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Dedicated to Professor Harry Thomas on the occasion of his 60th birthday 

The escape rate from quite general metastable states is calculated by means of the mean 
first passage time. Our result generalizes the known expression for transition rates in 
equilibrium systems in a very natural way. Possible limitations of its validity are discussed. 

1. Introduction 

In equilibrium and, more frequently, in nonequilib- 
rium situations a system governed by deterministic 
nonlinear evolution laws may have different locally 
stable states. In general, the presence of noise renders 
these states unstable. It is both of principle and practi- 
cal interest to know at which time scales the influence 
of noise becomes important. In the frequently occur- 
ring case of weak noise a clear cut separation of time 
scales shows up: on a short scale relaxation processes 
take place which are almost uneffected by the noise, 
followed by an intermediate scale which becomes 
larger with decreasing noise strength, on which the 
decay of unstable states take place, and, finally, on 
the largest scale transitions between metastable states 
occur [1] *. 

This paper investigates the rates at which these 
transitions occur. 

For  their determination two methods have been 
developed, namely, the calculation of a rate as the 
ratio of a probability flux over a barrier and a popula- 
tion of a well [-2-4], and, on the other hand, by the 
determination of the mean time after which a trajec- 
tory passes the separatrix between two neighbouring 
metastable states, i.e. by means of a mean first passage 
time (m.f.p.t.) [5, 6]. Reference 7 may serve as a review 
of the present state of the art. 

In this paper I will utilize the second method. In 
the next section, the qualitative behaviour of the 
* Of course, there is a microscopic time scale which shrinks with 
decreasing noise, on which the noise impresses small irregularities 
on the otherwise deterministic mot ion 

m.f.p.t, is discussed. Its constant part is expressed in 
terms of a stationary probability density of the pro- 
cess and in terms of the gradient of the formfactor 
of the m.f.p.t, at the separatrix [-5, 6]. 

In Sect. 3 the contribution of the attractor to the 
rate is elaborated by means of a WKB ansatz for 
the stationary probability density. Because this ap- 
proximation is only used in a local neighbourhood 
of the attractor and, in Sect. 4, of a saddle located 
at the separatrix the pertinent problems with a global 
use of the WKB approximation [8] do not spoil these 
considerations. In Sect. 4 the contribution of the sad- 
dle is analysed and the final expression for the rate 
is given. In Sect. 5 I investigate the special case of 
a point as an attractor and a limit cycle as a saddle 
in which case a further evaluation of the rate can 
be performed. Possible limitations of this theory are 
discussed in Sect. 6. 

2. The Constant Part of the Mean First Passage Time 
and the Rate 

I suppose that a set of first order autonomous differ- 
ential equations 

)~i=Ki(~K), x~---(x 1, x 2, . . . ,  xn)EF (2.1) 
describes the deterministic motion of a system in con- 
figuration space F, and that this set of differential 
equations has an attractor A with a domain of attrac- 
tion (2 smaller than. F. The boundary ~Y2 constitutes 
a separatrix which is supposed to be smooth. 
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If the system is perturbed by Gaussian white noise 
the sojourn time within f2 is finite, even if the noise 
is arbitrarily small. 

The perturbed motion is described by the Fokker 
Planck operator 

0 8 0 2 
L =  - - ~ r  (Ki(x) + ~li(x)) -+ 2 8x  i 8x  j Dq(x)' (2.2a) 

with the adjoint 
O ~ O 2

L + =(Ki(x)+el~(x)) ~ + - ~  DiJ(x) 8x  i Oxj,  (2.2b) 

where eDO(x) is the diffusion matrix with a positive 
but small noise strength e, and with D~(x) bounded, 
and where 1 (x) denotes the noise induced drift. 

