6.15)

rV=coth$% (6.33)

Because of the b-functions in S(o), oO can be replaced by w in the factor
(Narccth N)-‘, yielding the correct quantum FDT (6.5). For an irreversible quan-
tum process the damping leads to a broadening and shift of the b-functions in S(w)
and consequently (6.31) no longer represents the correct FDT. Because S(o) is at
least of second order in the damping constant, (6.31) still gives the correct result in
the weak coupling limit, although the changes in the response due to environmental
influences are not accounted for correctly.

7. COMPARISON WITH DIFFERENT APPROACHES AND CONCLUSIONS

In the present paper we investigated the description of open quantum systems by
the quantum regression hypothesis. This hypothesis states that the dynamics of
correlation functions is already known from that of mean values. In this sense it
provides a generalization of the classical notion of a Markovian process to the
quantum case. By comparing corresponding classical and quantum expressions for
the time evolution of both mean values and correlation functions we showed the
Markovian nature of a quantum process obeying the regression hypothesis more
explicitly.

We only mention that an even deeper correspondence of classical and quantum
processes than shown here can be established by introducing multitime density
matrices which have similar properties as the joint multitime probabilities of a
classical stochastic process [34, 35,471. For a system with observables commuting
at all times these multitime density matrices become classical joint probabilities.
Hence the multitime density matrices yield a key to a unified description of quan-
tum and classical processes. Within this framework a Markovian process is defined
as a process for which multitime density matrices at times t;,..., f, and f,,..., t,, t,, ,
with t n+l 2 t,>, t,, t2,... depend linearly on each other’ [35,47].

As a simple example we investigated the stationary Gauss Markov processes of
an oscillator. As in the classical case the quantum Gauss Markov processes are
completely determined by a transport matrix L with a positive hermitian part D
and a positive correlation matrix C. Because of the commutation relation of coor-
dinate and momentum L and C must be complex matrices in contrast to the
classical case. Moreover, they are not independent of each other, because the
relaxation matrix y = LC-' must be real. Neither can y and C be chosen indepen-
dently because then D would not be positive in general. Therefore, there is less

9 Classically this defines a Markov process as a whole class of processes having the same propagator
but with arbitrary initial distributions, instead of a single process having the Markov property. In the
latter case the generator may depend on the starting point or on the initial distribution [79, 801.



                                 

freedom in inventing quantum models than classical ones. A further complication
arises for two interacting oscillators, or, more generally, for composed open systems
with internal interactions. Then the interaction part of the Liouville operator does
not only consist in a Hamiltonian part but it must contain a dissipative part in
order that in the weak coupling limit (for the system with its environment) the
stationary density matrix is given by the Gibbs state Z-‘~C~“, where H is the
Hamiltonian of the internally interacting system decoupled from its environment.
No phenomenological means are known to determine the dissipative part of the
interaction. In particular cases it was determined from microscopic models
[Sl, 821.

So far the theory of quantum Markov processes appears to be somewhat more
unwieldy than the classical one. However, applied to open systems in thermal
equilibrium, quantum Markov processes violate basic symmetries of correlation
functions which are proved to hold in the considered case. Such symmetries are

- the KMS condition
- the fluctuation dissipation theorem
- detailed balance (under certain conditions).

The violation of these basic physical principles does not necessarily imply that in
certain limiting cases the predictions of the quantum regression hypothesis might
not be in good quantitative agreement with the true behavior of the considered
system. After a short discussion of other ways to describe open quantum systems we
will come back to this important question.

First, we mention quantum Langevin equations, i.e., equations of motion for
observables. According to these equations the time rate of change of an observable
consists in a Hamiltonian part, a dissipative part, and a fluctuating force operator.
In the presence of dissipation the latter is necessary in order to maintain com-
mutation relations in the course of time [4,28]. Hence, the fluctuating forces cause
a unitary time evolution in spite of the damping forces. Because this unitary motion
cannot take place in the system’s Hilbert space, the fluctuating force operators are
acting on a larger Hilbert space which in physical terms can be interpreted as the
Hilbert space of the environment. Therefore, in the Langevin description the
dynamics of the observables of the system evolves in a product space as it does
microscopically. Mathematical aspects of this so-called stochastic dilation have
been investigated recently [83]. For systems with an Euclidean state space the fluc-
tuating forces are usually assumed to be Gaussian. As we have mentioned already,
the assumption of d-correlated fluctuating forces leads to the quantum regression
hypothesis.

