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Reactive flux method for numerical evaluation of rate constants is generalized to arbitrary 
underlying dynamics. The feasibility of the method is illustrated by numerically evaluating rate 
constants for a one-dimensional jump process and a diffusion process. In both cases, we find 
excellent agreement with exact results known in these cases. 

I. INTRODUCTION 
Decay of metastable states plays an important role in a 

wide variety of fields such as chemical kinetics, reaction net-
works, diffusion in solids and glasses, kinetics of first order 
phase transitions, quantum optics, and electronics. I - 8 On 
the theoretical side, there exist only very few models for 
which exact rate expressions are available. However, many 
problems can be asymptotically solved in the limit of a large 
barrier separating the considered metastable state from oth-
er locally stable states.9-11 Of course, the presence of a bar-
rier is vital for the notion of metastability and the feasibility 
of a rate description. For these purposes, a barrier height Q 
of already a few k B T will suffice to separate the decay time 
being of the order of 'T m cf3Q (11 {3 = k B n from the fast time 
scale 'T m on which the deterministic processes take place 
within the part of state space bordered by the barrier. In the 
above mentioned asymptotic theories 1I({3Q) itself, rather 
than e - f3Q, enters as a small parameter. Therefore, these 
theories do not cover the whole range of parameters where a 
rate description is appropriate. Especially the presence of 
other small or large parameters than the barrier height may 
push the range of applicability of the asymptotic laws 
towards extremely low temperatures. 12 Unfortunately, also 
the numerical evaluation of rate constants is plagued by 
problems which originate in the wide separation of time 
scales. For example, in a simulation of stochastic trajectories 
with initial values near the metastable state being sampled 
from equilibrium distribution, almost any trajectory will 
stay near this state for an extremely long time until it es-
capes. Among various numerical approaches, 13, 14 only the 
reactive flux method15,16 is able to circumvent this difficulty 
by starting trajectories at the barrier top and to extract the 
long time behavior from data available on the short time 
scale. 

So far, however, the reactive flux method has only been 
formulated for systems with a rather special underlying dy-
namics, namely in situations where the velocity is noiseless. 
As a consequence, many important rate problems cannot be 
tackled using this method. A Markovian jump process de-
scribing a dissociating molecule,17 the incoherent energy 
transport by excitons in a molecular crystal,2,18 and the dif-
fusion of small particles in a liquid4 are but a few examples. 

a) Present address: Paul Scherrer Institute, CH-5232 Villigen, Switzerland. 

In the present article, we shall extend the reactive flux 
method to cases with arbitrary Markovian dynamics. The 
paper is organized as follows: In the next section, we present 
the generalized reactive flux method. In Sec. III, the classi-
cal reactive flux theory is obtained as a special case of the 
general theory, and in Sec. IV, the general theory is applied 
to Markovian jump and diffusion processes. Section V pro-
vides a summary. 

II. FORMAL DEVELOPMENT 
Consider a Markovian process x(t) in ad-dimensional 

state space with a metastable state Xo' The probability den-
sity P(x,t) satisfies the time evolution equation 

JP(x,t)IJt = LP(x,t) , (2.1) 
where L is the forward operator characterizing the process. 
We assume that a stationary probability density Pst (x) is 
known which satisfies19 

(2.2) 
After a transient on a microscopic time scale 'T m , the decay 
rate constant of the metastable state governs the time behav-
ior of the correlation function 

C(t) = (f(x(O))X(x(t))) =.e- kt 

(f(x(O)) ) 
(2.3 ) 

where (.) denotes the equilibrium average. We have intro-
duced the characteristic function X(x) of the domain of at-
traction of the considered metastable state andf(x) being of 
similar nature as X(x), namely f(x) essentially equals unity 
inside the domain of attraction and zero outside, but in con-
trast to X(x), it may show a smooth transition from these 
extreme values.20 In order to avoid back reactions, regions 
far away from the domain of attraction must be absorbing. 

