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Quantum-mechanical harmonic chain attached to heat baths.
II. Nonequilibrium properties
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We study nonequilibrium properties of a one-dimensional harmonic chain to whose ends indepen-
dent heat baths are attached which are kept at different temperatures. Using the quantum Langevin
equation approach, we determine the stationary nonequilibrium state for arbitrary temperatures
and coupling strength to the heat baths. This allows us to discuss several typical nonequilibrium
properties. We find that the heat flux through the chain is finite as the length of the chain goes to
infinity, i.e., we recover the well-known fact that the lattice thermal conductivity of the perfect har-
monic chain is infinite. In the quantal case, the heat flux jq is reduced compared with its classical
value j,~, jq ~ (T/eD )'j,~, where T is the average temperature of the heat baths, and where 8D is
the Debye temperature of the chain. Furthermore, we investigate the variance of the displacement
operators and the temperature profile along the chain. In accordance with the infinite thermal con-
ductivity we find a vanishing temperature gradient in the chain except in boundary layers at its
ends.

I. INTRODUCTION

In the preceding paper, ' henceforth referred to as I, we
studied a large quantum-mechanical perfect harmonic
chain to whose ends independent heat baths are attached.
These heat baths induce fluctuations and dissipation in
the chain. In the general case in which the heat baths are
at different temperatures, in I, we set up the quantum
Langevin equations for the operators x„(t), p„(t),
n = 1,2, . . . ,X, of the displacement and conjugate
momentum operators, respectively, of all particles of the
chain. Choosing fixed boundary conditions, we showed
that an arbitrary initial state decays towards a uniquely
determined stationary state. Because then the chain set-
tles down in a Gaussian state, the thermal properties of
the chain are determined by its second moments (x„x ),
(x„p ), etc. In I, we specified then the heat baths being
at equal temperatures so that the chain approaches
thermal equilibrium. We found that in the classical case,
the properties of the chain are independent of the cou-
pling strength between the heat baths and chain whereas
in the quantal case this is only true outside boundary lay-
ers of thickness a8DI(2mT) at both ends of the chain,
where a is the lattice constant, T is the temperature of the
heat baths, and OD is the Debye temperature of the
chain. In the weak-coupling limit, we recovered the stan-
dard expressions obtained from the Gibbs state of the free
chain. In this paper, we investigate the stationary none-
quilibrium state that the chain approaches if the heat
baths are at difFerent temperatures P,WP~.
Thermal properties of a classical perfect harmonic

chain were investigated in detail by Rieder, Lebowitz,

and Lieb. They found that the heat flux is proportional
to the temperature difference T&—TN and not to the tem-
perature gradient (T&—Ttv )/N, as required by Fourier's
law of heat conduction. A simple argument due to
Peierls, shows that the infinite thermal conductivity is
common to all systems in which momentum destroying
Umklapp processes are absent.
In the classical and quantal case, nonequilibrium prop-

erties of one-dimensional harmonic chains were investi-
gated in other models as well. In the approach put for-
ward by Visscher and co-workers heat baths are at-
tached not only at the ends of the chain but to all parti-
cles along the chain. The temperatures of these heat
baths are determined by the requirement that in the sta-
tionary state, no heat flows between each particle and its
heat bath. The action of these self-consistent heat baths
maintain a constant finite temperature gradient in the
rniddle of the chain which leads to a finite thermal con-
ductivity.
A somewhat related quantum chain was studied by

Davies. Here, heat baths are attached only to the parti-
cles at the ends. The coupling between the chain and
heat baths is made of the same order of magnitude as the
coupling between neighboring particles, and then the
weak-coupling limit is considered. The chain is made
nonsupereonducting by coupling neighboring particles
not directly but via intermediate phase destroying virtual
particles.
Bafaluy and Rubi investigated still another model

