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The transition rate of a non-Markovian Brownian particle in a double well potential is 
determined analytically by means of asymptotic methods and compared with both current 
theories and numerical simulations by Straub, Borkovec, and Berne [J. Chern. Phys. 83, 3172 
( 1985) ]. We obtain good agreement with these simulations. The ranges of validity for the 
different current theories which we find do, however, not exhaust the complete parameter 
range. In particular, for large static friction we identify a region of bath correlation times in 
which the rate differs grossly from the value predicted by either Grote-Hynes theory or non-
Markovian energy diffusion. Additionally, corrections to the Grote-Hynes rate are determined 
and an analytical expression for the non-Markovian energy diffusion rate is obtained. 

I. INTRODUCTION 
The movement of a Brownian particle in a potential 

with different locally stable states is frequently employed as 
a model for chemical reactions. The reaction rates are then 
identified with the rates at which the Brownian particle 
moves from one locally stable state to another one. This 
model has been established by Kramers I and during the past 
decade has witnessed a renaissance. 2 

As already pointed out by Kramers, I two regimes of 
different rate limiting mechanisms must be distinguished: In 
one regime the particle experiences weak frictional forces. 
Consequently, the energy of the particle is slowly varying 
and energy diffusion becomes the relevant rate limiting pro-
cess. In the second regime, for intermediate and strong fric-
tion, the rate is determined by a diffusion process in phase 
space. In both cases the rate can be represented as a product 
of the rate predicted by the transition state theory, kTST ' and 
a correction factor f, 

k =fkTST' (1.1 ) 

In the second regime the correction factor depends solely on 
the dynamics in the linear vicinity of the saddle point which 
lies on the most probable trajectory joining two adjacent 
wells. According to current theories for a non-Markovian 
process the correction factor f should still solely be deter-
mined by the linear dynamics at the saddle point.3

,4 

This simple picture was spoiled by numerical simula-
tions of a non-Markovian Brownian motion in a double well 
potential by Straub, Borkovec, and Berne5 (SBB). Whereas 
for small and intermediate damping theory and simulation 
agree, for large values of the damping constant the correc-
tion factor f depends strongly on the well dynamics leading 
to discrepancies up to orders of magnitude between current 
theories and simulations. Several facts indicate an energy-
like-diffusion mechanism to be rate limiting for large values 
of the damping constant y: 

(i) the energy diffusion rate depends on the well dynam-
i"s, indeed. 

(ii) In the particular model of SBB for large y the ener-
gy dissipation rate is inversely proportional to r conse-
quently leading to small energy dissipation. 
(iii) A properly defined memory-renormalized damp-
ing constant becomes arbitrarily small for large y indi-
cating the failure of the Grote-Hynes theory.2 

Nevertheless, non-Markovian energy diffusion may still give 
rates grossly deviating from the simulated data. It has been 
claimed that spatial diffusion should lead to the observed 
decrease of the rate.6 However, the trajectories one would 
expect in the case of spatial diffusion would have a rather 
different appearance than those found by SBB. 

Zwanzig7 and one of the present authors8 have pointed 
out, that for infinite damping in the absence of noise the 
particle undergoes a conservative Hamiltonian dynamics 
with a modified energy e and an additional conserved quanti-
ty u. 

In this paper we will argue that this is a main clue to the 
understanding of the rates at large y. 

The paper is organized as follows: In Sec. II the model is 
described and the conventional rate theories are sketched. 
An explicit expression for the non-Markovian energy diffu-
sion rate is obtained. In Sec. III the saddle point approxima-
tion implicit in the Grote-Hynes theory is discussed and 
corrections are calculated. We show that for large values of r 
the abovementioned modified energy e and the additional 
quantity u undergo a two-dimensional Markov process. This 
process is qualitatively different depending on whether the 
bath correlation time Tc of the underlying non-Markovian 
process is above or below a certain threshold. In both cases 
the crossing of particular curves in the e-u plane indicates a 
transition from one well to the other. The corresponding 
mean first passage time yields the rate. For T c above the 
threshold the rate is inversely proportional to temperature 
like an energy diffusion rate. It agrees very well with the 
simulated data of SBB. Below the threshold the Grote-
Hynes rate is recovered being in reasonable agreement with 
the simulated data. Section IV provides a summary. 
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II. THE MODEL AND THE CONVENTIONAL THEORIES 
A. The model 

Following SBB we consider a Brownian particle with 
coordinate x and velocity v, moving in a potential U(x) with 
two symmetric wells separated by a high barrier: 

x=v, 
V= - U'(x) +z, 

Z= _~v __ l-z+_1-5(t), 
a ay a/llY 

where 5(t) is a Gaussian white noise 

(5(1» = 0, 

(5(t)5(S» = 2t5(t - S), 

(2.1a) 
(2.1b) 

(2.1c) 

(2.2a) 

(2.2b) 

and where P is the inverse temperature of the heat bath, 
coupled to the particle. The meaning of the variable z and the 
positive constants a and y becomes evident if the third equa-
tion (2.1c) is integrated to yield together with Eqs. (2.1a) 
and (2.1 b) a two-dimensional non-Markovian process, rath-
er than the three-dimensional Markovian process (2.1a)-
(2.1c): 

x=v, (2.3a) 

V= - U'(x) - J~oo ;(t-s)v(s)ds+R(t), (2.3b) 

where the Gaussian random force R(t) satisfies the fluctu-
ation dissipation theorem 

(R(t)R(s» =p-I;(t-S) 
and where the memory kernel ;(t) reads 

;(t) = a-Ie - lITe. 

(2.4) 

(2.5) 

Hence, 'T C = ay is the correlation time of the noise and y is 
the static friction: 

y = 100 

;(t)dt. (2.6) 

where B Band Bo are the dynamical matrices in the barrier 
and the well region, respectively, 

1 
o 

-l/a 
o ) 1 , 

-l/ay 
(2.15 ) 

For the sake of simplicity we consider a piecewise p~abolic 
potential U(x): 

U(x) = {- ~ m{~X2' [IX I «1 )2]2} 
~ m~ x :Fl 1 + :: - Q, x~ ± / 

(2.7) 
where Q is the barrier height: 

Q = ~ m~ [ 1 + (:: y] /2 (2.8) 

and where mo and mB are the well and barrier frequencies, 
respectively. The points x = ± / separate the barrier from 
the well regions. 