The time derivative ofEq. (2.3) yields a time-dependent 
expression 

k(t)= 
dC(t) 

dt 
<f(x(O) )X(x(t))) 

(f(x(O)) ) 
k -kt =. e , 

(2.4) 

which for intermediate times 'T m -(t-(k- 1 , equals the rate 
constant k. We have introduced the time derivative off(x) 
by 

j(x) = L *f(x) , (2.5) 
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where 
L*·= -P;-;IL(Pst ')' (2.6) 

Note, that in the case of a process with detailed balance, the 
operator - L * coincides with the backward operator ofthe 
time-reversed process. 13 

It is convenient to split the time-dependent rate constant 
into its initial value k (0) and a transmission coefficient K( t): 

k(t) = k(O)K(t). (2.7) 

The initial value of the reactive flux k(O) is given by 

k(O) = lim k(t) = (j(x(O»X(x(O + » > . 
1-0 + (f(x(O» > 

(2.8) 

The initial value of the transmission coefficient K(t) is unity 
and for general t> 0, it can be written as 

K(t) = (X(x(t) > + - (X(x(t» > _ , (2.9) 
where we have introduced nonstationary ensemble averages 

(.> = (X(x(O+»,(X(O»·> (2.10) 
+ (X(x(O + ) )/(x(O» > 

and 

(. > - ([ 1 - X(x(O + » ]j(x(O» . > 
([ 1 - X(x(O + » V(x(O» > 

(2.11) 

In the derivation of Eq. (2.11), we have used the fact that 
due to the presence of the absorbing states, the backward 
operator L + acting on unity yields a negligible contribution 
ofO(k). 

The usefulness of the present generalization depends 
crucially on a proper choice of the function/(x). The best 
choice would be the eigenfunction of L * with the smallest 
non vanishing eigenvalue..i = k. In that case, the initial value 
of the reactive flux k(O) would already determine the exact 
rate constant. In general, however, this eigenfunction is not 
known exactly. An approximate eigenfunction of L * might 
still serve the purpose, provided that k (0) is well defined and 
the nonstationary ensemble averages (. > ± contain proper 
nonnegative probability densities. Any choice of lex) that 
interpolates unity in the reactant state and zero in the prod-
uct state and fulfills the above requirements may be used to 
evaluate either analytically or numerically k( 0) and the pla-
teau value K of K(t) which yields the rate constant by 
k= k(O)K. 

III. CLASSICAL REACTIVE FLUX 
In the classical case, the reaction coordinate q(x) de-

pends only on the configuration coordinates r, but not on the 
velocities v = t, i.e., q(x) is positive in the reactant state and 
vanishes on the barrier. In that case, one may choose 
lex) = x(x) = O(q(x», where O(q) is the Heaviside step 
function. Inserting into Eq. (2.8), we obtain with 

ix(x(o + » = q8(q)O(q) (3.1 ) 
the result of transition state theoryl,15 

k(O) = (8(q)qO(q) > . 
(O(q) > 

(3.2) 

The nonstationary ensemble averages Eqs. (2.10) and 
(2.11) are given by 

(. > = (8(q)( + q)O( + q)' > 
± (8(q)( ± q)O( ± q) > 

(3.3 ) 

In a stochastic simulation, one generates trajectories x(t) 
with initial conditions sampled from the distributions (3.3) 
and Eq. (2.9) gives the plateau value of the reactive flux. 
This method has been applied in a variety of situations with 
success. 3. 15. 16 

IV. GENERALIZED REACTIVE FLUX 
In the following, we shall demonstrate that in several 

other situations a meaningful choice of/ex) is possible. We 
shall focus on a Markovian jump process and a small step 
diffusion process.2,13,21 Neither problem can be approached 
numerically using the classical reactive flux method since 
the initial value k(O) diverges, due to the fact that the veloc-
ity x is ill defined. In order to demonstrate the applicability 
ofthe present method, we shall evaluate rate constants in one 
dimension where a comparison with exact results is possible. 
In both situations, the extension of the method to many-
dimensional cases is straightforward. 