studied first by Rubin and Greer, who, however, were
primarily interested in chains with impurities; see Sec. VI
for a brief discussion. In these models, at an initial time
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t=0, one divides the infinite chain into two disconnected
parts with one part kept at temperature Twhile the other
part is kept at zero temperature. Then, one connects the
two parts, and lets the chain evolve freely in time. As
time goes to infinity, the chain approaches a stationary
state in which the particles at the far left and right from
the middle of the chain make up two heat baths at
different temperatures. The remaining part of the middle
is in a nonequilibrium state. In the classical and quantal
case, Bafaluy and Rubi derived exact expressions for the
heat flux.
In one dimension, a chain with two heat baths attached

to its ends is closest to an idealized experiment which
measures the thermal conductivity of bulk materials.
Though the perfect harmonic chain is superconducting,
studying the model of Rieder, Lebowitz, and Lieb in its
quantal version, we gain interesting insights into non-
equilibrium properties of large quantum systems.
This paper is organized as follows. In Sec. II, the sta-

tionary nonequilibrium covariance matrix is constructed
and general properties of it are discussed. More
specifically, in Sec. III, the heat flux is determined. The
absence of long-range order is demonstrated in Sec. IV by
means of the mean square of the difference of displace-
ment operators ((xk—x/) &. In Sec. V, the temperature
profile along the chain is discussed. Finally, Sec. VI pro-
vides a summary.

II. NONEQUILIBRIUM COVARIANCE MATRIX

Because the equations of motion of the particles of the
harmonic chain are linear and the fluctuating forces
Gaussian, cf. Eqs. (2.8)—(2.10) of paper I [abbreviated (I-
2.8)—(I-2.10)], the stationary state of the chain is Gauss-
ian too. The matrix of equal time correlation functions
(xk(t)x/(t) &, (xk(t)p/(t) &, etc. , the so-called covariance
matrix, obeys a linear first-order differential equation
whose form is the same in the classical and quantal case;
cf. Eq. (I-3.5). It turns out that the covariance matrix has
a time-independent imaginary part which is determined
by the equal time commutators [xk(t),p/(t)] =i fi5k/. We
shall always split off this trivial contribution. The
remaining real part of the covariance matrix B(t) is
symmetrical and defined by

(xk(t)x/(t) & ( jxk(t),pi(t) } &

B(t)= ( [P/, (t),x/(t)} & (Pk(t)P/(t) &
(2.1)

where ([xk(t),p/(t)} & denotes the symmetrized mean

,'(xk(t)p/(t)+p—/(t)xk(t) &, and where, for example, the
term (xk(t)x/(t) & represents an N XN matrix with the
corresponding elements. The relaxation of an initial state
towards the stationary state is completely determined by
the 2N X 2N relaxation matrix A, cf. Eq. (I-2.15),

0 —1A= (2.2)
g pr

where 0 and 1 are the zero and unit A' XXmatrix, respec-
tively, and where g and r are given by, cf. Eqs. (I-2.16a)
and (I-2.16b),

(g }ki 5k+1, /+ 5kl 5k —l, l

( r )kl 5k/(51k + 5/vk )

(2.3a)

(2.3b)

We recall from I that we measure time in units of the
universe of the half Debye frequency and lengths in units
of the lattice constant. Correspondingly, the heat baths
are characterized by three dimensionless parameters y, A,
and //lp; cf. Eqs. (I-2.12) and (I-2.13). Further, we set
kt/ = 1 so that T=p ' is the dimensionless temperature.
Because the relaxation matrix does not depend on the

state of the heat baths, an initial state relaxes towards a
nonequilibrium state according to the same law as to-
wards an equilibrium situation. In any case, the station-
ary covariance matrix is the unique solution of the inho-
mogeneous matrix equation

A B+B A'=D (2.4)

where the diffusion matrix carries the information about
the state of the heat baths via the temperatures p, and
p/v. It is symmetrical in accordance with the self-
transposedness ofB.
In (I-3.21), we decomposed the diffusion matrix into

two parts transforming evenly and oddly under the ex-
change of the heat baths P,~P/v,
D=D ++D

where
N

D += —,
' g [D'/'/'(m, P, )+D't' (m, P/v)]S, (m)
m=1

(2.5)