The mean time t(x) at which a trajectory starting 
at x e ~  reaches the separatrix Of 2 for the first time, 
i.e. the m.f.p.t, is given by [9] : 

L + t(x)= - 1 xeO, (2.3 a) 
t (x)=0 xeOf2. (2.3b) 

For small noise, ~--+0, a trajectory starting within 
will typically first approach the attractor and stay 

within its neighbourhood for a long time compared 
with the time constants of the deterministic motion, 
until an occasional fluctuation drives it to the bound- 
ary. Hence, the m.f.p.t, t(x) assumes the same large 
value T everywhere in ~, except for a thin layer A 
along the boundary 8f2 where the small noise is still 
sufficient to cause a direct exit. Accordingly, one may 
define a function f(x) which is unity in the inner part 
of O: 

t(x) = Tf  (x), (2.3 a) 
f ( x ) = 0  for xeOO, (2.3 b) 
f(x)-~ 1 for xef2\A~2.  (2.3 c) t 

Because T is exponentially large in e- * and because 
A O shrinks to 8Q for e ~ 0 the inhomogeneity in the 
equation for f(x)  following from (2.3a) can be ne- 
glected on the boundary layer: 

L+f (x )=0  xeA/?, (2.4a) 
f ( x ) = 0  xe0f2, (2.4b) 
f ( x )~  1 xeO' , .AFL (2.4c) 

I will come back to these equations below. 
The constant part T of the mean first passage time 

may be expressed in terms of a stationary solution 
w of the Fokker Planck equation 

Lw = 0, (2.5) 

and in terms of the gradient o f f  on 0f2 [5, 6] 

dnxw 
T= a (2.6) Of' 

[. d S i w D  ij 8x  j 
OR 

where d S denotes the oriented surface element on 
892. The rate r at which the metastable state A is 
left is simply given by (see Appendix) 

1 
r =~-~.  (2.7) 

3. The Probabil ity for Staying at the Attractor 

For the stationary solution of the Fokker Planck 
equation I choose the ansatz 

w(x) = z(x, e) e-  O(x)/~ (3.1) 

where the potential ~(x) is independent of z and the 
prefactor z(x, e) is assumed to be a smooth function 
of x even in the limit e--*0. From (2.2a), (2.5) one 
finds that in leading order in e ~(x) and z(x)=z(x, 0) 
obey the following first order differential equations 
[103 

 9 O~ 1 . .O~ O~ 
K' ~ x ~ + ~ D  u Ox ~ 8 # = 0 ,  (3.2) 

K i +  Di j O _xj] Oz 
Ox ~ 

1 8 2 ~xT] + ~ D  U ~ ~Ki / i  8DiJ\ Oq) 
8x  ~ 8x  j -}-~xCx~ --~l - - ~ - #  ) z=0 .  (3.3) 

From (3.2) it follows that the potential q~ decreases 
along the trajectories of the deterministic system [-11] 

d ~  = - 1  . .&b 8~ 
dt  x,=Jv, 2 Du 8x  - - r  8x  - ~ < 0 '  (3.4) 

where the positivity of the diffusion matrix has been 
used. Therefore, 4~ is a Lyapunov function of the de- 
terministic motion. 

As an important consequence of this fact one finds 
that for sufficiently small ~ the integral over f2 in the 
expression (2.6) for the constant part T of the m.f.p.t. 
is dominated by the attractor and its vicinity. Let 
(s ~, Yg, c~ = 1, .. . ,  mA, i = i . . . .  , n-- mA, be a coordinate 
system, where the s ~ denote coordinates at the attrac- 
tor and the f coordinates transversal to the attractor, 
and where m a denotes the dimension of the attractor. 
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I assume that the drift K (x) near A may be expanded 
about yl = 0: 

K~(s, y) = k~ (s) + q%~(s) y~+ O (ly12), (3.5 a) 

K~(s, y) = B~j(s) y~+ O([yl2), (3.5 b) 

where K s and K i denote the components of the drift 
in the s s and yZ direction, respectively. 

Due to its Lyapunov property the potential q~ is 
constant at the attractor A. I assume that  9 and z 
can be expanded about y~= 0, too: 

 9 (s, y ) -  ~ A - ~b A + 2- ~%(s) y~ y~ + O (]YP), (3.6) 

z (s, y) = za (s) + O (I Y I). (3.7) 

From (3.2), (3.3) one obtains in leading order in y 

(]giJ - - ~ k  A --  A B ~ - ..aA Dkt  k~A ~-S~ ~- lka iq)k j+(O~ ~ A j t t F i k  A q?/~=0,  (3.8) 

and 

8ZA [1 .. 8k ~ . ]  
(3.9) 

Multiplying (3.8) with the inverse (~o~)- ~ and taking 
the trace yields 

8 det (Pa ( d e t q ~ A ) - l + 2 B ~ + D ~ c p A = O ,  (3.10) k~ as s 

where det denotes the determinant and where the fol- 
lowing identity has been used 

f ~oA-- 1 8 goA~ ~ det go a
~-s~ ~ 8s ~ (det q)a) -1 . (3.11) tr 1 

With (3.10), (3.9) can be simplified further to yield 

8 
85 ~ {k~ za(det goA) -~} = 0. (3.12) 

This means that zA(s ) (detg0A(s)) -~ is proportional 
to a probability density which is invariant under the 
deterministic motion restricted to the attractor. 

