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The transition rate of a non-Markovian Brownian particle in a double well potential is 
determined analytically by means of asymptotic methods and compared with both current 
theories and numerical simulations by Straub, Borkovec, and Berne [J. Chern. Phys. 83, 3172 
( 1985) ]. We obtain good agreement with these simulations. The ranges of validity for the 
different current theories which we find do, however, not exhaust the complete parameter 
range. In particular, for large static friction we identify a region of bath correlation times in 
which the rate differs grossly from the value predicted by either Grote-Hynes theory or non-
Markovian energy diffusion. Additionally, corrections to the Grote-Hynes rate are determined 
and an analytical expression for the non-Markovian energy diffusion rate is obtained. 

I. INTRODUCTION 
The movement of a Brownian particle in a potential 

with different locally stable states is frequently employed as 
a model for chemical reactions. The reaction rates are then 
identified with the rates at which the Brownian particle 
moves from one locally stable state to another one. This 
model has been established by Kramers I and during the past 
decade has witnessed a renaissance. 2 

As already pointed out by Kramers, I two regimes of 
different rate limiting mechanisms must be distinguished: In 
one regime the particle experiences weak frictional forces. 
Consequently, the energy of the particle is slowly varying 
and energy diffusion becomes the relevant rate limiting pro-
cess. In the second regime, for intermediate and strong fric-
tion, the rate is determined by a diffusion process in phase 
space. In both cases the rate can be represented as a product 
of the rate predicted by the transition state theory, kTST ' and 
a correction factor f, 

k =fkTST' (1.1 ) 

In the second regime the correction factor depends solely on 
the dynamics in the linear vicinity of the saddle point which 
lies on the most probable trajectory joining two adjacent 
wells. According to current theories for a non-Markovian 
process the correction factor f should still solely be deter-
mined by the linear dynamics at the saddle point.3

,4 

This simple picture was spoiled by numerical simula-
tions of a non-Markovian Brownian motion in a double well 
potential by Straub, Borkovec, and Berne5 (SBB). Whereas 
for small and intermediate damping theory and simulation 
agree, for large values of the damping constant the correc-
tion factor f depends strongly on the well dynamics leading 
to discrepancies up to orders of magnitude between current 
theories and simulations. Several facts indicate an energy-
like-diffusion mechanism to be rate limiting for large values 
of the damping constant y: 

(i) the energy diffusion rate depends on the well dynam-
i"s, indeed. 

(ii) In the particular model of SBB for large y the ener-
gy dissipation rate is inversely proportional to r conse-
quently leading to small energy dissipation. 
(iii) A properly defined memory-renormalized damp-
ing constant becomes arbitrarily small for large y indi-
cating the failure of the Grote-Hynes theory.2 

Nevertheless, non-Markovian energy diffusion may still give 
rates grossly deviating from the simulated data. It has been 
claimed that spatial diffusion should lead to the observed 
decrease of the rate.6 However, the trajectories one would 
expect in the case of spatial diffusion would have a rather 
different appearance than those found by SBB. 

Zwanzig7 and one of the present authors8 have pointed 
out, that for infinite damping in the absence of noise the 
particle undergoes a conservative Hamiltonian dynamics 
with a modified energy e and an additional conserved quanti-
ty u. 

In this paper we will argue that this is a main clue to the 
understanding of the rates at large y. 

The paper is organized as follows: In Sec. II the model is 
described and the conventional rate theories are sketched. 
An explicit expression for the non-Markovian energy diffu-
sion rate is obtained. In Sec. III the saddle point approxima-
tion implicit in the Grote-Hynes theory is discussed and 
corrections are calculated. We show that for large values of r 
the abovementioned modified energy e and the additional 
quantity u undergo a two-dimensional Markov process. This 
process is qualitatively different depending on whether the 
bath correlation time Tc of the underlying non-Markovian 
process is above or below a certain threshold. In both cases 
the crossing of particular curves in the e-u plane indicates a 
transition from one well to the other. The corresponding 
mean first passage time yields the rate. For T c above the 
threshold the rate is inversely proportional to temperature 
like an energy diffusion rate. It agrees very well with the 
simulated data of SBB. Below the threshold the Grote-
Hynes rate is recovered being in reasonable agreement with 
the simulated data. Section IV provides a summary. 
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FIG. 4. Rate constants as a function of the static friction r* for (3Q = 20 and 
a* = 4/3 for different frequency ratios (a) WB/WO = 0.2, (b) WB/WO = 2, 
(c) W B/ Wo = 20. The dots represent the numerical data by SBB. Theoreti-
cal predictions are represented by lines: Energy-diffusion equation (2.39) 
( - -), Grote-Hynes equation (2.29) (---), corrected Grote-Hynes equa-
tion (3.13) ( ... ), two-dimensional1f-u diffusion equation (3.38) (-). 