N
+ —,

' g [D"/'(m, P, )+D'~(m, P/v)]S2(m), (2.6a}
m=1

D'~~(m, P)=y —5, +—g f, (iv„)
n=1

2 -0X &/ +1('v }
n=1

2 0
,(iv„), m =1,2, . . . ,

n =1

(2.7a)

D ~(l,P)=y—ln Qt/
1/t'

2~ (2.7b)

(iv„)D'~(m, p) =—y—gv„,m =2, 3, . . . ,P „=1 1+yv„f„(iv„)
(2.7c)

D = —,
' g [D'~~(m, P/) D'~ (m, P/v—)]T,(m)
m=1

N
+—,
' g [D"/'(m, P/) D/'/'(m, P~}—]Tz(m} . (2.6b)
m=1

Here, the quantities D' (m, p), D "t'(m, p), m =1,2, . . . ,
are given by, cf. Eqs. (I-B8) and (I-B9a)—(I-B9c),



3280 U. ZURCHER AND P. TALKNER 42

B=B++8 (2.8)

where v„=2rrn /(Ap), g „(co) is the dynamic susceptibil-
ity of the undamped harmonic chain, cf. Eq. (I-2.7), and
OD is an upper cutoff on the frequency distribution of the
heat baths. Furthermore, the matrices S,.(m), i =1,2,
are given by Eqs. (I-3.22) and (I-3.23), and T;(m), i = 1,2,
by Eqs. (I-3.24) and (I-3.25).
Accordingly, there are two distinct contributions to

the covariance matrix: the average thermal equilibrium
state and the deviation thereof,

A .8 ' +8 '
A '=—' g [D' ~( mP t) D—' I'I'(m, P~) ]

m=1

XT,(m), (2.14a)
N

A 8"+8" A'= —,
' g [D" (m, P, ) D—"~(m,P~)]
m=1

XT2(m) . (2.14b)

First, we determine 8 ' . For this purpose we observe
that 8 ' may be represented as

where 8 + and 8 are the respective solutions of

A 8 ++8 + ~A'=D +,
A 8 +8 ~A'=D

(2.9a)

(2 9b) where U(m ) is the unique solution of

D
8 ' =

—,
' g [D' ~(m, P, ) D'~~—(m, P~)]U(m),
m =1

(2.15)

8 +=—,'[B,q(P))+B,q(Ptv )] . (2.10)

In Eq. (I-4.3), B,q was conveniently decomposed into a
weak-coupling contribution 8,' and a correction B,",

8eq 8eq+—eq ~

where 8,' and 8," are the respective solutions of

A.B,' +8,' A'= g D'I'I'(m, P}S,(m),
m =1
N

A 8,"+8," A'= g D"~(m,P)S z(m) .

(2.11)

(2.12a)

(2.12b)

An analogous decomposition applies to 8 as well,

It is our next aim to solve Eqs. (2.9a) and (2.9b) for 8 +
and 8 . The reader who is not interested in technical
details of the construction of the solution may skip the
following paragraphs and may find the result in Eqs.
(2.10), (I-4.3), (I-4.8), (I-4.13), (I-4.14), (2.13), (2.15), (2.17),
(2.19b), (2.25), (2.30), (2.35), (2.36), (2.40), and (2.41). Un-
fortunately, for the general result it is not feasible to con-
dense this chain of equations into one single expression.
We shall discuss simple expressions for particular station-
ary quantities in the following sections.
The inhomogeneity in Eq. (2.9a) consists of half the

sum of two equilibrium diffusion matrices at tempera-
tures p, ' and pz', cf. Eq. (I-4.2). Consequently, 8 + is
given by the respective linear combination of equilibrium
covariance matrices at P& ' and Pz',

A U(rn }+U(m } A '= T ~(m ) . (2.16)

According to Eq. (2.13), we write U(m) in block form,

U(m) =
u, (m) u 2(m)

u,'(m) u, (m) (2.17)

Because T,(m) is symmetrical, u &(m) and u 3(m) are
symmetrical too,

u ', (m)=u, (m), u 3(m)=u 3(m), (2.18)

whereas the "off-diagonal" terms in Eq. (2.17) are
symmetrical by construction. Inserting Eq. (2.17) into
Eq. (2.16) and using Eqs. (I-3.24), we obtain the following
set of coupled matrix equations:

u z(m)+u z(m)=0,

—u 3(m)+u, (m) g+yu z(m) r=0,
u 3(m}+g u, (m}+yr u z(m)=0

(2.19a)