In passing I note that Eq. (3.8) can be transformed 
to a linear equation for the inverse matrix (~o~)-1 

+ + + = 0, (3.13) -k~4 8s s 

where q)~ denotes a matrix element of the inverse 
matrix (r 1. 

In order to obtain uniquely defined solutions the 
differential equations (3.12), (3.13) have to be supple- 
mented by the condition that Oa and za are single 

valued functions on A. In the case that the single 
valuedness is not sufficient to determine zA uniquely, 
correction-terms of order e have to be considered. 

Using (3.1), (3.6) and (3.7) the integral over /2  in 
(2.6) yields in leading order in e: 

1 A " " 

~2 A 

~--PA, (3.14) 

where PA is the probability that the systems is found 
in the linear neighbourhood of A: 

n -- m A 
p A = e - ~ / ~ ( 2 ~ e )  2 ~ d~SZA(S)(det(pA(s))  -~.  (3.15) 

A 

4. The Contribution of  the Saddle 
and the Final Formula for the Rate 

Due to the Lyapunov property of the potential 
the surface integral in the expression (2.6) for the mean 
absorption time is dominated by the attractors of the 
deterministic system restricted to the separatrix. Of 
course, these attractors are always unstable in the 
direction transverse to the separatrix and, in the se- 
qual, they will be referred to as saddles. 

If there are different saddles on the separatrix the 
one with the smallest potential prevails. I assume that 
this relevant saddle is sufficiently smooth such that 
in its neighbourhood a coordinate system (s ", y~), 
= 1, . . . ,  ms, i= 1, . . . ,  n -  ms can be introduced. As in 
the case of the attractor, (s ", y~= 0) denotes a point 
at the saddle and y~ are coordinates transverse to the 
saddle, m s denotes the dimension of the saddle. Again, 
as for the attractor, I expand both the drift, the poten- 
tial and the prefactor in terms of the transverse coor- 
dinates yi: 

KS(s, y) = s s i ks(s)+ qsi(S) y + O(]y[2), (4.1 a) 

Ki(s, y) = B~i(s) y~+ 0 (lyl2), (4.1 b) 

(s, y) = ~s +  89 (ps (s) y~ y '  + O (FY[a), (4.2) 

z(s, y) = Zs(S ) + O([yD. (4.3) 

Consequently, I find the same equations for q~s and 
Zs as for ~o A and za, respectively, with coefficients 
taken at the saddle rather than at the attractor: 

t ~ o ~ S - - B k  S - -  S rtk • _S r~kt 
~'Sj ~ q)ik 11S k ~ - s ~ -  Siq~kj+~Oik q)~ = 0, (4.4) 

k } ~ S + [ 1 D ~ o s + ~ + B i s i l z s = O .  (4.5) 
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In particular, there corresponds to Eq. (3.12) 

Os ~ {Us zs Idet q~sl-~} =0.  (4.6) 

Note that det 9 s is negative because of the existence 
of exactly one unstable direction transverse to the 
separatrix 0f2 at the saddle. 

In order to determine this unstable direction I 
consider a linear combination r of the transverse coor- 
dinates 

r = vi (s) yi, (4.7) 

where the coefficients v~ are to be chosen such that 
the deterministic motion yields a time rate of change 
of r proportional to r itself with a positive proportion- 
ality factor 2 + independent of s 

= 2 + r. ( 4 . 8 )  

Combining (2.1), (4.1 a, b), (4.7), (4.8) yields a coupled 
set of linear first order partial differential equations 
for the coefficients v~(s) 

(~V i 
k] -~s~+Bki vj=2+ vi, 2+ >0. (4.9) 

2+ is an eigenvalue which must be determined togeth- 
er with the vector field vi(s) from (4.9). 