1 V(x,u) = U(x) + _x2 - ux. 
2a 

(3.16 ) 

Note that in the barrier region the renormalized potential 

V(x) is repulsive only for a* > 1 but attractive for a* < 1. In 
any case 

e = !v2 + V(x,u) (3.17) 
is the other conserved quantity. 

For large but finite y, e, and u will change much slower 
than the original variables x, v, and z. 

The additional temperature fluctuations then lead to a 
slow diffusional motion of e and u which is approximately 
Markovian. If we can identify a curve in the e-u plane the 
crossing of which indicates a transition from one well into 
the other we can express the rate in terms of the mean first 
passage time of that curve. 

The different qualitative behavior of V(x,u), for a* > 1 
and a* < 1 makes it necessary to consider these cases sepa-
rately. 

According to Eqs. (2.7), (3.16), and (3.17) in the bar-
rier region the deterministic trajectories for y = 00 are hy-
perbolas with center at (XB,v = 0) 

1 2 1 2 1 n2 X 2 e---u =-V --UB(X- B) 
2n~ 2 2 ' 

(3.18), 

U X B = - - (3.19) n2 ' B 
where nB denotes the renormalized barrier frequency 

(
a* - 1)112 nB = --- WB' 

a* 
(3.20) 

For e - u2/2n~ <0 each trajectory starting in one well ei-
ther stays in this well or returns to it after a short excursion. 
For e - u2 /2n~ > 0 the trajectories join both wells. Starting 
in one well for e - u2 /2n~ = 0 the particle moves on a 
straight line towards the center of the hyperbola which is 
approached infinitely slowly. In the vicinity of the center the 
trajectory is extremely sensitive to the influence of the ran-
dom force which either may turn the particle back to the well 
it is coming from or, equally likely, may push it to the other 
well. Hence, for y* -+ 00 and a* > 1 the transition rate is de-
termined by the mean time T that the Markov process of u 
and e takes to cross e - u2 /2n~ = 0 for the first time: 

k =_1_. 
'1/,U 2T (3.21) 

For convenience we introduce the variable 

1 2 7]=e---u. 
2n~ 

(3.22) 

The mean first passage time is then given by17 (for a short 
derivation see Appendix C) 

f'1/<od7] du p( 7],u) 
T = - lim -----'-----'-------

£_0- S du K'1/ (7] = E,U)p(7] = E,U) 
(3.23) 

where K., denotes the drift in 7] direction, i.e., transversal to 
the boundary line 7] = 0, and where p( 7],u) denotes the sta-
tionary probability density for 7] and u. It will become clear, 
soon, why we have shifted the boundary line to a negative 
value of 7]. The probability density p( 7],u) is obtained from 
Eqs. (2.12) and (2.13) with Eqs. (3.14), (3.17), (3.18), 
and (3.22), 
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reminiscent of spatial diffusion and energy diffusion in the 
original Kramers model. In the first case in which Eq. (2.26) 
yields the mean first passage time the probability density of 
the slow variables consists of a constant density of states and 
a Boltzmann factor with a minimum at the boundary. In the 
second case in which Eq. (C 10) yields the mean first passage 
time, the density of states diverges and the Boltzmann factor 
changes monotonically if the boundary is crossed. In any 
case, the rate is determined by the drift in the direction trans-
verse to the boundary and by the stationary probability den-
sity of the slow variables. Hence, it is sufficient to perform 
the adiabatic elimination (or averaging) of the fast variables 
in the deterministic equations. The stationary probability of 
the slow variables is simply obtained from the one in the 
extended phase space by means of coarse graining. 

For the particular model considered in this paper var-
ious asymptotic regimes may be distinguished. At a fixed 
temperature and for a particular ratio of the well and barrier 
frequencies these regimes are depicted in the r*-11: plane in 
Fig. 2. Left of the broken line and above the dash-dotted line 
the rate is given by non-Markovian energy diffusion [Eq. 
(2.39)]. Below the solid line Grote-Hynes theory applies 
and in the shaded region a two-dimensional energy diffusion 
mechanism determines the rate. In the vicinity of the solid 
line the agreement with the corrected Grote-Hynes theory 
(3.13) is fairly good. In the remaining part of the r*-11: 
plane below the broken and above the solid line the interpo-
lation lS 