(2.19b)

(2.19c}

Obviously Eq. (2.19b) is the transpose of Eq. (2.19c).
From Eq. (2.19a) we infer the antisymmetry of u z(m ),

g u 2(m)+u 2(m) g+y[r u 3(m)+u 3(m) r]=t, (m) .
(2.19d)

u 2(m) =—u z(m) . (2.20)
8 =8' +8"

X X Z"
This is substituted into Eqs. (2.19c) and (2.19d). Next, we
subtract Eq. (2.19b) from Eq. (2.19c),

Z g.u, (m}—u, (m) g =y[r u z(m)+u 2(m) r] . (2.21}
&x„x,&'

& {Pk xi] &'

&x„x,&"

&[x~ p(I &'

&PkPI &-

& [xk PI I &"
(2.13)

Equation (2.19d) now reads

g u 2(m)—u z(m) g=t, (m) y[r u3(—m)+u. 3(m).r] .
(2.22)

where 8 ' and 8 " are the respective solutions of

The right-hand side of Eq. (2.22) is a bordered matrix,
that is, it has nonvanishing elements in the first and last
rows and columns only,
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[u 3(m)]1k [u 3(m}]N+1—k,N (2.24)

the solution of Eq (2..22) is an antisymmetric Toeplitz
matrix, see Appendix A,

T

[t,(m)—yr u (m)—yu (m) r]
~mk ~11+~1k ~ml ~N+1—m, k ~XI ~Xk ~%+ ]—m, l

+yI5, k[u 3(m)]»+5»[u 3(m)], k
+5Nk[u 3(m)]NI+5NI[u 3(m)]Nk] .

Under the condition that u 3(m) is antisymmetrical with
respect to the reflection about the middle of the chain,
1.e.,

Using Eq. (2.28), we easily find

g, (m)=yP;(m) . (2.32)

The solution of Eq. (2.21) is, however, not unique. We
could add to the solution (2.30) any symmetric matrix
that commutes with g. Because all eigenvalues of g are
nondegenerate, such a matrix must be a function of g,
u, =f (g ). However, u, must vanish as a consequence of
the condition (2.24).
Up to now we expressed u, (m } and u 2(m) in terms of

the as yet unknown quantities P;(m}, which depend on
the elements of the first row of the matrix u 3(m). First
we determine P;(m) by inserting Eqs. (2.25) and (2.30)
into the first row of Eq. (2.19b). This yields

r

[u 2(m)]„= 0, i =j
41—g, I (J

(2.25)
11(m)+ 2+ )t);(m)—p;+1(m)= 5, , (2 33)

and Eq. (2.29) yields the boundary conditions,

P)(m)= —,'[t 1(m) yr—u 3(m) yu 3—(m) r]11,
P;(m)=[t 1(m) yr u—3(m)—yu 3(m) r]1, ,

(2.26a)

i =2, 3, . . . ,N—1 . (2.26b)

where the quantities )t, depend on the label m,
)}I);=/;(m). As shown in Appendix A, the quantities
P;(m), i =1,2, . . . , N—1, are given by

$0(m) =It)N(m) =0 . (2.34)

(e —~)i
—m)5 —(I +m)5)1

2y sinh(5)
(2.35)

That is, P;(m) are the solutions of linear second-order
difference equations. Using standard methods, we find in
the limit N~ ~,

Using Eq. (2.23), we easily obtain

P, (m)=5, —y[u, (m)]„, i =1,2, . . . , N—1 . (2.27)

where the quantity 5 is defined by

1 . 5—=2 sinh
y 2

(2.36)

+5Nk~N+1 —I( ) 5NINN+) —k(

where we defined

(2.28)