To the Markovian Langevin equations (2.1) Fokker-
Planck equation belongs governing the time evolution of the 
probability density p(x,v,z;t) in the enlarged phase space 
spanned by x, v, and z: 

P(x,v,z;t) = Lp(x,v,z;t) , 
where 

L = -~v+~ [U'(x) -z] 
ax av 

+~(~V+_l_Z) +_1_~. az a ay a 2py ar 
The stationary probability density w satisfying 

Lw=O 
reads 

w(x,v,z) = Z -Ie -tM>(x,V,Z), 

(2.9) 

(2.10) 

(2.11) 

(2.12) 
where $ is a generalized potential in the extended phase 
space: 

1 a ..2 $(x,v,z) = - v2 + U(x) + -z-. 
2 2 

(2.13 ) 

With Eq. (2.7), the deterministic motion following 
from Eq, (2.1) in the limit p - I --+ 0 reads 

(2.14 ) 

a 
-~). 

ay 

(2.16) 
o 

Clearly, this deterministic motion has two stable points 
P±  ={x= ±m~[I+(mB/mo)2)1,v=0,z=O}andone 
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saddle point S = (0,0,0). To each stable point there belongs 
a domain of attraction n ± with a separatrix an as a com-
mon boundary. In the barrier region the separatrix is a plane: 

R=.bx + cv + dz = 0, (2.17) 
where (b,c,d) is the eigenvector ofthe transposed dynamical 
matrix B ~ belonging to the unique positive eigenvalue A+. 
From Eq. (2.15) we find 

(2.18 ) 

(2.19) 
is the positive solution of the characteristic equation, 
det(maJ.l- Ba) = 0, 

p,3 + _1_p,2 _ (1 __ 1_)J.l __ 1_ = o. 
a*r* a* a*y* 

Here we have introduced dimensionless parameters 

a* = am;', 

r* = ylma, 
Eq. (2.20) may be transformed into 

(2.20) 

(2.21 ) 
(2.22) 

_J.l_ = a*p, + _1_. (2.23) 
1 - J.l2 r* 

Figure 1 showing Eq. (2.23) clearly demonstrates the 
uniqueness of the positive solution. For later use we note as 
another consequence of Eq. (2.23), that this positive solu-
tion obeys the inequality 

0<a*(1-J.l2) < 1. (2.24) 

B. Mean first passage time of the separatrlx and the 
Grote-Hynes formula 

The transition rate, say, from x+ to x_ is given by the 
inverse mean time after which a stochastic trajectory start-
ing in x + reaches x _ for the first time. In general, it would be 
difficult to calculate this time. Fortunately, one can often 

2 .' 
,.' 

" 

,::4/ -3 -2 -1 1 

FlO. I. The zer08ofEq. (2.20)astheintersectionsofJlI(i-Jl2 ) (-)and 
a*Jl + 1Iy*( - -) for a* = 0.5 and y* = 0.56. 

replace the condition to reach the final state by the condition 
to reach the separatrix for the first time. This, however, is 
only possible if the probability for a recrossing of the separa-
trix decreases rapidly as a function of the distance from the 
separatrix, i.e., the backscattering of a trajectory from points 
beyond the separatrix must be negligible. 1.2.9 If this condi-
tion is met the mean first crossing time T of the separatrix 
yields the rate lO 

1 k=-. 
2T 

(2.25) 

T can be expressed in terms of the stationary solution wand a 
function a on the separatrix 9, II : 

1 ~ Sn dxdvdzw 
T= -2 \j7i S;'dSn wDnn a ' (2.26) 

where dS" and D"" are the components transversal to the 
separatrix of the oriented surface element dS and of the dif-
fusion matrix D, respectively. The function a determines the 
gradient of the mean first passage time at the separatrix. It 
satisfies there a partial differential equation 

ga + Ka ~ - 2{3Dnna3 = 0, 
aYa 

(2.27) 

where Ya (a = 1,2) are coordinates on the separatrix, where 
Ka denotes the drift in the Ya direction, and where g is the 
normal derivative of the normal drift at the separatrix 

aK" I g=- . an separatrix 
(2.28) 

For small noise, i.e., large {3, the integral over n + in the 
numerator of Eq. (2.26) is dominated by the strong peak of 
w at P +. Hence, the Gaussian approximation yields an excel-
lent result. 12 Because on the separatrix the stationary prob-
ability has its absolute maximum at the saddle point (0,0,0) 
it is tempting to perform the integral in the denominator in 
Gaussian approximation, too. This yields for the rate9•13 

kGH = J.lkTST' (2.29) 
wherep, is the positive solution ofEq. (2.20) and where kTST 
denotes the rate predicted by transition state theory 

k mo -po 
TST =-e . 

211' 
(2.30) 

The rate (2.29) coincides with the result ofthe non-Marko-
vian theories of Grote and Hynes3 and Hanggi and Mojta-
bai.4 It represents the asymptotic value of the rate for 
{3Q-+ 00 while the remaining parameters malmo,a* and r* 
must be kept finite. Of course, a large value of {3Q alone does 
not yet guarantee the validity of this asymptotic result. 

c. Energy diffusion 
We assume now that in the deterministic system (2.14) 

the dissipation of energy of the particle becomes slow, i.e., we 
consider the limit y-+O. Then, once the Brownian particle 
has reached the top of the barrier it will revolve many times 
around both stable points and will frequently cross the separ-
atrix until it eventually thermalizes in one of the wells. Clear-
ly, the mean first crossing time of the separatrix largely over-
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estimates the rate. It is then more adequate to ask for the 
mean first time, the Brownian particle needs to acquire the 
energy necessary to reach the top of the barrier. 

For the rate this yields '4 

k = /3(j)o e- PQ [~ dE weE) ePE] -, (2.31) 
ED 2 J _ Q D(E) , 

where weE) is the frequency of the undamped deterministic 
system at energy E and where D(E) is the diffusion constant 
of the energy at E. D(E) can be expressed in terms of the 
memory function ;(t) and the microcanonical velocity cor-
relation function (vCt)v(O» E of the undamped system at 
energy E, 

1 Joo D(E) = - dt ;(t) (v(O)vCt» E' 
2/3 - 00 

(2.32) 

where we have symmetrically continued;( t) (2.5) for nega-
tive times 

(2.33 ) 
The microcanonical correlation function can be obtained as 
a time average over one period of the deterministic motion at 
the energy E: 

(v(O)vCt»E =~ dsv(s)vCt+s). (2.34) 
(E) J1rI

"'(E) 

2rr - 1r1",(E) 

The velocity follows from the conservation of energy 
~V2 + U(x) = E. (2.35) 

With Eq. (2.34) the factor weE) of the integrand in Eq. 
(2.31) cancels. For small negative values ofthe energy the 

I 

where -r1: is the dimensionless correlation time of the non-
Markovian noise: 

(2.40) 

In the Markovian limit 'T e""'O we find from Eq. (2.36), 

kED I . - =/3Qy*(l +wBta )· 
kTST TC=O 

(2.41) 

For a sharp barrier, WB/WO"'" 00, Eq. (2.39) simplifies 
further to the well known result': 

kED I y k "'8- 00 = rr/3Q-, 
TST TC=O Wo 

(2.42) 

where we have used wota I",s/",,,-oo = rr [see Eq. (2.38)]. In 
the non-Markovian case we find for a sharp barrier 

kED I =....L /3Q 
kTST ws/"'o- 00 Wo 1 + (wo'T e) 2 

x[rr+ (Wo'Te)3 2 (l_e- 21rI"'OTC )]. 