k -I = koJ + kiri (4.1) 
yields good results5 although a satisfactory theory is missing. 
If the temperature decreases the broken line moves rigidly to 
the left in the r*, 11: plane [see Eqs. (2.39) and (2.49)]. 
Qualitatively the same happens with the solid line (see Fig. 
2). In contrast, the dash-dotted line is temperature indepen-
dent. Because this line is only significant above the broken 
line for decreasing temperature the shaded region moves 
towards higher 11: and r* values. Hence, as it is expected the 
regimes of energy diffusion and the two-dimensional 1/-u 
diffusion shrink, whereas the regime of the Grote-Hynes 
rate grows with decreasing temperature. For an increasing 
ratio of barrier and well frequencies, {J)B/{J)O the solid line 
moves in the r*~ plane to the right (see Fig. 3), whereas 
the broken and dash-dotted lines move to the left (see Fig. 
5). Hence, both regimes of Grote-Hynes and energy diffu-
sion rate shrink, whereas that of the two-dimensional 1/-U 
diffusion grows. 
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APPENDIX A: SOLUTION OF EQ. (2.27) ON THE PLANE 
R=O 

First we transform Eq. (2.25) into a linear equation 

gJ- ~ Ka :~ - ~ Dnn =0, (AI) 

where 

(A2) 
Next we have to determine g, Ka , and Dnn. In the saddle 
region the drift vector reads [Eq. (2.14)] 

(A3) 

Its component transverse to the separatrix is given by 
(A4) 

where we have used Eqs. (2.17) and (2.18) and the fact that 
V is the eigenvector of B ~ with the positive eigenvalue A, + 
[Eqs. (2.19) and (2.20)]. Combining Eq. (2.28) with Eq. 
(A4) yields 

(AS) 
The normal component D nn on R = 0 is simply given by the 
V - V matrix element of the diffusion matrix D which can be 
read off from the Fokker-Planck equation (2.10), 

Hence, 

o 
o 
o 

D = (V.DV) = (1 _p2)2 
nn' /3r 

(A6) 

(AS) 

As coordinate system xa , a = 1,2, on the separatrix (R = 0) 
we may choose x and z. Then we obtain for the components 
of the drift vector on the plane R = 0, 

Now we look for the general solution ofEq. (AI). 
First we observe that the constant 

/3Dnn (1 _p2)2 
1;, = -g- = r{J)BP 

solves Eq. (A2). Hence, the general solution reads 

J=1;, + h, 
where h obeys the homogeneous equation 

hJ-J.- Ka ~=O. 
2 aXa 

(A8) 

(A9) 

(A1O) 

Because h = x = z = 0 is a common point of all characteris-
tics of Eq. (A1O) there is only the trivial solution h=0}9 
This proves that Eq. (2.25) has a unique solution in the 
barrier region which reads 

a- --+-(
A, )112 

- 2/3Dnn . (All ) 

APPENDIX B: THE SURFACE INTEGRAL S R=O dSn W 

By introducing a {j function we transform the surface 
integral f R = odSn w into a volume integral 
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L=o dSn W= f dxdvdz~(R)w(x,v,z), 
where [seeEqs. (2.14) and (2.16)] 

R = x +...!!:....- v + a( 1 _p2)Z 
W B 

and where w is given by Eqs. (2.12) and (2.13), 

(B1) 

(B2) 

w = Z -I exp{ - (3 [~ v2 + U(x) + ~ Z2]} . (B3) 

Using the Fourier representation of the ~ function we obtain 

L=o dSn W= (217,z)-1 f dxdvdzdke;kR 

xexp{ - (3 [~ v2 + U(x) + ~ r]} . 
(B4) 

The v, z, and k integrals are Gaussian and, hence, readily 
performed to yield 

i dS w = WB (~)1I2 
R=O n Z a{3F 

X f_+oooo dxexp{ -(3 [U(X) + W;;2]} , 
(B5) 

where Fis defined in Eq. (3.3). With the piecewise parabolic 
potential (2.8) the remaining integration in Eq. (B5) can be 
done exactly yielding J /(D nna) [Eqs. (3.7) and (3.8)]. 

APPENDIX C: A MEAN FIRST PASSAGE TIME TO 
CROSS A HYPERPLANE 

We consider a d-dimensional20 Markovian Fokker-
Planck process. Further, we assume that there is exactly one 
stable fixed point of the drift in the half-space with xl>O and 
that on the hyperplane XI = 0 the component KI of the drift 
in X I direction is everywhere positive 

K I(X I =0,X2, ... ,Xd»0. (Cl) 