With Eq. (2.25), for the inhomogeneity in Eq. (2.21) we
find the expression

y[r u 2(m)+u z(m) r]kl

y [51kll—1(m } 51l0k —1(m }

Now with Eqs. (2.25) and (2.30) the matrices u z(m) and
u, (m) follow imtnediately, and with Eq. (2.19b) the ma-
trix u 3(m) follows. We note that this solution fulfills the
symmetry relation Eq. (2.24), which we had to anticipate
in order to obtain the solution of Eq. (2.22). Finally, with
Eqs. (2.15), (2.17), (2.19b), (2.25), (2.30), (2.32), (2.35), and
(2.36) the matrix 8 + is completely determined.8" can be obtained along the same lines as 8' .
Analogously to Eq. (2.15),8 " may be represented as

y, (m) =yN(m) =0 . (2.29)

Hence the right-hand side of Eq. (2.21) is antisymmetrical
with respect to the reflection along the diagonal and
symmetrical with respect to the reflection along the
crossdiagonal. In Appendix B, we show that one solution
of Eq. (2.21) is an antisyinmetric Hankel matrix, i.e. ,

B"=
—, g [D" (m, P ) 1D" (m, PN)]V—(m), (2.37)
m=1

where V(m), m =1,2, . . . , are the solutions of
A V(m)+ V(m) A'=T3(m) with Tz(m), m =1,2, . . . ,
as given by Eqs. (I-3.25a)—(I-3.25c). We find

i+j ~N
[u 1(m)],"= 0, i +j=N+1

I +j N+2'(2.30)
V(m) =

v )(m)
0

0
v 3(m) (2.38)

Here, v, (m ) and v 3(m ) are antisymmetric Hankel ma-
trices

The quantities g;—:P, (m), i =1,2, . . . ,N—1, are deter-
mined by the inhomogeneity in Eq. (2.21),

g, (m}=y[r.u 2(m)+u 2(m). r], ,+„ i =1,2, . . . ,N—2,
v, (m) =h(m —1),

v, (m)=—h(m —2)+2k(m —1)—f(m),

(2.39a)

(2.39b)

(2.31a) where

,(m)= —,'y[r u 2(m}+u 2(m).r],N . (2.31b) [h(m)]kl 5k+I,m+1 52(N+))—k—I,m+1 (2.40)
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z"=0 .
(2.41b)

(2.41c)

The decomposition of the equilibrium covariance ma-
trix into a part depending on D'~ (m, P), m =1,2, . . . ,
and another one depending on D"~(m,P), m =1,2, . . . ,
corresponds to a decomposition into a bulk contribution
and boundary layers at both ends of the chain. These
boundary layers follow from the matrices x eq and y,'q be-
ing of Hankel type and the decrease in magnitude of the
quantities D "~(m,P) with increasing label m; cf. Eqs. (I-
C10)—(I-C13). While the quantities D'~~(m, P) decrease
similarly as D" (m, P), their contributions to x,'q and y,'q

I

and where we defined h(m)=0 for m ~0. That is, the
matrices f(m) have nonvanishing matrix elements on the
(N—m)th cocrossdiagonals only. Inserting Eqs. (2.39)
into Eq. (2.37},we obtain

N
x "=—' g [D"~(m+ 1,P&)—D"~(m+1,P&)]f(m),

m=1

(2.41a)
Ny" =—,

' g [
—[D"~(m +2,P, )—D"~(m +2,P&)]

m=1

+2[D" (m + 1,P& )—D "~(m + 1,P& ) ]
—[D"~(m,P&) D "~(—m, Ps )] If(m),

are appreciable in the whole chain because these matrices
have parts which are of Toeplitz type; cf. Eqs. (I-4.9) and
(I-4.10a).
It is interesting that in the nonequilibrium state, an

analogous decomposition emerges. The differences
[D"~(m,P, ) D—"~(m,13~)], m =1,2, . . . , determine
boundary layers in the covariance of displacement and
momentum operators (xkx& ) and (pkp& ),while they
do not contribute to the mixed moments ( [xk,pI j ).
These latter moments are completely determined by the
differences [D'I'~(m, P, ) D' —(m, P&)], m =1,2, . . . ,
which govern also the moments (x„x&) and (pkpI)
far from the ends of the chain. Hence the covariance ma-
trix Bmay conveniently be decomposed into a bulk and a
boundary layer contribution

