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where 
L*·= -P;-;IL(Pst ')' (2.6) 

Note, that in the case of a process with detailed balance, the 
operator - L * coincides with the backward operator ofthe 
time-reversed process. 13 

It is convenient to split the time-dependent rate constant 
into its initial value k (0) and a transmission coefficient K( t): 

k(t) = k(O)K(t). (2.7) 

The initial value of the reactive flux k(O) is given by 

k(O) = lim k(t) = (j(x(O»X(x(O + » > . 
1-0 + (f(x(O» > 

(2.8) 

The initial value of the transmission coefficient K(t) is unity 
and for general t> 0, it can be written as 

K(t) = (X(x(t) > + - (X(x(t» > _ , (2.9) 
where we have introduced nonstationary ensemble averages 

(.> = (X(x(O+»,(X(O»·> (2.10) 
+ (X(x(O + ) )/(x(O» > 

and 

(. > - ([ 1 - X(x(O + » ]j(x(O» . > 
([ 1 - X(x(O + » V(x(O» > 

(2.11) 

In the derivation of Eq. (2.11), we have used the fact that 
due to the presence of the absorbing states, the backward 
operator L + acting on unity yields a negligible contribution 
ofO(k). 

The usefulness of the present generalization depends 
crucially on a proper choice of the function/(x). The best 
choice would be the eigenfunction of L * with the smallest 
non vanishing eigenvalue..i = k. In that case, the initial value 
of the reactive flux k(O) would already determine the exact 
rate constant. In general, however, this eigenfunction is not 
known exactly. An approximate eigenfunction of L * might 
still serve the purpose, provided that k (0) is well defined and 
the nonstationary ensemble averages (. > ± contain proper 
nonnegative probability densities. Any choice of lex) that 
interpolates unity in the reactant state and zero in the prod-
uct state and fulfills the above requirements may be used to 
evaluate either analytically or numerically k( 0) and the pla-
teau value K of K(t) which yields the rate constant by 
k= k(O)K. 

III. CLASSICAL REACTIVE FLUX 
In the classical case, the reaction coordinate q(x) de-

pends only on the configuration coordinates r, but not on the 
velocities v = t, i.e., q(x) is positive in the reactant state and 
vanishes on the barrier. In that case, one may choose 
lex) = x(x) = O(q(x», where O(q) is the Heaviside step 
function. Inserting into Eq. (2.8), we obtain with 

ix(x(o + » = q8(q)O(q) (3.1 ) 
the result of transition state theoryl,15 

k(O) = (8(q)qO(q) > . 
(O(q) > 

(3.2) 

The nonstationary ensemble averages Eqs. (2.10) and 
(2.11) are given by 

(. > = (8(q)( + q)O( + q)' > 
± (8(q)( ± q)O( ± q) > 

(3.3 ) 

In a stochastic simulation, one generates trajectories x(t) 
with initial conditions sampled from the distributions (3.3) 
and Eq. (2.9) gives the plateau value of the reactive flux. 
This method has been applied in a variety of situations with 
success. 3. 15. 16 

IV. GENERALIZED REACTIVE FLUX 
In the following, we shall demonstrate that in several 

other situations a meaningful choice of/ex) is possible. We 
shall focus on a Markovian jump process and a small step 
diffusion process.2,13,21 Neither problem can be approached 
numerically using the classical reactive flux method since 
the initial value k(O) diverges, due to the fact that the veloc-
ity x is ill defined. In order to demonstrate the applicability 
ofthe present method, we shall evaluate rate constants in one 
dimension where a comparison with exact results is possible. 
In both situations, the extension of the method to many-
dimensional cases is straightforward. 

A. Markovian jump process 
Consider a molecule undergoing a dissociation reaction 

in a dilute gas. The energy E of the molecule as a function of 
time is a continuous jump process described by a Master 
equation 

ap~~,t) = LP(E,t) 

= fO dE' [K(E,E')P(E',t) 

- K(E',E)P(E,t)], (4.1 ) 
where P(E,t) is the time-dependent probability density of E 
and K(E',E) the transition rate from E to E' obeying the 
detailed balance relation 

K(E,E')Pst (E') = K(E',E)Pst (E). (4.2) 

Let us evaluate the rate constant for infinitely rapid dissocia-
tion at E> Q using the reactive flux formalism. Again, we 
choose/eEl = X(E) = O( Q - E) and obtain 

iCE) = L */(E) = 100 

dE' K(E',E) [feE') - /(E) ].(4.3) 

Inserting Eq. (4.3) into Eq. (2.8), the initial value becomes 

k(O) = JQoo dE' LQ dE K(E',E)Pst (E), (4.4) 

which is the strong collision approximation ofunimolecular 
rate theory.2.17 The transmission coefficient (2.9) simplifies 
to 

K(f) = (O(Q - E(t»> + , (4.5) 

since E> Q is perfectly absorbing. Note that the absorbing 
boundary method21 is exact in the present example. The ini-
tial distribution entering Eq. (2.9)is proportional to 

O(Q - E) roo dE' K(E,E')Pst (E'). (4.6) 

In order to test the present algorithm for numerical evalua-
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exact rate constant is obtained by a numerical integration of 
Eq. (4.13). Again, we find excellent agreement between nu-
merical and exact transmission coefficients. 

v. CONCLUSION 
We have shown how to generalize the powerful reactive 

flux method for numerical evaluation of rate constants to 
cases of arbitrary underlying Markovian dynamics. We have 
illustrated the feasibility of the method by performing reac-
tive flux calculations for a one-dimensional exponential 
jump process and a diffusion process in a double well poten-
tial. The numerical results obtained are in excellent agree-
ment with exact results known in these cases. The present 
formulation is easily generalized to more dimensional jump 
and diffusion processes and allows numerical studies of such 
rate problems with tractable computational effort. We ex-
pect that other situations may be successfully approached 
within the same spirit as e.g., discrete jump processes or non-
equilibrium situations. Also the present ideas might offer an 
interesting alternative to the absorbing boundary method24 

in order to estimate very small transmission coefficients. Re-
placing the step function by a smooth dividing function 
could yield a lower initial value of the reactive flux and lead 
to a larger transmission coefficients. Finally, using the pres-
ent formation, one might be able to generalize the concept of 
a transition state and transition state theory to arbitrary 
Markovian dynamics. 
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