Further we assume that for large positive Xl K. grows nega-
tive at least proportional to x I' 2. The mean first time t( x) the 
process needs to cross the hyperplane XI = 0 when starting 
at x with Xl> 0 is the solution of the Oynkin equation 

at E a2t k.-+-D .. ---= -1 for all x with xl>O, 
I ax; 2 IJ ax/ax} 

t(x i = 0,x2, ... ,Xd) = 0, (C2) 

where K; and EDij denote the drift and diffusion, respective-
ly. The diffusion is assumed to be uniformly small. E is need-
ed for bookkeeping only. Under the stated assumptions on 
the drift t(x) assumes an almost constant value T for most x 
with x I > 0 and drops to zero on a small boundary layer at 
XI = O. One sets 

t(x) = T/(x) (C3) 
and finds from Eq. (C2) by multiplying with a stationary 
solution w(x) of the Fokker-Planck equation and by inte-
grating over all x with x I > 0, 

T= (C4) 

where dSI is the XI component of oriented surface element 
on the hyperplane x I = O. w is assumed to be known. From 
Eqs. (C2) and (C3) we find 

(C5) 

where we have neglected the small inhomogeneity T - I. 

With the ansatz 
/(x) = 1 - e-p(X)/E (C6) 

we obtain for the thickness p(x) of the boundary layer in 
leading order in E, 

K. ap _ J..- D .. ap ap = o. 
I ax; 2 Ij ax; aXj 

(C7) 

Because p(x) must vanish at x. = 0 we immediately obtain 

ap I 2K.(x. = 0) (C8) 
ax. x, =0 = D.I(x. = 0) . 

With Eqs. (C4) and (C6) this yields for the mean first pas-
sage time T, 

fx,>oddX w 
T= - . 

Ix, =odS. Klw 
(C9) 

We stress that a stationary probability density wand the 
component of the drift K I (x I = 0) transversal to the bound-
ary (XI = 0) already determine the time T. All other details 
of the process are irrelevant. Finally we note that Eq. (C9) is 
readily generalized for arbitrary domains n out of which the 
exit takes place: 

fnddX w 
T= -, (CIO) 

SandSn Kn w 
where dSn and Kn denote the transversal component ofthe 
oriented surface element on an and that of the drift, respec-
tively. Equation (C 10) holds under similar conditions as Eq. 
(C9), namely, that there is exactly one attractor of the drift 
(not necessarily a point) in n, and that on an the drift 
points inside n, i.e., that dSn Kn <0. 

APPENDIX D: A CUSP SHAPED BARRIER 
In the limit WB/WO'- 00, a-+O, Q fixed, the potential 

(2.7) shows a sharp cusp at the barrier. For finite r (not too 
small and not too large) and sufficiently large f3Q every par-
ticle approaching the barrier from the right with negative 
velocity will almost surely leave the right potential well and 
will eventually thermalize in the left one. Hence, the rate is 
simply determined by the reciprocal mean first time to cross 
the plane x = 0 with v < O. With Eq. (C9) we find 

1 
kSB =-

T 
fO_ 00 dv SO:: 00 dzKx (x = O,v,z)w(x = O,v,z) 

= 
S;' dx S~:: dv f~:: dz w(x,v,z) 

WithKx = v [Eqs. (2.1) and (2.12)] we find 

k _ Wo -PQ 
SB --e . 

21T 

(01) 

(02) 

Hence, the escape rate over a sharp barrier coincides with 
that of transition state theory. 

J. Chem. Phys., Vol. 88, No. 12, 15 June 1988 



P. Talkner and H. Braun: Transition rates 7549 

APPENDIX E: MEAN FIRST PASSAGE TIME FOR y* -+ 00, 

a*<1 
We calculate the mean first passage time over the line 

u = 0 at e> 0 for the Markovian process obtained from Eq. 
(2.1) by averaging over the fast motion in ordinary phase 
space. The drift of this process in the barrier region (see Fig. 
5) is given by Eqs. (3.50) and (3.51). The stationary distri-
bution follows immediately from Eqs. (2.12), (2.13), and 
(3.14), and (3.17): 

p(e,u) = ~:z exp[ -p(e+ ~ u2
)]. (El) 

At e = u = 0 the drift has a stable point which is attractive in 
the e direction and repulsive in the u direction. At this point 
p (e,u) has a saddle (recall e> - u2 /2n~ ). Consequently 
the mean first passage time reads [compare Eq. (2.26)] 

1 (rr)1I2 Su>o dedup(e,u) 
T = 2" Ii S; de p(e,u = O)Duua ' (E2) 

where 
1 Duu =-2 - (E3) 

aPr 
is the u-u matrix element of the diffusion, and where a is 
given by (see Appendix A) 

a* a--------:-:-
- wB[2(1-a*)]1/2· 

Clearly, we have for large PQ, 

i de du p(e,u) = i dx dv dz W(X,vz) 
u>o x>o 

(2rr)3/2e f3Q 

= p3/2woal12Z' 
By putting everything together we obtain Eq. (3.52). 

(E4) 
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