A. Markovian jump process 
Consider a molecule undergoing a dissociation reaction 

in a dilute gas. The energy E of the molecule as a function of 
time is a continuous jump process described by a Master 
equation 

ap~~,t) = LP(E,t) 

= fO dE' [K(E,E')P(E',t) 

- K(E',E)P(E,t)], (4.1 ) 
where P(E,t) is the time-dependent probability density of E 
and K(E',E) the transition rate from E to E' obeying the 
detailed balance relation 

K(E,E')Pst (E') = K(E',E)Pst (E). (4.2) 

Let us evaluate the rate constant for infinitely rapid dissocia-
tion at E> Q using the reactive flux formalism. Again, we 
choose/eEl = X(E) = O( Q - E) and obtain 

iCE) = L */(E) = 100 

dE' K(E',E) [feE') - /(E) ].(4.3) 

Inserting Eq. (4.3) into Eq. (2.8), the initial value becomes 

k(O) = JQoo dE' LQ dE K(E',E)Pst (E), (4.4) 

which is the strong collision approximation ofunimolecular 
rate theory.2.17 The transmission coefficient (2.9) simplifies 
to 

K(f) = (O(Q - E(t»> + , (4.5) 

since E> Q is perfectly absorbing. Note that the absorbing 
boundary method21 is exact in the present example. The ini-
tial distribution entering Eq. (2.9)is proportional to 

O(Q - E) roo dE' K(E,E')Pst (E'). (4.6) 

In order to test the present algorithm for numerical evalua-
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tion of the rate constant, consider the exactly soluble expo-
nential model22 

{
e- (E-E'l/a for E' <E 

K(E' E) =_a_ 
, a+b e-(E'-El/b for E'>E (4.7) 

with 1/b - 1/a = pandPs1 (E) a:. e -PE anda being the col-
lision rate. The asymptotic low temperature result (PQ<t,I) 
for the rate constant is22 

(4.8) 
Let us evaluate this rate constant numerically using the reac-
tive flux method. The initial value of the reactive flux (4.4) 
becomes 

k(O) = ap ~ e- PQ. 
a+b 

(4.9) 

The transmission coefficient K can be evaluated from Eq. 
(4.5) using a stochastic simulation. We generate energy tra-
jectories E(t) by sampling numerically transition probabili-
ties25 according to Eq. (4.7) and the initial distribution Eq. 
(4.6) which simplifies with Eq. (4.7) to 

8(Q - E)e(Q-El/a. (4.10) 
We average 104 trajectories and the plateau value is reached 
after 102-1 as collisions. 'the simulation requires few minutes 
on a V AX-8800. Numerical results for different values of pb 
are summarized in Table I. Calculated transmission coeffi-
cients are compared with the theoretical value 

K=p.!!....(a+b) (4.11 ) 
a 

and show excellent agreement. 

B. Diffusion process 
As a second example, consider the diffusive motion of a 

Brownian particle of unit mass with a damping rate r in a 
symmetric double well potential U(x) which is governed by 
the Smoluchowski equation 

ap(x,t) = LP(x,t) 
at 

=~..i.. ( U'(x)P(x,t) + ~..i..P(X,t), (4.12) 
rax pax 

where U' = dU /dx. The exact rate constant of escape is l 

k=_I_[JX,. dXePU(XlJ
x 

dX'e-PU(X'l]-I, (4.13) 
Pr -Xo - 00 

where ± Xo denote the positions of the wells. 
Again let us apply the reactive flux formalism to evalu-

ate the rate constant in this case. We choose x(x) = 8(x), 
but the same choice in/ex) would lead to a diverging k(O) 
because of the presence of the second derivative in 

lex) = L */(x) = ~ (u' a/ _ ~ ay\. 
r ax P ax2) 

(4.14 ) 

In the case of a parabolic barrier, the most convenient choice 
for/ex) is 

lex) = - ds e- Ps'12. ( P )
112 JAX 

21r - 00 

( 4.15) 

We insert this relation in Eqs. (2.8) and (4.14) and obtain 

TABLE I. Numerical results forrate constants K = k / k( 0) obtained by the 
present generalization of the reactive flux method (num.) compared to the 
exact values (ex.). We apply the method to the exponential Markovian 
jump process (left) and to diffusive motion in a double well potential 
(right). In both cases, the classical reactive flux method is not applicable. 
The error bars correspond to 90% confidence level (Ref. 3). 