1 + (wo'T e) 
(2.43) 

factor w(E)/D(E) of integrand in Eq. (2.31) depends only 
little on E. Hence, for large /3 the integration in Eq. (2.28) 
can be performed approximately to yield 

kED = /3wo e-PQJoo dtJoo ds;Ct-s)vCt)v(s), 
8rr - 00 - 00 

(2.36) 
where the second integral extends to infinity, too, because 
the frequency weE) vanishes for E = O. 

From Eqs. (2.7) and (2.35) we find a trajectory with 
E = 0, that starts at t = - 00 at x = v = 0 leaving the top of 
the barrier infinitely slowly, reaches its most remote point at 
t = 0 and returns to x = 0 after another infinite amount of 
time. This trajectory reads 

(2.37) 
where - ta is the time at which the particle enters the well at 
x = I and ta at which it leaves the well: 

wB [ (WB )2] - '12 cos wOta = - % 1 + % (2.38) 

With the velocity following from Eq. (2.37) and with Eqs. 
(2.5), (2.30), and (2.33) the integrals in Eq. (2.36) can 
exactly be performed to yield for the rate 

Another limit in which the expression (2.39) simplifies con-
siderably is 'T e --+ 00 : 

kED I =/3Q-Y*2 {_WB [3 (_WB)2 +2] wota 
kTsT T c- 00 -r1: Wo Wo 

(2.44) 

To conclude this section we given a simple necessary 
condition for the validity ofEq. (2.39). If the energy diffu-
sion is rate limiting, the energy loss for a round trip of a 
determinisitic trajectory starting with E = 0 at the barrier 
must be less than /3 - '. From the deterministic part of the 
non-Markovian Langevin equation (2.3) we obtain for the 
time rate of change of the energy 

E(n = - vct) f~ 00 ds;Ct - s)v(s) (2.45) 

and, hence, for the energy loss 

t::.E = - f~ 00 dt f~ 00 ds;Ct - s)vCt)v(s), (2.46) 

J. Chern. Phys., Vol. 88, No. 12, 15 June 1988 
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where 1" is the time at which the trajectory comes closest to 
the barrier. For small dissipation we may replace the actual 
velocity v(t) by the velocity of the undampened system in 
which case 1" is infinite: 

1 foo foo f:t.E= -"2 _ 00 dt _ 00 ds;(t - s)v(t)v(s). 

Combining 

PIf:t.EI<l 

(2.47) 

(2.48) 

with Eqs. (2.30), (2.36), and (2.47) we obtain as a condi-
tion for the validity of energy diffusion 

kED! kTST < 1. ( 2.49) 
With Eqs. (2.40) and (2.44) we find that this condition is 
not only met for sufficiently small values of y* but for large 
r* and~, too (seethe broken line in Fig. 2). However, SBB 
have found large deviations from energy diffusion for partic-
ular values of r* and ~ although for these values Eq. (2.49) 
is fulfilled. In the next section we will show that other slowly 
changing quantities than the energy yield the correct rates in 
accordance with the simulations. 

Finally we note that energy diffusion gives the correct 
asymptotic result for the rate at least in the limit PQ-+ 00, 

r*PQ-+O. 

III. IMPROVEMENTS 
A. Corrections to the Grote-Hynes formula 

Provided that the crossing of the separatrix is a proper 
criterion for the determination of the rate, the most delicate 
assumption of the Grote-Hynes theory consists of the steep-

T* 

1 
/ 

I 
I 
I 
I 

,,-' , 

FIG. 2. Border lines of applicability of current theories as a function of the 
static friction r- and the bath correlation time ~ for /3Q = 20 and {J)B/{J)O 

= 2. Above both lines representing /31~E 1= 1. Eqs. (2.48) and (2.29). 
(--) and (k.,. - kBO )/kED = 0.5. Eq. (3.40). (_._.) non-Markovian en-
ergy diffusion yields correct rates. The lines' ..• - ..... represent curves of 
constant /34}mm = 1. 5. 10. Eq. (3.3). respectively. Below the solid line 
Grote-Hynes theory may savely be applied. The line (x x ) represents the 
border of the region where SBB conjectured largest deviations from current 
theories. Within the hatched region the Tf-U diffusion rate k.,. applies and 
deviates most strongly from current theories. 

est descent approximation of the denominator in Eq. (2.26). 
This approximation requires IS (i) that the exponent {:J<P re-
stricted to the plane R =0 [see Eqs. (2.12) and (2.17)] 
strongly increases in any direction away from its minimum 
at the saddle (ii) that D nna is a slowly varying function on 
the plane R = O. 

First, we comment on (ii). Because in our case the dy-
namics in the barrier region is strictly linear, it follows from 
Eq. (2.22) that D nna is constant there (see Appendix A) 
and, hence, that (ii) is met. 

Now to (i). WithEqs. (2.7), (2.13), (2.17),and (2.18) 
we find for the restriction ofto the plane R = 0 as a function 
ofx and v: 

1 p2 + a* (1 _ p2)2 
<l>IR=O ="2 a*(l_p2)2 

X [v + P{J)B X]2 + Q 
p2 + a*( 1 - p2)2 1 + ({J)B!{J)O)2 

X (1 - p2)[ 1 - a*(l - p2)] (~)2 . (3.1) 
p2 + a*(1 - p2)2 / 

Because of Eq. (2.24) on the plane R = 0 the generalized 
potential <I> I R = 0 is an elliptic paraboloid with minimum at 
x = v = O. On the boundary of the saddle region 
x = ± /<1> I R = 0 takes its minimal value at 

P{J) B I v= + ~------~~ p2 + a* (1 _ p2)2 ' 

Q I-F 
<l>min = 1 + ({J)B!{J)o)2 P-' 

where F denotes 
F=p2+ a *(l_p2)2. 