In the simplest case, namely a saddle point, there 
is no s ~ at all (ms=0), and (4.9) represents the algebra- 
ic eigenvalue equation of the linearized motion 
around the saddle point. Obviously, there exists exact- 
ly one positive eigenvalue 2+ and one eigenvector 
v~. 1/2+ is the characteristic time of the escape from 
the saddle point. 

In the case where the saddle consists of an unsta- 
ble limit cycle, s has one component (ms = i) which 
can be chosen as the arc length of the limit cycle. 
Equation (4.9) represents the adjoint Floquet equa- 
tion of the linearized motion around the limit cycle. 
Due to the unstable direction transverse to the separ- 
atrix 0f2 there exists exactly one positive Floquet in- 
dex 2+ and one corresponding eigenvector vi(s). 
Though I do not know of any theorems concerning 
existence and uniqueness of solutions of Eq. (4.9) for 
more complicated saddles than points and limit cy- 
cles, I presume that for any saddle on which k} is 
ergodic and which has only one unstable direction, 
there exists exactly one solution with positive 2+*. 

In terms of the unstable direction r the surface 
integral in (2.6) reads in leading order in e 

* If the saddle consists of different ergodic classes with respect to 
k~ to these classes there may belong different values of 2+. In this 
case each ergodic class has to be treated as a separate saddle 

Of Of (4.10) S dSi wDij Ox ~ -  ~ dS, wDr" O-r' 
O 0  r = 0 

where, the separatrix af2 near the saddle has been 
approximated by the tangential hypersurface r = 0  
and where D ~* denotes the r, r-component of the diffu- 
sion 

Dr~(s)=vi(s)DiJ(s, 0) vj(s). (4.11) 

In order to determine Of/Or one has to solve Eq. 
(2.4a-c). For this purpose I make the ansatz I-6] 

f ( s , r )  ~ ~)~ = ~ d u e  -u2/2~, (4.12) 
0 

where the positive function a(s) allows for an s-depen- 
dent thickness of the boundary layer A f2 near the 
saddle. Note  that this ansatz already fulfills the 
boundary conditions (2.4b, c). From (2.4a) one ob- 
tains in leading order both in e and r an equation 
for a(s): 

k} ~s~ + 2+ a - - I  Dr" a 3 =0. 

The transformation 

(4.13) 

b = a  -z  (4.14) 

yields the linear equation 

(4.15) k, Ob 2 s ~ j -  2 + b + D r r = 0 .  

From (4.4), (4.9) it follows that the negative r, r com- 
ponent of the inverse curvature of the potential q~ 
at the saddle fulfills Eq. (4.15), too 

(4.16) 
_ r r  

- k  ~ ~ - +  22+ ~o~*+D~'=O, 

where 

P S --  vl tk'S vj  9 

Hence, (4.15), (4.16) yield 

a=lq~}r] -~. (4.18) 

With (3.1), (4.2), (4.10) and (4.12) the surface-inte- 
gral reads 

dSi wD'J OxJ--V 

d S~ Zs (s, y) e -  ~*,~J y' yj D ~ (s, y) a (s). 
r=O 

(4.19) 
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The minus sign results from the opposite directions 
of dS~ and Or/Ox ~. It is most convenient to transform 
the surface integral ~ dS~ into the volume integral 

r = 0  

d "~ s ~ d"-"~  y 6(r) and to use the Fourier representa- 
tion of the 6-function. With (4.7) all integrals except 
those over the coordinates s ~ are Gaussian ones, and, 
hence, easily performed. One finds after some algebra 

~f  
d S i w D  ~J Ox j 

O0 
n - m s - 2  

S 

z s D rr a 

Idet ~oSl ~ [v~q~gvjl" 
(4.20) 

Using (4.13) and (4.17) the second factor of the inte- 
grand in (4.20) yields 

D rr a 

I v~ q)g v / =22+ + 2 k  ~ ~ s  ~ lna. (4.21) 