B=B'+B", (2.42)

B'=B++B' = X ++X z'
(2.43a)

B"=B'++B"= X ++X
0

0

x +-+x— (2.43b)

The boundary layers have a particular simple form.
Using Eqs. (I-4.13), (I-4.14), (2.40), and (2.41) we find

where B' and B" are defined by, cf. Eqs. (I-4.1), (I-4.3),
(2.8), (2.13), and (2.41c),

X —X ++X
N N

g D"~(m+1,P&)i(m)+ g D"~(m+1,P~)i(m}, (2.44a)
m=1 m =1

=x ++x-
N

g [—D" (m +2,P&)+2D" (m +1,P&)— D~(m, P&)]i(m)
m=1

+ g [ D "I'(m +2—,13&)+2D"I'(m +1,13&) D" (m, P&)l—i(m),
m=1

(2.44b)

where the matrices i(m) and i(m), m =1,2, . . . , have
nonvanishing elements only in their upper and lower
(N—m)th cocrossdiagonals, respectively,

while all other moments remain finite in the limit
QD—+ oo.

[i(m)]kI =—,'[h(m) +f(m)]kI=5k+,

[i(m)]kI =—,'[h(m) —h(m)]11=~2~x+i~—k I, +& . —

(2.45a)

(2.45b)

III. HEAT FLUX
The heat fiux across a plane separating the (i—1)st

particle from the ith particle is proportional to the work
done on the ith particle by its left neighbor,

It follows that in the nonequilibrium state, the boundary
layer on each side is the same as in the equilibrium situa-
tion in which both heat baths were at the corresponding
temperature. More specifically, all divergencies in none-
quilibrium states are already present in equilibrium
states, i.e., the diverging moments are

(2.46)

2 2

(j~h);, ;= ( [(x;,—x;) p;] )= (x, @, ) (3.1)

(the subscript ph denotes that the parameter to which it
is affixed has the correct physical dimensions). We define
a dimensionless heat flux by j =4jph/co+ From Eqs.
(2.15), (2.17), (2.25), (2.37), and (2.38) we find that the
heat flux is constant along the chain j. . .- =j. The con-
stancy of the heat flux was to be expected because the
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sources and sinks of heat are placed at the ends of the
chain. Using the quantum Langevin equations (1-2.8), we
relate the heat flux to the work done by the fluctuating
forces on both particles at the ends,

j= lim ( IE, (t),p, (t)l )—y(pf ) 0 ()-
=—[»m & [EN(t) pN(t) l ~ yap% ~] . (3.2)

0. -I-—
In accordance with the discussion given in Sec. II, the
heat flux is completely determined by the quantities
D'~~(m, P), m =1,2, . . . , 4

Nj=—,
' g [D'~~(m, P&) D'—t'~(m, Ptv)]P&(m) .
m=1

(3.3)

Here, P, (m) are elements of Toeplitz matrices which read
in the limit N~~, cf. Eq. (2.35),

(3.4)

FIG. 1. Partial contributions of one heat baths at inverse
temperature P to the heat flux as a function of P for y = 1 and
A= 1.

where 5 is related to the damping constant by Eq. (2.36).
Similarly, in Appendix A of I, we computed the quanti-
ties D'~~(m, P), m = 1,2, . . . , in the thermodynamic lim-
it. Hence, in Eq. (3.3), we can set the upper limit of sum-
mation equal to infinity,

j(p)&j(p), p&p. (3.10)

This inequality ensures that heat flows from the hotter to
the colder end of the chain, as it should be.
For very high temperatures fip~O, j(p) approaches its

classical value (P ' =T),
j= g [D't' (m, p& ) D' t'(m, p—z )]e™.1

2P m=1
(3.5) lim j(P)=p(y )T,

A~O
(3.11)

where

j(p)= g D't't'(m, p)e™.1

2V m=1
(3.7)