Most easily this can be seen for an oscillator. Then the following Langevin
equations define a quantum Gauss Markov process

4(f)= -r3q(r)-r*P(t)+~~(r), (7.la)

L’(t)= -r4q(t)-r2P(t)+Fp(t), (7.lb)



                

where ri, i  = l,..., 4, are the elements of the relaxation matrix y (3.21), and where the
diffusion matrix D (3.26) is connected with the correlations of the fluctuating forces
in the same way as classically

(7.2)

The mean values of the fluctuating forces vanish

(&W) = (&(W =o. (7.3)

They constitute themselves a stationary quantum process which, however, is not in
thermal equilibrium because the correlation functions of the fluctuating forces do
not fulfill the KMS condition [84]. Consequently, the oscillator driven by these
forces does not approach thermal equilibrium in general.

A Langevin equation for a Brownian particle of mass m moving in an external
potential V(q) and driven by a thermal equilibrium process was derived from a
microscopic model in Ref. [29]:

M(f) = -f$t) -g + E(l),

where f is the damping constant and E(t) a Gaussian random force operator,
independent of the initial values q(0) and g(O), with vanishing mean value. Its
second moments follow  from

and

f- =- s do tiw  coth
710

ggos o(t-s).

Note that the symmetrized mean (7.6) already follows from the commutator (7.5)
by the KMS condition. Note further that in the limit h --) 0 E(t) becomes a classical
white random force and (7.4) goes over to the classical Langevin equation.

Except for the case of a harmonic potential there is as yet nearly nothing known
of how  to gain information from the Langevin equations (7.4)-(7.6) [30, 851. In
particular the master equation corresponding to the Langevin equation is not
known.

Some general properties of the master equations are known from microscopic
considerations [23, 863. For example, the master equation describing the relaxation
of the reduced density matrix towards thermal equilibrium governs the dynamics of



                                 

the canonical equilibrium correlations, which for a Hamiltonian system are defined
by

where u and u are observables, and where H is the Hamiltonian of the system.
2 = tr ePBH is the partition function. The time-ordered correlation function which
we have dealt with as yet are connected with the canonical ones by the KMS con-
dition:

fiwB (u(w) u) =- 1 _ ehw p Cuu(o),

where (u(o) u ), C,, (0) are the Fourier transforms of (u( t ) u ), C,, (t ), respectively.
These correlation functions obey the symmetry of detailed balancing as well as the
fluctuation dissipation theorem (86-89). Hence, the canonical correlations are con-
nected with the dynamics of the mean values by a regression theorem rather than
the time-ordered correlations.

The path integral formulation of quantum mechanics provides yet another tool
to deal with open quantum systems [32, 331. For a Brownian particle moving in a
harmonic potential the path integral treatment [90] and the Langevin equation
(7.4) yield the same results both for relaxations of mean values from non-
equilibrium states and for equilibrium correlations [91]. For the understanding of
the influence of dissipation and of fluctuations on the decay rate of a metastable
quantum state [7,92,93] and on the quantum coherence of a particle in a double
well [94,95] the path integral formulation has shown to be indispensable.

In the case of a harmonic oscillator its stationary behavior can be determined by
a purely phenomenological consideration [96,97 J. It is based on the following
assumptions:

(i) The mean values obey the classical equations of motion according to
Ehrenfest’s theorem.

(ii) The equ’l’b 11 rium correlation functions and the response functions are
related by the FDT.

(iii) The process is a stationary Gauss process.