We note that Eq. (2.24) implies 
O<F<1. 

(3.2) 

(3.3 ) 

(3.4 ) 
According to (i), <I> min must at least be larger than P - I, 

hence, 
P<I>min > 1. (3.3) 

The curves in the 1"*-y* plane for which P<I>min is constant 
are determined by Eqs. (2.20), (3.2), and (3.3) yielding the 
parameter representation 

q(I_1I2 )_1I2 
1"* = f'" f'" (3.4a) 

p 

y* = (1 - p2)2 (1 + q), (3.4b) 
p 

where 

(3.5) 

and where the parameter p varies in the interval [O,(q/ 
1 + q) 1/2]. Figure 3 shows these curves for different q val-
ues. Figure 2 contains the curves fJ<I>min = 1,5,10 for 
fJQ = 20 and {J)B/{J)O= 2. Qualitatively these curves agree 
with the lower boundary of the region where SBB have 
found the strongest deviations from Grote-Hynes theory. In 
fact there are no rates simulated with parameter values with 
fJ4>min > 5 which disagree with Grote-Hynes. 

J. Chern. Phys., Vol. 88, No. 12, 15 June 1988 
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T* 

1 

1 Y* 
FIG. 3. Lines of constant q, Eqs. (3.4) and (3.5) (-) in the a*-y* plane. 
From left to rightq= 10', 102, 10, 1, 10-', 10- 2, 10- 3• To the right of each 
line the Grote-Hynes theory applies for all processes with respective q. 
Above the broken line the Grote-Hynes theory differs from the Markovian 
Kramers rate by more than 20%. 

Our next aim is to improve the Grote-Hynes formula 
for parameter values in the vicinity of {3iPmin :::: 1. For this 
purpose we have to calculate the integral in the denominator 
ofEq. (2.23) more accurately by allowing for the contribu-
tions of the well regions 

J = Ian dS" wD""a. (3.6) 

We recall that the separatrix an is a two-dimensional sur-
face which is infinitely many times wrapped around the two 
stable points P ± . Its innermost part consists of the plane 
R = 0 (2.17) in the barrier region and of a smoothly match-
ing curved surface in the well regions. If iPmin is not much 
smaller than one most of the contributions to the integral 
(3.6) from the well regions come from those parts of the 
separatrix which can still be approximated by the plane 
R = O. Moreover, there we approximate the factor D ""a by 
the constant value it takes in the barrier region. Under these 
assumptions we find for the integral J = J B + Jo the contri-
butions (for calculational details see Appendix B) 

J - 21TD"" a erf(QiP) 1/2 
B - [a(1 _ F)] 1/2{3Z fJ min (3.7) 

from the barrier, and 

J. = 21TD""a(OJB/OJO) e- B 1- erfA 1/2 
o {a[(OJB/OJo)2+F]P/2{3Z ( ) 

(3.8) 
from the well where erf denotes the error function and where 
A and B are defined by 

A = {3Q (OJB )2 (1 - F)2 (39) 
1+ (OJB/OJO) 2 OJo F[(OJB/OJo)2+F] ' . 

B ={3Q { I + (OJB~OJO)2 _ I} , (3.10) 
(OJB/OJO) + F 

respectively. iPmin is defined in Eq. (3.2), Fin Eq. (3.3). 

With Eq. (3.4) we find O<A <f/Jmin and B>O. 
The standard steepest descent approximation corre-

sponds to iP min = A = B = 00 yielding 

J. = 21TDIl " a 
SD [a( I - F)] 1/2{3Z' (3.11) 

WithEq. (2.26) theratioofJandJsD determines that of the 
rate kIA in the improved approximation and the Grote-
Hynes rate 

kIA J (3.12) 
kGH JSD 

With Eqs. (3.6) and (3.7) we find 

kIA = {[ I-~ 11120JB e-B(1-erfA 1/2) 
(OJB/OJO) + F OJo 

+ erf({3iPmin ) 1/2} kGH • (3.13 ) 

If we compare Eq. (3.13) with the simulated data by SBB we 
find qualitative agreement for OJB/OJO = 0.2 and 2 [see Figs. 
4(a) and 4(b)]. The rate (3.13) coincides with the Grote-
Hynes theory in an intermediate range of y values and devi-
ates for small and large y's, however, much weaker than the 
simulated data do. One reason is, that we have neglected the 
curvature of the separatrix and the variation of D ""a outside 
of the barrier region. Another reason is that at least for small 
y's because of energy diffusion the mean first crossing time of 
the separatrix fails to determine the rate. In the next section 
we will show that an energy-diffusion-like mechanism deter-
mines the rate for large y's, too. 

For OJB/OJO = 20 and a* = 4/3 the maximal value of 
{3iPmin is about 10- 2 and, hence, Grote-Hynes theory 
should fail for all values of y. Nevertheless, the simulated 
data seemingly agree with Grote-Hynes theory for y*'s 
ranging from 10- 2 to 10- 1 [see Fig. 4(c)]. In Appendix D 
we show that the rate for a potential with a cusp at the barrier 
(OJB/OJO ..... 00 ) coincides with that of the transition state the-
ory, provided energy diffusion is irrelevant. 16 For OJB/OJO 
= 20 a cusp is fairly well approximated and so the simulated 

data agree with the transition state theory for 
1O- 2 <y< 10- 1• 

B. Two-dimensional diffusion 

In the sequel we shall consider the limiting case of large 
static friction y. For infinite y the deterministic system 
(2.14) possess two constants ofmotion.7,s The first one fol-
lows from the x and z components of Eq. (2.14) as a linear 
combination of x and z, 

I u=z+-x. (3.14) 
a 

In the v component of Eq. (2.14) z may then be ex-
pressed in terms of u and x resulting in the Hamiltonian 
motion ofa particle in a renormalized potential V(x,u), 

x=v, (3.15a) 

V= -~ V(xu) ax " (3.15b) 

where 
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.. 
~ 10-1 .. ..... .. 

y* 

loZ 10~ 

y* 

y* 

FIG. 4. Rate constants as a function of the static friction r* for (3Q = 20 and 
a* = 4/3 for different frequency ratios (a) WB/WO = 0.2, (b) WB/WO = 2, 
(c) W B/ Wo = 20. The dots represent the numerical data by SBB. Theoreti-
cal predictions are represented by lines: Energy-diffusion equation (2.39) 
( - -), Grote-Hynes equation (2.29) (---), corrected Grote-Hynes equa-
tion (3.13) ( ... ), two-dimensional1f-u diffusion equation (3.38) (-). 