Exponential model Diffusion 

(Ja K(ex.) K(num.) OJb/OJO K(ex.) ..t(num.) 

3.00 0.937 0.936 ± 0.005 5.0 0.869 0.862 ± 0.009 
1.00 0.750 0.751 ± 0.007 7.5 0.709 0.708 ± 0.012 
0.30 0.408 0.411 ± 0.010 10.0 0.580 0.586 ± 0.012 
0.10 0.174 0.174 ± 0.006 12.5 0.485 0.492 ± 0.011 
0.03 0.057 0.054 ± 0.004 15.0 0.415 0.411 ± 0.010 

k(O) = ~:; e- PQ, (4.16) 

where Q = U(O) - U(xo) is the barrier height and (i)o the 
well frequency. The initial distribution entering Eq. (2.10) 
turns out to be 

P + (x) a:. 8(x) V'(x)e-PV(xl, (4.17) 

where 
(4.18 ) 

In order that Eq. (4.17) defines a proper probability density, 
V'(x) must not be negative for all x>O. In view of Eq. 
(4.16), the minimal value of A is favorable, fixing uniquely 
its best value. In the frequently occurring case of a potential 
which is convex without the barrier contribution, i.e., 
U" (x) + (i)~ >0, where (i)b is the barrier frequency, A = (i)b 
represents the optimal choice. 

In that case k(O) turns out to coincide with the low 
temperature limit of the exact rate expression (4.13), 

k(O) = (i)#b e-PQ. 
2try 

( 4.19) 

The transmission coefficient K now incorporates finite tem-
perature corrections of Eq. (4.16). Due to the symmetry of 
U(x), Eq. (2.9) simplifies to 

K(t) = 2(8(x(t») + - 1. (4.20) 
Numerical results for a piecewise harmonic potential are ob-
tained from a stochastic simulation of diffusive motion satis-
fying the equation of motion 

1 ( 2 )112 x=-U'(x)+ - 5, r Pr (4.21 ) 

where 5 is Gaussian noise with (5(t) = 0 and (5(t)5(s» 
= a(t - s). Trajectories x(t) are generated by discretizing 
Eq. (4.21) using the Euler method23 with a time step of 
At(i)~/r= 10- 2 • Initial conditions are sampled from Eq. 
(4.20) using a Monte Carlo procedure. The plateau value K 

is reached after 103_104 time steps. Again, we average lif 
trajectories which requires approximately half an hour cen-
tral processing unit (CPU) time. The transmission coeffi-
cients K are calculated for a fixed barrier height PQ = 15 and 
different (i)b/(i)O' The results are presented in Table I. The 
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exact rate constant is obtained by a numerical integration of 
Eq. (4.13). Again, we find excellent agreement between nu-
merical and exact transmission coefficients. 

v. CONCLUSION 
We have shown how to generalize the powerful reactive 

flux method for numerical evaluation of rate constants to 
cases of arbitrary underlying Markovian dynamics. We have 
illustrated the feasibility of the method by performing reac-
tive flux calculations for a one-dimensional exponential 
jump process and a diffusion process in a double well poten-
tial. The numerical results obtained are in excellent agree-
ment with exact results known in these cases. The present 
formulation is easily generalized to more dimensional jump 
and diffusion processes and allows numerical studies of such 
rate problems with tractable computational effort. We ex-
pect that other situations may be successfully approached 
within the same spirit as e.g., discrete jump processes or non-
equilibrium situations. Also the present ideas might offer an 
interesting alternative to the absorbing boundary method24 

in order to estimate very small transmission coefficients. Re-
placing the step function by a smooth dividing function 
could yield a lower initial value of the reactive flux and lead 
to a larger transmission coefficients. Finally, using the pres-
ent formation, one might be able to generalize the concept of 
a transition state and transition state theory to arbitrary 
Markovian dynamics. 
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