With (4.6) the contribution of the second term in (4.21) 
can be transformed into an integral over the bound- 
ary of the saddle S 

z s c3 
d"~s ]det (psi ~ k~ ~ lna  

S 

Zs In a. (4.22) = ~ dS~k~s ]det (ps[ ~
OS 

However, either the saddle has no boundary, or if 
it has one, the drift k ~ transverse to OS must vanish 
because S is an invariant set under the deterministic 
motion. In either case, the integral (4.22) vanishes. 
With the remaining term in (4.21) the surface integral 
(4.20) reads 

a f  ~ ___2 2+ Ps, (4.23) dS~wD~J ~ x  j -  roe 
dO 

where Ps is the probability for finding the system in 
the vicinity of the saddle if the unstable direction at 
the saddle is turned into a stable one by simply replac- 
ing det cp s by its modulus: 

. m~ z d s )  
ps=(2rce) 2 e-tbs/e f dross (4.24) 

s I det ~oS(s)[ r

From (2.6), (3.14) and (4.23) one finds for the constant 
part T of m.f.p.t. 

T=  n 2 + 1 P_~a (4.25) 
Ps 

This is the central result of the present work. It says 
that T is given by the time scale 2+ ~ on which the 
deterministic dynamical system goes away from the 
saddle, however, stretched by the relative frequence 
PA/Ps of finding the system at the attractor rather 
than at the saddle. With (2.7), (4.25) one gets for the 
rate 

~+ Ps r = - -  - -  (4.26) 
2~z PA 

For equilibrium systems the result of Langer [4] is 
recovered a s  Ps/PA can be expressed in terms of the 
imaginary part of the free energy evaluated at the 
saddle in steepest descent approximation. 

5. Escape Over a Limit Cycle 

As an example I consider a dynamical system in a 
n-dimensional state space (n > 2) with a point attrac- 
tor and an unstable limit cycle in the separatrix con- 
stituting the saddle. In this case the dimension m A 
of the attractor is zero and one finds from (3.15) 

PA = (2 n e)~ za (det cpa)  89 e-*a/~' (5.1) 

where (~0 A and t~ A a r e  defined according to (3.6). Ac- 
cording to (3.8) q~A is the solution of the algebraic 
equation 

k A A k A Dk4t BAi  q~kj "~- q)ik Baj + ~Oik ~Ofj = O. (5.2) 

The saddle has the dimension ms = 1. As already indi- 
cated above, 2+ is the positive Floquet index of the 
linearized deterministic motion in the vicinity of the 
limit cycle. The prefactor Zs(S) follows from (4.6): 

zs L rdet 9S (s)l ~ 
zs(s)= Idet ~oS(s)l ~ ks(s) (5.3) 

f ds ks(s) 

Where L = ~ d s denotes the length of the limit cycle. 
I have chosen the normalization Zs of Zs(S ) such that 
Ws = Zs e-  ~/~ denotes the mean probability density on 
the limit cycle. Equations (5.3) and (4.21) yield for 
the probability Ps: 

n-, I ds 1/ks (5.4) 
P s = ( 2 ~ e ) ~ - L  Idet ~oSl ~" 

k - - T -  
Obviously, 

(sds~ - t  ds Idet~osl ~
I ks 
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represents the time average over one period of the 
limit cycle of the reciprocal area which is probed by 
the transverse degrees of freedom in Gaussian ap- 
proximation at the noise level e. 

Combining (4.23), (5.1) and (5.5) yields the result 

d s  
2 + (det cpA) ~ L ~ ~ Zs ~ _  ~ 

- -  e ~ ( 5 . 5 )  
ds  ~os] ~ Z Ar = z n ( z n ~ ) ~  J kss [det 

For  d = 2 this result coincides with the one given in 
[12]. 

6. Conclusions 

In this work I have shown that for a large class of 
systems the lifetime of a metastable state is deter- 
mined by the positive Lyapunov index characterizing 
the unstable motion at the saddle at which the exit 
takes place most probably and by the ratio of the 
stationary probabilities at the attractor and at the 
saddle. Both these probabilities are defined as the 
mean probability densities at the respective sets times 
the respective volumes which are probed in Gaussian 
approximation. In order to obtain a real volume the 
negative curvature of the potential at the saddle must 
be replaced by its modulus. This result for the rate 
seems to be of greater validity than the assumptions 
made in its derivation might indicate. 