1 V(x,u) = U(x) + _x2 - ux. 
2a 

(3.16 ) 

Note that in the barrier region the renormalized potential 

V(x) is repulsive only for a* > 1 but attractive for a* < 1. In 
any case 

e = !v2 + V(x,u) (3.17) 
is the other conserved quantity. 

For large but finite y, e, and u will change much slower 
than the original variables x, v, and z. 

The additional temperature fluctuations then lead to a 
slow diffusional motion of e and u which is approximately 
Markovian. If we can identify a curve in the e-u plane the 
crossing of which indicates a transition from one well into 
the other we can express the rate in terms of the mean first 
passage time of that curve. 

The different qualitative behavior of V(x,u), for a* > 1 
and a* < 1 makes it necessary to consider these cases sepa-
rately. 

According to Eqs. (2.7), (3.16), and (3.17) in the bar-
rier region the deterministic trajectories for y = 00 are hy-
perbolas with center at (XB,v = 0) 

1 2 1 2 1 n2 X 2 e---u =-V --UB(X- B) 
2n~ 2 2 ' 

(3.18), 

U X B = - - (3.19) n2 ' B 
where nB denotes the renormalized barrier frequency 

(
a* - 1)112 nB = --- WB' 

a* 
(3.20) 

For e - u2/2n~ <0 each trajectory starting in one well ei-
ther stays in this well or returns to it after a short excursion. 
For e - u2 /2n~ > 0 the trajectories join both wells. Starting 
in one well for e - u2 /2n~ = 0 the particle moves on a 
straight line towards the center of the hyperbola which is 
approached infinitely slowly. In the vicinity of the center the 
trajectory is extremely sensitive to the influence of the ran-
dom force which either may turn the particle back to the well 
it is coming from or, equally likely, may push it to the other 
well. Hence, for y* -+ 00 and a* > 1 the transition rate is de-
termined by the mean time T that the Markov process of u 
and e takes to cross e - u2 /2n~ = 0 for the first time: 

k =_1_. 
'1/,U 2T (3.21) 

For convenience we introduce the variable 

1 2 7]=e---u. 
2n~ 

(3.22) 

The mean first passage time is then given by17 (for a short 
derivation see Appendix C) 

f'1/<od7] du p( 7],u) 
T = - lim -----'-----'-------

£_0- S du K'1/ (7] = E,U)p(7] = E,U) 
(3.23) 

where K., denotes the drift in 7] direction, i.e., transversal to 
the boundary line 7] = 0, and where p( 7],u) denotes the sta-
tionary probability density for 7] and u. It will become clear, 
soon, why we have shifted the boundary line to a negative 
value of 7]. The probability density p( 7],u) is obtained from 
Eqs. (2.12) and (2.13) with Eqs. (3.14), (3.17), (3.18), 
and (3.22), 
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where w( 1/,u) denotes the frequency of the reversible motion 
[Eqs. (3.15) and (3.16») at constant parameters 1/ and u: 

W(1/,U) = 21T {f dx [2(1/ + 2~~ _ V(X,U»)] -1I2} -I 
(3.25 ) 

The period 21Tlw( 1/,u) consists in the time spent in the bar-
rier region, and in the well region, tB and to, respectively. In 
the limit 1/ ..... 0 t B diverges and, hence, p (1/,u), too. With Eq. 
(3.24) the integral in the numerator yields in leading order 
in ({3Q)-I, 

(3.26 ) 

In leading order for large y the drift K7J (7/,U) is given by the 
average of the time rate of change of 1/ along the conservative 
dynamics (3.15) and (3.16) at fixed 1/ and U over one period: 

K
7J

(1/,u) = OJ 1/,u dt17[x(t),v(t»).(3.27) ( ) f1T1W
(7J.

U
) 

21T - 1Tlw(7J.u) 

Hence, the diverging factors in the denominator of Eq. 
(3.23) cancel and the limit E ..... 0- can easily be performed: 

T= ~ (21T)3/2 
OJoa l / 2 {3 

X {f+ 00 du exp( _ {3 a*~2) 
- 00 20B 

X f-+ 0000 dt 17 [x(t),v(t») } - I (3.28) 

With the deterministic equations (2.14), (3.17), and (3.22) 
17 can be expressed in terms of x and U: 

3 
W B 2 W B 17= ---(x-XB ) + u(x-XB )· 

a*2y* y*(a* - 1) 
(3.29) 

I 

(3.24) 

In the limit 1/ ..... 0- the periodic solution ofthe conservative 
system (2.7) and (3.15)-(3.17) reads 

{

XB + (/_XB)eOB(t+/o), 

x(t) = Xo +A cos Oot, 
X B + (/_XB)e-OB(t-/o), 

where 

Xo = 1 + (~: r (I + ;~) , 

A = ~: [1 + (~:rr/2 (I + ;~), 
where 0 0 denotes the renormalized well frequency 

02 2 1 
Uo =Wo +-a 

(3.30) 

(3.31) 

(3.32) 

(3.33 ) 

and where to is the shortest time to reach the vertex Xo + A 
from x = I, 

I-Xo cos Ooto = ---
A 

_ OB [ (OB)2] -112 - -- 1+ -
0 0 0 0 

(3.34) 

After some simple but lengthy algebra we obtain from Eqs. 
(3.29 )-( 3.34) the change of 1/ during one period in leading 
order in y- I, 

(3.35) 

where !l.1/B and !l.1/0 are the contributions from the barrier 
region and the well, respectively, 

w1/2 [1 _ 2(a* _ 1) _u _ _ (2a* _ 1) (_U_)2] 
a*2Y*OB ln~ IO~ , 

(3.36) 

With Eqs. (3.36) and (3.37) the remaining u integral in Eq. (3.28) is readily performed to yield with Eq. (3.21) the rate 
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(3.38 ) 

The first two terms in the large square brackets are due to the u-independent contributions to aTJ while the correction term 
proportional to ({3Q) -I coming from the u2 terms in aTJ is only important for sharp barriers and temperatures not too low. 
Figure 4 shows good agreement ofEq. (3.38) with the simulated rates for large y. We note that for large a* the renormalized 
frequencies no ands n B approach the bare ones Wo and WB' respectively. In this limit to approaches the time ta [Eq. (2.38)] 
entering in the energy diffusion rate (2.39) and, moreover, the rate (3.38) simplifies to the energy diffusion rate for large 
correlation times (2.44) as expected from physical grounds2•5 

kT/u la'-co = kED I~-oo' (3.39) 
Disregarding temperature dependent corrections the leading order deviation is found to be 

kT/u - kED _ w B __ [1 + 25(WB/WO)2 + 27(WB/Wo)4]wota + 9(wB/wo) [2 + 3(WB/WO)2] 
(3.40) 

kED Wo 2a* (WB/WO) [3(WB/WO)2 + 2]wota + 3(WB/Wo)2 + 1 

Note that for large a* and y* energy diffusion overestimates 
the rate. The deviations are stronger for sharp barriers com-
pared with flat ones. For particular values of WB/WO and{3Q 
Fig. 2 shows the curve below which energy diffusion overes-
timates the rate by more than 50%. For large y* it lies con-
siderably above the self-consistently determined boundary 
of energy diffusion. 