The first two assumptions are of general nature and the third one is based on the
linearity of the considered problem. From the equations of motions of the mean
values, given by assumption (i), the response function can easily be determined.
With assumption (ii) this yields the matrix C(r) of equilibrium correlation
functions. By assumption (iii) the correlations C(t) determine the process com-
pletely. The such defined process fulfills the KMS condition, it has the symmetry of
detailed balancing, and by construction it obeys the Ehrenfest theorem and the



                

FDT. Starting from the equations of motion of mean values which follow  from the
Langevin equation (7.4) with a quadratic potential, and proceeding in the just
described way, one gets the same stationary process as from this Langevin equation
and the same one as from the path integral method. Thus for this particular simple
case there are three equivalent phenomenological approaches. Moreover, in the suc-
cession of [29,98] there are various microscopic investigations confirming these
approaches [99-1013.

Finally, we come back to the question of whether the quantum regression
hypothesis could yield good quantitative predictions. We have already mentioned
(see Section 4.2) that from a microscopic point of view  the regression hypothesis
can only hold if for all times the total density matrix factorizes in the reduced one
and in that of the environment. Therefore the interaction of the open system with
its environment must be small and consequently the damping constants of the
reduced dynamics must be much smaller than the frequencies of the free time
evolution

To be explicit, we consider the stationary Gaussian process with the classical mean
value equations of a damped harmonic oscillator

(4) =m-‘<p>2 (7.9a)

0) = -m%Kq) -y(P). (7.9b)

For weak damping the symmetrized correlation functions read [96]

t<sw  9 +94(t))
fi  = - e - (r/2)’ coth w 00 BhJ

2mo, 2 cos mot + 4sh2(fi. oo,2) sin oat + d,,(t),

(7.10a)

ti w woz---e - (YPP
2 i

cotF
2

sin o. t

Y
+20,

00 coth “g PhQJO--
2sh2(h/I oo/2)

(7.10b)

Z-e
coth ha a0 cos  o t

2 0

(7.1Oc)



                                 

where t >/ 0 and where the functions A,,(t), A,,(t), A,(t) are defined by

A,&)=2 f
V” EC’“’

m B n= l (vz - (y/2 + hh2)(vf - (Y/2 - imd2)
(7.11a)

(7.11b)

Ap&)= (7.1 lc)

Here v, = 2wz/%$ are the Matsubara frequencies. Note that d,(t) and, hence,
-$(p(t)p+pp(t)) diverges at t =0 [75]. If one allows for a damping coefficient
which vanishes at a cutoff frequency oD $ wo, A,(O) becomes finite. At very high
temperatures one finds [96] asymptotically for @I wD q 1

A,(O) MW’ Y UD (P2)ci. (7.12)

Hence, A, (0) is very small compared with the classical value ( p2 )C, = ml/? which is
assumed by the first part of (7.10~) at t=O. At finite times A,(t) decreases faster
than the first contribution of (7.1Oc). The same considerations apply for Apq(f) and
Aq4(t) and, hence, in the high-temperature limit the correlation functions of a
classical Brownian oscillator are recovered. For lower temperatures, where
flho, % 1, A,(O) diverges logarithmically in the cutoff frequency

b M
A,(O) z- 71 WfWJ.

At very low  temperatures where fi/? y P 1, A,(O) becomes

where ( p2)o = 4 mAoo is the momentum dispersion of an unperturbed oscillator in
the ground state. In the latter case the Matsubara frequency v1 is much smaller
than the damping constant y and, according to (7.10) (7.11), the long time
dynamics is governed by vi. lo

The quantum regression hypothesis allows for a decay of correlations at the rate
y only, and, in view  of the preceding remark, its validity is at least restricted to tem-
peratures for which

Y<V,, (7.15a)

lo At T=O all Matsubara frequencies contribute and add up to an algebraic decay, e.g.,
(q(t) qfq q(t))wt-’ [96]. Similarly, the second moments of  q and p relax algebraically  form non-
equilibrium initial states to their equilibrium values [ 1021.



                

or equivalently

f$Y<l (7.15b)

is fulfilled. For these temperatures A,,(t), d,,(t), A,(t) assume values of the order
oO/y at time t = 0 and decrease rapidly to zero on the time scale h/I. Such initial
slips are well known for certain non-Markovian processes [ 103, 1041, but they can-
not be accounted for by the quantum regression hypothesis.