However, there are certain conditions which must 
be met. First of all, the noise must be sufficiently 
small, otherwise the mean first passage time fails to 
be constant almost everywhere on the domain of at- 
traction and it does not determine the escape rate. 
Moreover, for the Gaussian approximations per- 
formed both at the attractor and the saddle the noise 
must be small, too. In this respect the saddle is more 
sensitive because there, the restriction of the potential 
to the separatrix may contain a direction in which 
the potential is almost constant and in which higher 
then quadratic terms of the transverse coordinates 
contribute even at a rather low noise level [13, 14]. 

Finally, I note that even for weak noise the mean 
time of the first passage of the separatrix need not 
determine the transition rate to a neighbouring state 
if, roughly speaking, the way down from the saddle 
to the final state is complicated in a way that back- 
scattering from points beyond the saddle to the at- 
tractor A cannot be neglected.* For  example this is 
the case for a Brownian particle moving in a metasta- 
ble potential at very low friction [2, 15]. In this case 

* For a crude model of this situation see the Appendix 

the particle, once having crossed the saddle may un- 
dergo many revolutions until it thermalizes in one 
or the other state. In Ref. 13 one finds a very instruc- 
tive numerical simulation of this behaviour. By defini- 
tion, for the mean first passage time, the fate of a 
trajectory after the first crossing of the separatrix does 
not count, whereas the trajectory contributes to the 
rate until the final state has been reached. 

For  higher than two-dimensional nonequilibrium 
systems the separatrix may become very complicated. 
One can easily envisage situations in which it is not 
sufficient to know the mean first time at which the 
separatrix is reached by the trajectory, rather one 
should know when the separatrix has been left defi- 
nitely. As is well known one copes with the problem 
of a Brownian particle at low friction by studying 
the diffusive motion of the energy (or action). Whether 
in the case of a complicated separatrix one can intro- 
duce appropriate slow quantities, in terms of which 
the determination of the rate can again be found from 
a m.f.p.t, is an interesting problem of future research. 

Appendix 

The higher moments t,(x), n = 1, 2 . . . . .  of the first pas- 
sage time obey the following hierarchy of equations 
[16] 

L + t , (x)= - -n t ,_  l(x) x ~ 2 ,  
t , ( x )=0  x e S ~ .  

Provided that, as assumed throughout  in this paper, 
consists of a domain of attraction and that the 

noise is weak, the mean first passage time tl (x) attains 
a constant value T almost everywhere on O. Hence, 
the second moment t2(x) obeys the same equation 
as t l (x  ) except that the inhomogeneity is approxi- 
mately - 2 T  rather than - 1 .  Therefrom one con- 
cludes for the second moment  

t 2 (x )=2T  2 x~f2x. A C2. 

This argument may be repeated with the result 

t . (x )=n!  T" x ~ 2 ~ A C g .  

Consequently the probability density of the first pas- 
sage time reads 

p(t) = T -  1 e - t / r .  

This is the waiting time distribution of a state A with- 
out memory [17]. Hence, disregarding backflow, the 
decay rate is T -1. Actually, a transition occurs to 
the boundary which one may identify with a short- 
lived intermediate state. This state is left with equal 
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t r a n s i t i o n  p robab i l i t i e s ,  p >> T - t ,  b a c k  to the in i t i a l  
s ta te  A or  to the  f inal  state.  If  the  f inal  s ta te  is a s s u m e d  
to be a b s o r b i n g ,  the  ra te  a t  wh ich  the  s ta te  A is de-  
p le ted  is s imply  (2 T ) -  1. F ina l ly ,  I will d iscuss  a s imple  
m o d e l  in  wh ich  one  has  a c h a i n  of  N i n t e r m e d i a t e  
states.  The  first one  in  this  c h a i n  represen t s  the  separ -  
a t r ix  a n d  is fed by  A at  the  ra te  T - 1 .  F r o m  each  
i n t e r m e d i a t e  s ta te  there  is a n  equa l  t r a n s i t i o n  p r o b -  
ab i l i ty  to its n e i g h b o u r i n g  states.  If, aga in ,  the  f inal  
s ta te  is a b s o r b i n g ,  the  ra te  a t  wh ich  A is dep le ted  
t u r n s  o u t  to be ((1 +N)T)  -1 +O(N/pT). Hence ,  it is 
decreased  r o u g h l y  b y  a fac tor  2 / ( N +  1) by  the  pres-  
ence  of the  a d d i t i o n a l  i n t e r m e d i a t e  states.  
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