For the validity of the TJ-U diffusion rate (3.38) we can 
give a self-consistent condition by requiring 

(3.41) 

Considering only the most probable value u = ° we find 
from Eqs. (3.35)-(3.37), 

{3aTJ = 2{3Q 1 
1 + (WB/WO)2 a*3/2(a* - 1)1/2y * 

x { 1 + ~: [1 + (~: r] [3 (~: r + 2 ] 
Xnoto + 3 (~:r + 4 (~:r} . (3.42) 

Neglecting high temperature corrections we find from Eqs. 
(3.41) and (3.42) with Eq. (3.38) the required self-consis-
tent condition 

kT/u S (a* -:- 1)112 . 
kTST a 

(3.43 ) 

For large values of y* Eq. (3.43) reduces to the obvious 
condition a* > 1. It is worth noting that Eqs. (3.41) and 
(3.42) implies for very weak noise, i.e., for {3Q very large, 
that the two-dimensional diffusion mechanism is no longer 
rate limiting. Physically speaking then the noise cannot com-
pensate for the energy loss during one round trip of the parti-
cle. This coincides with the findings of SBB. 

Another self-consistency condition follows from the 
change au during a round trip. At the first sight this condi-
tion seems render the two-dimensional diffusion mechanism 
impossible because for TJ = ° au diverges for any choice of 

I 
parameters. However, the divergence is only logarithmic in 
ITJI and disappears completely by averaging over u for all 
finite TJ. The resulting au contains nothing new compared 
with Eq. (3.41) and, hence, we shall not go into further 
details. 

2.a"<1 
We recall that according to Eqs. (2.7), (3.16) and 

(3.17) for y = 00 the particle moves in ordinary phase 
space, whereas the extra variable z is following the motion of 
the coordinate rigidly and without backaction. For a* < 1 
the trajectories in the barrier region consist of ellipses or 
parts of ellipses depending on the values of the conserved 
quantities e and u, 

u2 1 2 1 -2 - 2 e+--=-=-v +-nB(X-XB) Ixl</, (3.44) 
2n~ 2 2 ' 

where 
- U 
X B = i}2 , 

B 

OB = C ::*y12 WB' 

Clearly, one must have 
1 u2 

e+-=->O. 
2 n~ 

(3.45) 

(3.46) 

(3.47) 

Moreover, one finds from Eq. (3.44) for the region of com-
plete ellipses in the barrier region a condition on e and u (see 
Fig. 5), 

02a2 

e< -flul + _B -. (3.48) 
2 

By considering only these complete ellipses we average the 
time rate of change of the slow quantities e and u over the fast 
conservative motion 

(2e + U2/0~) 1/2 
xU) = XB + cos OBt. (3.49) nB 
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0.* e 
1-0.* 

-0,5 

0.* U ---
1-0.* w2 a B 

o~ 

FIG. 5. The curvilinear triangle defined by Eqs. (3.47) and (3.48) repre-
sents that region in the suitably scaled e-u plane, where the corresponding 
conservative motion (3.44) consists in complete ellipses in the barrier re-
gion. 

With Eqs. (2.14), (3.14), and (3.18) this yields the equa-
tions of motion of e and u valid for large r, 

1 W B u(t) = --- u(t), (3.50) 
r* 1 - a* 

WB 1 1 + 2a* 2 e(l) = ------e(l) - u(t) . 
a*r* 1 - a* 2r*(1 - a*)2wB 

(3.51) 
Obviously, u = 0 is a separatrix of Eqs. (3.50) and (3.51). 
Its significance for the fast motion of x and v is evident from 
Eqs. (3.44) and (3.45): for u > 0 the center ofthe ellipses is 
located right of the barrier and for u < 0 left of it. Clearly, for 
u > 0 the particle is more likely to thermalize in the right well 
and vice versa for u < O. Hence, the crossing of u = 0 due to 
thermal fluctuations characterizes transitions from one well 
to the other. 

Consequently, the mean first passage time of u = 0 for 
e>O determines the rate (2.23), which is given by Eq. (2.27) 
where for f.L one has to put r* - 1(1 + a*) - I, i.e., the positive 
eigenvalue of the equations of motion (3.50) and (3.51) lin-
earized about the saddle e = u = 0: 

k eu --=---- (3.52) 
.kTST r* 1 - a* 

For a more thorough deviation of this result we refer to Ap-
pendix E. Actually, for large r the Grote-Hynes rate is the 
same as Eq. (3.52). This coincidence is partly due to the fact 
that in the derivation ofEq. (3.52) the influence of the well 
dynamics has been neglected completely. We will come back 
to this point below. Another reason is that u = 0 looked as a 
plane in the extended phase space coincides with the separa-
trix R = 0 [Eqs. (2.17) and (2.18)] up to order r- 1

• This 
entails that the respective motions of u and R are governed 
by the same positive eigenvalue and, moreover, that the sys-
tem is found in the neighborhood of the respective saddles 
with the same probability: 

J w(x,v,z)dx dv dz = J p(e,u)de duo 
R<O u<O 

.81<1>1 < 1 .81<1>1 < 1 
(3.53 ) 

The coincidence of the two rates is reminiscent to the Mar-
kovian case where for large r the full Kramers equation 
yields the same rate as the reduced Smoluchowky equation, 
the only difference being that in the Markovian case the eli-
minated quantity is rapidly decreasing rather than rapidly 
oscillating as in the non-Markovian case. 