In the weak coupling limit, i.e., for y + 0, t + co and yt held finite, the correlation
functions become

(~(t)~)=&eP”‘12)’ cothFcosw,,f-isinw,,t ,
I

(7.16a)
0

(p(t) q) = +m
i

cosw,t-icoth- @IWosinw  t2 I
0 3 (7.16b)

(p(t)p)=Fe-(y/“’ cothFcosw,,-isinwoy (7.16~)

where we have used (7.10) and the fact that the expectation value of the com-
mutator follows with the FDT immediately from the equations of motion of the
mean values:

([q(f), q]) =fxf$= -~ee-(yi2)rsinwot.
moo

(7.17)

Equations (7.16) are of the form of Markovian correlation functions. By use of
(3.4), (3.10), (3.11) we recover the dissipative Liouville operator of Weidlich and
Haake. A discussion of the stationary process of a damped quantum oscillator in
the whole range of damping and temperature is found in Ref. [lOS].

In concluding we remark that the quantum regression hypothesis can only give
correct results in zeroeth order in the damping constant according to the weak
coupling limit. This is quite different from the classical case where large damping
does not exclude a Markovian modelling.

A. THE DISSIPATIVE LIOUVILLE OPERATOR (3.10)

For a more detailed derivation of the dissipative Liouville operator see
Refs. [47,48].

For a Gauss process we may restrict ourselves to correlation functions of two
operators at different times because more complicated multitime expectations can
be determined by means of the Gaussian property.

First we formulate the Gaussian property for a process described by p and q. The



                                 

momentum and coordinate form a Gaussian process if the correlation functions of
two arbitrary products pkq’ at different times tlS = t + Z, tz = t, factorize into a sum
of products of (P(ti)P(tj)), <P(ti) q(tj)), <q(ti)P(tj)), (q(ti) dtj)), with i,j= 192
according to one of the following recursion relations:

uPkq’wP”q”) = v- 1)(P2)((Pk~2ql)(T)Pmqn)

(A.la)

+ (l- 1)(q2)((Pkql-2)(T)Pmqn)

+m(4(~)P)((Pk41-1)(~)Pm~1qn)

+n(4(~)q)((Pkq’~‘)(~)P”q”-‘). (A.lb)

In (A.la) we have factorized with respect to one of the p’s in the product (pkq’)(z)
and in (A.lb) with respect to one of the q’s in the same product (pkq’)(z). The
corresponding factorizations with respect to a p or q in the product p”q” are also
possible because they lead to the same result. Gaussian correlation functions of
operators with more than two times can be found by analogous factorization
procedures, but we will not give them here because their form is obvious.

For r = 0 (A.la, b) can be obtained directly from (3.la, b) so that (A.la, b) lead
to the same stationary density matrix, of course. Further we remark that the above
definition of a quantum mechanical Gauss process is not restricted to the
Markovian case. In order to get a Gauss Markov process, the correlation functions
must have the special form (2.26). Because the propagator CT is uniquely deter-
mined by the generator rt (see (2.17)), it is sufficient to look at the time rates of
change of the correlation functions at T = 0. Therefore, we differentiate (A.la, b)
with respect to t > 0 and put z = 0 afterwards, Using (2.26) the cyclic invariance of
the trace, and the canonical commutation relations we get from the fact that pkq’
are linearily independent operators for k, 1= 0, 1, 2,...:

-PCL,,r+l+(p4)CL,-R,,rl+(p’)lR,-L,,I’l

= <IiP)KP2xq2) - (P4)2)+ wwqxP2) L
(P2)G12) - KP4)l2 4

_ (up> R
4

_ QwKP*><~*> - <qP>2)- wwPxq2) L
(P2>(q2> - I(P4)12 P

+ (dq) R
P

-~CR,,~+l+<pq)lR,--L,,~+l+<q2)CL,-R,,~1 (A.2a)



                

= (QPP)KP2xq2) - <Pcl>2)+ WK&)<P2) L
<P’m*> - I(P4>12 9

_ (gpp> R
9

_ (4q>((P2>(q2) - (w)*)- WiK4p)(q2) L

(P2>(tJ2> - I<P4>12 P
_ c4qj Rp, (A2b)

where L, and R, are left and right multiplication operators, respectively, defined in
(3.12), and where (Qq), (Qp), (@p) are derivatives of the respective correlation
functions at z = O+, e.g.,

(44) = Ji+y+ -$ (4(T) 4).

Equations (A.2a, b) are linear inhomogeneous equations for the generator r which
have (3.10) as a unique solution, satisfying I’+1 = 0.

The constants ri, i = 14, appearing in (3.10) are determined by the stationary
second moments and the time derivatives of correlation functions T = 0:

r
1

= _ (44)(4P) - (4P>(q*>
(P2xq2> - I<P4N2 ’

r
2

= <liPxq2) - (Liq)(qP)
(PZm2)- I<P4>12 ’

r3= <4S><P2> - (ciP)(P9)
(P2>(q2> - KPS>12 ’

r
4

= -(liPXPq) - ow(P2)
(P2M2> - I(P4)12 .

(A.4a)

(A.4b)

(A.4c)

(A.4d)

B. POSITIVITY OF THE DISSIPATIVE LIOUVILLE OPERATOR (3.10)

We consider the relaxation of the second moments (q2(t))o, ( (pq)(t))o,
(~‘(t))~ which f orm a positive semidetinite matrix N(t) for t > 0:

iv(t) = ( <Q2(Wo ((clP)(f) >o
< (P4Nt) >o (P’W >o > .

The positivity is a consequence of (q2(t)),, > 0 and

(B.1)

detW)=<q2Wh (~‘(t)>~-I((ps)(t)>~l~~O U3.2)

as follows by the same kind of argument explained after (3.8). As a special case of
(B.l) we note

c>o. (B.3)



                                 

The equations of motion of the matrix elements of N(r) follow  from those of the
corresponding Heisenberg operators p*(t) = Gjp*, etc. after averaging over an initial
nonequilibrium density matrix. In matrix notation they read

l+(t)= -yN(t)-N(t)y+ +20 03.4)

where the diffusion matrix D is defined in (3.26). Again, this is in accordance with
the classical result. Starting from any nonequilibrium value N(O), for a stationary
process N(t) relaxes to C. Hence, the real part of the eigenvalues of y must be
positive. A necessary condition for this to hold is

r,+r,>o. (B.5)

The general solution of (B.4) is simply

N(t) = e-"'N(O) epy+'+ 2 Ji ds e-Y"De-Y+S. (B.6)

Hence, D being semipositive definite is suflicient for N(t) to stay positive
semidefinite for all I > 0 provided N(0) > 0. We now  show  that it is even necessary
for D to be positive semidefinite in order to have a positive N(t). For this purpose
we consider a particular N(O), which implies just equality in (B.2):

where 6= + 1; (p*),,, (q2)o may have arbitrary positive values in the physical
range (p*>,, (q2)o > (k/2)*. Then there is a vector x,

(B.8)

which is annihilated by N(0):

N(0) xg = 0. 03.9)

By the scalar multiplication of N(1) x0 with x0 we find for sufficiently small times
from the positivity of N(t) = N(O) + N(0) t + 0(r2)

b,, Dx,) 2 0, (B.lO)



                

where we used (B.4) and (B.9). Because x0 is not an arbitrary vector the positivity
of D does not follow  immediately from (B.lO). From (B.8) and (B.lO) it follows

D11x2-2(~~~Re D,2+yImD,,)x+D22~0, (B.ll)

where D, are the elements of the matrix D and where

h

“=2&i5z?x
(B.12b)

x is an arbitrary positive number, and, hence, D,, and D,, must not be negative.
From (3.26) and (B.5) it follows Im D,, 20. Now  we can choose 0 = +_ 1 and
y E (0, 1 ] such that

a~~ReD,2+yImD,2=lD,zl.

Then (B.ll) becomes

D,,x~-~~D,,Ix+D~~~O for all x > 0,

and consequently
D,,D,,B 142/2.