Finally we give a rough estimate under which condition 
the well dynamics can safely be neglected. Clearly, the parti-
cle experiences both the saddle and one or both well regions 
if condition (3.48) is violated. For the rate those trajectories 
with u = 0 and e < f3 -1 are decisive. Hence, we find from 
Eqs. (3.48) and (3.46) with Eq. (2.8) that for 

f3Q a* 
-----'--""-~ > ---
I + (WB/WO)2 1 - a* 

(3.54) 

the well region has no influence on the rate. 
All data simulated by SBB with a* < 1, r* large fall into 

the parameter range where Eq. (3.54) is fulfilled. Neverthe-
less, the data with a* close to one (a* = 0.5,0.7) agree with 
Eq. (3.52) within a factor of2, only (see Table I). We have 
no explanation for this discrepancy, except that the numeri-
cal error of the simulated data might be larger than stated by 
SBB. 

A discussion of the rate for parameters where Eq. (3.54) 
is violated will be given elsewhere. 

IV. CONCLUSIONS 
We have dealt with one ofthe simplest non-Markovian 

models showing bistable behavior in the deterministic limit. 
Before summarizing the results we describe the methods we 
have used to determine the transition rates. 

Starting from a Markovian description in an extended 
phase space, the first goal is to identify slowly varying quan-
tities of the corresponding deterministic drift motion and, if 
there are any, to eliminate the remaining fast variables. In 
the presence of fluctuating forces the slow variables consti-
tute a Markov process, at least approximately. In the next 
step a criterion has to be found telling in terms of the slow 
variables whether the system belongs to one or the other 
stable state. This criterion defines a boundary in the space of 
the slow variables. Its crossing indicates a transition and the 
corresponding mean first passage time determines the rate. 
In the present model one encounters two different situations 

TABLE I. Comparison of the rates according to SBB, kSBB' and that of 
Grote-Hynes, kGH' for f3Q = 20 and different values of wBlw", y*, and 
a* < I. 

wblwo y* a* kSBBlkTsT kGHlkTST 

2 1 0.001 0.609 ± 0.035 0.618 
2 10 0.001 0.106 ± O.ot5 0.099 

20 10 0.01 0.036 ± 0.009 0.100 
0.037" 

20 0.1 0.01 0.929 ± 0.043 0.951 
0.2 100 0.1 0.014 ± 0.010 O.otl 
0.2 100 0.5 0.053 ± 0.020 0.020 
2 300 0.5 0.014 ± 0.010 0.007 
0.2 100 0.7 0.107 ± 0.Q28 0.033 

" Rate for spatial diffusion over a sharp barrier (Ref. 4). 
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reminiscent of spatial diffusion and energy diffusion in the 
original Kramers model. In the first case in which Eq. (2.26) 
yields the mean first passage time the probability density of 
the slow variables consists of a constant density of states and 
a Boltzmann factor with a minimum at the boundary. In the 
second case in which Eq. (C 10) yields the mean first passage 
time, the density of states diverges and the Boltzmann factor 
changes monotonically if the boundary is crossed. In any 
case, the rate is determined by the drift in the direction trans-
verse to the boundary and by the stationary probability den-
sity of the slow variables. Hence, it is sufficient to perform 
the adiabatic elimination (or averaging) of the fast variables 
in the deterministic equations. The stationary probability of 
the slow variables is simply obtained from the one in the 
extended phase space by means of coarse graining. 

For the particular model considered in this paper var-
ious asymptotic regimes may be distinguished. At a fixed 
temperature and for a particular ratio of the well and barrier 
frequencies these regimes are depicted in the r*-11: plane in 
Fig. 2. Left of the broken line and above the dash-dotted line 
the rate is given by non-Markovian energy diffusion [Eq. 
(2.39)]. Below the solid line Grote-Hynes theory applies 
and in the shaded region a two-dimensional energy diffusion 
mechanism determines the rate. In the vicinity of the solid 
line the agreement with the corrected Grote-Hynes theory 
(3.13) is fairly good. In the remaining part of the r*-11: 
plane below the broken and above the solid line the interpo-
lation lS 

k -I = koJ + kiri (4.1) 
yields good results5 although a satisfactory theory is missing. 
If the temperature decreases the broken line moves rigidly to 
the left in the r*, 11: plane [see Eqs. (2.39) and (2.49)]. 
Qualitatively the same happens with the solid line (see Fig. 
2). In contrast, the dash-dotted line is temperature indepen-
dent. Because this line is only significant above the broken 
line for decreasing temperature the shaded region moves 
towards higher 11: and r* values. Hence, as it is expected the 
regimes of energy diffusion and the two-dimensional 1/-u 
diffusion shrink, whereas the regime of the Grote-Hynes 
rate grows with decreasing temperature. For an increasing 
ratio of barrier and well frequencies, {J)B/{J)O the solid line 
moves in the r*~ plane to the right (see Fig. 3), whereas 
the broken and dash-dotted lines move to the left (see Fig. 
5). Hence, both regimes of Grote-Hynes and energy diffu-
sion rate shrink, whereas that of the two-dimensional 1/-U 
diffusion grows. 
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APPENDIX A: SOLUTION OF EQ. (2.27) ON THE PLANE 
R=O 

First we transform Eq. (2.25) into a linear equation 

gJ- ~ Ka :~ - ~ Dnn =0, (AI) 

where 

(A2) 
Next we have to determine g, Ka , and Dnn. In the saddle 
region the drift vector reads [Eq. (2.14)] 

(A3) 

Its component transverse to the separatrix is given by 
(A4) 

where we have used Eqs. (2.17) and (2.18) and the fact that 
V is the eigenvector of B ~ with the positive eigenvalue A, + 
[Eqs. (2.19) and (2.20)]. Combining Eq. (2.28) with Eq. 
(A4) yields 

(AS) 
The normal component D nn on R = 0 is simply given by the 
V - V matrix element of the diffusion matrix D which can be 
read off from the Fokker-Planck equation (2.10), 

Hence, 

o 
o 
o 

D = (V.DV) = (1 _p2)2 
nn' /3r 

(A6) 

(AS) 

As coordinate system xa , a = 1,2, on the separatrix (R = 0) 
we may choose x and z. Then we obtain for the components 
of the drift vector on the plane R = 0, 

Now we look for the general solution ofEq. (AI). 
First we observe that the constant 

/3Dnn (1 _p2)2 
1;, = -g- = r{J)BP 

solves Eq. (A2). Hence, the general solution reads 

J=1;, + h, 
where h obeys the homogeneous equation 

hJ-J.- Ka ~=O. 
2 aXa 

(A8) 

(A9) 

(A1O) 

Because h = x = z = 0 is a common point of all characteris-
tics of Eq. (A1O) there is only the trivial solution h=0}9 
This proves that Eq. (2.25) has a unique solution in the 
barrier region which reads 

a- --+-(
A, )112 

- 2/3Dnn . (All ) 