(B.13)

(B.14)

(B.15)

Hence, as in the classical case D must be positive semidelinite. It is worth noting
that a dissipative Liouville operator of the form given in Section 3.2 with positive
semidefinite D is even completely positive [Sl]. The ordinary positivity which
guarantees that mean values of positive observables stay positive for all times is
generally a weaker condition. However, in the present case of a stationary Gauss
Markov process, already the positivity of the second moments is sufficient for the
complete positivity to hold.

C.~OUNTEREXAMPLE OF A POSITWE DISSIPATIVE LIOUVILLE OPERATOR

Let us consider the Fokker-Planck operator of a Brownian oscillator

as the Wigner representation of a dissipative Liouville operator, which according to
(3.14) reads

(C.2)



                                 

where

(C.3)

This form has repeatedly been postulated in the literature [52-541.
From (C.2), (C.3) we find ri = -l/m, r2= yO, r3=0, r4=mo2, and (p’) =

m202(q2). However, this yields the diffusion matrix

I (C.4)

which is not positive semidefinite.
In order to demonstrate the unphysical nature of the dissipative Liouville

operator (C.2) we consider as initial state a pure state ) +)($I where II/ is the nor-
malized ground state of the annihilation operator 6:

b=;(q+&p), a>&

b$=O. (C.6)

In this state we find

(4h= (P)o=O,

(q2hJ = ($J2Y

(p2h=a2,

(PYh=;.

(C.7)

(C.8)

(C.9)

(C.10)

Hence, tj is a squeezed state in general. By construction, the expectation value of
the observable b + b in this state vanishes. Hence, for short times it follows

((b+b)(t)),= t tr b+bI’p,,

=-t$(a2-(p2)),
where we have used (C.2). Choosing a2 larger than the stationary dispersion (p’)
we find a negative expectation value of the positive observable b+b.



                

D. THE DISSIPATIVE LIOUVILLE OPERATOR (5.7)

First we will prove the form (5.7) of a dissipative Liouville operator of a system
in a finite-dimensional Hilbert space, the correlation functions of which satisfy the
KMS condition. Finally, we will draw  the consequences following from the con-
dition of analyticity (5.2).

It is well known that every continuous one-parameter semigroup of linear
operators G,, t 2 0, on a finite-dimensional vector space can be continued to an
analytical group on the complex plane,

Gz,GzZ=G1,+z2 Vz,, z2 EC, CD.1 1

consequently

[GZ,, G;,] =0 Vz1,z2 EC. (D.2)

We recall the KMS condition (5.4)

(D.3)

where pp can be written as (see property (iv) in Section 5.1)

po=.p-y CD.41

2 = tr eeBH is the partition function and H is a hermitian operator depending on /I
in general.

Equations (D.3) and (D.4) imply with GA = 1

GIhs = eifipLt, CD.51

where L’ is the Liouville operator defined by H

L’=f(L,-R,). (D.6)

Here we have made use of some trivial properties of multiplication operators: R,
and L, are invertible if and only if x is invertible, and one has

R;‘=R x-‘9 (D.7a)

L;‘=L XC’. (D.7b)

Left and right multiplication operators commute

R.x L, = L, R, for all operators, x and y. (D.8)



                                 

If one operator is a function of another the same functional dependence applies for
the corresponding multiplication operators

LfCx, =.ftu (D.9a)

Qc, =f(k). (D.9b)

From (D.2) and (D.5) we find
[G;, c?“~~+] =0 (D.10)

and by differentiating with respect to z at z = 0

where f is the generator of the semigroup G:. As a commutator with a hermitian
operator, Lt is diagonable and has purely imaginary eigenvalues. Therefore (D. 11)
implies that f and Lt commute:

[f, Lf ] = 0. (D.12)
Hence, (D.5) implies

,ifiD(r+-L’)=1 (D.13)

With the logarithm of the identity [lOS] we find from (D.12), (D.13) the desired
representation (5.7)-(5.10).

We recall that because of the analyticity r” is antihermitian (see (5.6)) with
respect to the scalar product (5.5). It is easy to show  that the same is true for Lt.
Consequently the exponent of the left-hand side of (D.13) is hermitian and we find
as the unique solution of (D.13)

r+=L+=$, .] (D.14)

as we have claimed in Section 5.1
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