APPENDIX B: THE SURFACE INTEGRAL S R=O dSn W 

By introducing a {j function we transform the surface 
integral f R = odSn w into a volume integral 
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L=o dSn W= f dxdvdz~(R)w(x,v,z), 
where [seeEqs. (2.14) and (2.16)] 

R = x +...!!:....- v + a( 1 _p2)Z 
W B 

and where w is given by Eqs. (2.12) and (2.13), 

(B1) 

(B2) 

w = Z -I exp{ - (3 [~ v2 + U(x) + ~ Z2]} . (B3) 

Using the Fourier representation of the ~ function we obtain 

L=o dSn W= (217,z)-1 f dxdvdzdke;kR 

xexp{ - (3 [~ v2 + U(x) + ~ r]} . 
(B4) 

The v, z, and k integrals are Gaussian and, hence, readily 
performed to yield 

i dS w = WB (~)1I2 
R=O n Z a{3F 

X f_+oooo dxexp{ -(3 [U(X) + W;;2]} , 
(B5) 

where Fis defined in Eq. (3.3). With the piecewise parabolic 
potential (2.8) the remaining integration in Eq. (B5) can be 
done exactly yielding J /(D nna) [Eqs. (3.7) and (3.8)]. 

APPENDIX C: A MEAN FIRST PASSAGE TIME TO 
CROSS A HYPERPLANE 

We consider a d-dimensional20 Markovian Fokker-
Planck process. Further, we assume that there is exactly one 
stable fixed point of the drift in the half-space with xl>O and 
that on the hyperplane XI = 0 the component KI of the drift 
in X I direction is everywhere positive 

K I(X I =0,X2, ... ,Xd»0. (Cl) 

Further we assume that for large positive Xl K. grows nega-
tive at least proportional to x I' 2. The mean first time t( x) the 
process needs to cross the hyperplane XI = 0 when starting 
at x with Xl> 0 is the solution of the Oynkin equation 

at E a2t k.-+-D .. ---= -1 for all x with xl>O, 
I ax; 2 IJ ax/ax} 

t(x i = 0,x2, ... ,Xd) = 0, (C2) 

where K; and EDij denote the drift and diffusion, respective-
ly. The diffusion is assumed to be uniformly small. E is need-
ed for bookkeeping only. Under the stated assumptions on 
the drift t(x) assumes an almost constant value T for most x 
with x I > 0 and drops to zero on a small boundary layer at 
XI = O. One sets 

t(x) = T/(x) (C3) 
and finds from Eq. (C2) by multiplying with a stationary 
solution w(x) of the Fokker-Planck equation and by inte-
grating over all x with x I > 0, 

T= (C4) 

where dSI is the XI component of oriented surface element 
on the hyperplane x I = O. w is assumed to be known. From 
Eqs. (C2) and (C3) we find 

(C5) 

where we have neglected the small inhomogeneity T - I. 

With the ansatz 
/(x) = 1 - e-p(X)/E (C6) 

we obtain for the thickness p(x) of the boundary layer in 
leading order in E, 

K. ap _ J..- D .. ap ap = o. 
I ax; 2 Ij ax; aXj 

(C7) 

Because p(x) must vanish at x. = 0 we immediately obtain 

ap I 2K.(x. = 0) (C8) 
ax. x, =0 = D.I(x. = 0) . 

With Eqs. (C4) and (C6) this yields for the mean first pas-
sage time T, 

fx,>oddX w 
T= - . 

Ix, =odS. Klw 
(C9) 

We stress that a stationary probability density wand the 
component of the drift K I (x I = 0) transversal to the bound-
ary (XI = 0) already determine the time T. All other details 
of the process are irrelevant. Finally we note that Eq. (C9) is 
readily generalized for arbitrary domains n out of which the 
exit takes place: 

fnddX w 
T= -, (CIO) 

SandSn Kn w 
where dSn and Kn denote the transversal component ofthe 
oriented surface element on an and that of the drift, respec-
tively. Equation (C 10) holds under similar conditions as Eq. 
(C9), namely, that there is exactly one attractor of the drift 
(not necessarily a point) in n, and that on an the drift 
points inside n, i.e., that dSn Kn <0. 

APPENDIX D: A CUSP SHAPED BARRIER 
In the limit WB/WO'- 00, a-+O, Q fixed, the potential 

(2.7) shows a sharp cusp at the barrier. For finite r (not too 
small and not too large) and sufficiently large f3Q every par-
ticle approaching the barrier from the right with negative 
velocity will almost surely leave the right potential well and 
will eventually thermalize in the left one. Hence, the rate is 
simply determined by the reciprocal mean first time to cross 
the plane x = 0 with v < O. With Eq. (C9) we find 

1 
kSB =-

T 
fO_ 00 dv SO:: 00 dzKx (x = O,v,z)w(x = O,v,z) 

= 
S;' dx S~:: dv f~:: dz w(x,v,z) 

WithKx = v [Eqs. (2.1) and (2.12)] we find 

k _ Wo -PQ 
SB --e . 

21T 

(01) 

(02) 

Hence, the escape rate over a sharp barrier coincides with 
that of transition state theory. 
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APPENDIX E: MEAN FIRST PASSAGE TIME FOR y* -+ 00, 

a*<1 
We calculate the mean first passage time over the line 

u = 0 at e> 0 for the Markovian process obtained from Eq. 
(2.1) by averaging over the fast motion in ordinary phase 
space. The drift of this process in the barrier region (see Fig. 
5) is given by Eqs. (3.50) and (3.51). The stationary distri-
bution follows immediately from Eqs. (2.12), (2.13), and 
(3.14), and (3.17): 

p(e,u) = ~:z exp[ -p(e+ ~ u2
)]. (El) 

At e = u = 0 the drift has a stable point which is attractive in 
the e direction and repulsive in the u direction. At this point 
p (e,u) has a saddle (recall e> - u2 /2n~ ). Consequently 
the mean first passage time reads [compare Eq. (2.26)] 

1 (rr)1I2 Su>o dedup(e,u) 
T = 2" Ii S; de p(e,u = O)Duua ' (E2) 

where 
1 Duu =-2 - (E3) 

aPr 
is the u-u matrix element of the diffusion, and where a is 
given by (see Appendix A) 

a* a--------:-:-
- wB[2(1-a*)]1/2· 

Clearly, we have for large PQ, 

i de du p(e,u) = i dx dv dz W(X,vz) 
u>o x>o 

(2rr)3/2e f3Q 

= p3/2woal12Z' 
By putting everything together we obtain Eq. (3.52). 
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