Using Eqs. (2.7a), (I-A13) and (I-A14), it is readily shown
that

Thus the heat flux through the chain is finite as the
length of the chain goes to infinity, and we recover the
well-known fact that the thermal conductivity of the per-
fect harmonic chain is infinite.
The heat flux may be decomposed into two contribu-

tions stemming from the contributions of the different
heat baths,

(3.6)

where
—5

p(y) =
y

(3.12)

so that then the dependence on the temperature and
damping constant factorizes. Although this is no longer
true in the quantal case, the numerical evaluation of the
sums clearly indicates that the dominant dependence on
the damping constant is still determined by the same pre-
factor p(y); cf. Fig. 2. At constant temperature, p 'j de-
creases smoothly as the damping constant increases. Fig-
ure 2 shows further that this decrease is not uniform over
the whole temperature range but becomes smaller as the

—5 l 1 oo oo

j(p)= ——+2 g e "—g e
2(x n

—2$ 1 oo

4 sinh
y P„, 2 1—e +si '

n =5.0
=1.

where the quantities a„are related to the Matsubara fre-
quencies,

2m. . &n
n =2sinh

2
(3.9) I

4
In general, one cannot analytically evaluate these sums.
A numerical computation shows that for arbitrary damp-
ing constants, j(p) is a monotonically decreasing function
of P, cf. Fig. 1,

FIG. 2. Partial contribution of one heat bath to the heat flux
divided by its classical damping dependence as a function of P
for three different values of the damping constant and A= 1.



3284 U. ZURCHER AND P. TALKNER 42

temperature is increased and vanishes in the classical lim-
it. In the zero-temperature limit lip~~, j(p) ap-
proaches a finite value j( oo ). This property is due to
quantal fluctuations which are present even in the ab-
sence of thermal excitations. In this respect, quantal flu-
ctuation mimic a finite temperature Tz, which we define
by

j(~ )=P(y)Ts . (3.13)

T& depends weakly on the damping constant. From Eq.
(3.8), with reasoning similar to that in Appendix C of I,
we find

(3.14a)

(3.14b)

From Eqs. (3.12) and (2.36), we easily find the asymp-
totic behavior of the prefactor p(y ),

p(r) r-r (3.15a)

p(y)——,yahoo .1 (3.15b)
y

At y =&3/2, p(y ) has a maximum; cf. Fig. 3. That is, in
both the weak-, and strong-coupling limits the energy
transfer between heat baths and harmonic chains goes to
zero. The strong-coupling limit reminds us of properties
of a highly absorbing dielectric medium which, according
to the Kramers-Kronig dispersion relations, is highly
reflecting as well.
Because the dependence of the heat flux on the damp-

ing constant is already almost entirely described by the
prefactor p(y), we restrict the discussion of the tempera-
ture dependence of the heat flux to small damping con-
stants y &&1.
(i) Both heat baths at high temperature. For tempera-

tures much above the Debye temperature T; &&OD,
i =1,%, we find

(3.16)

which agrees with the finding of Rieder, Lebowitz, and
Lieb. Hence the heat flux through the classical perfect
harmonic chain is proportional to the difference of the
temperatures of the heat baths T~ T~ and not to the
gradient (T,—Tz)/N.
(ii) One heat bath at high and the other at low tempera

ture. For, say, T, )&OD and T~&&OD, an asymptotic
analysis reads

(3.17)

with Ts(y ~0) as given in Eq. (3.14a). That is,
quantum-mechanical fluctuations induced by the heat
bath at the lower temperature reduce the heat flux by a
constant amount.
(iii) Both heat baths at low temperatures. We assume

T; &SD/(10ir). For a sinall teinperature difference, we
find in leading order

3
4mT (3.18)
D

where T=(T, +T~)/2 is the average temperature and
j„ is the classical heat flux; cf. Eq. (3.16). Thus in the
quantal case, the heat flux is strongly reduced compared
with its classical value.

IV. COVARIANCE OF DISPLACEMENT OPERATORS

First we shall briefly recall the main results for the
square of the difference of displacement operators
cr (k, I )= ( (xk—xt ) ) in thermal equilibrium (cf. Sec. IV
of I). In the classical case, cr, (k, 1) is independent of the
damping constant and grows linear with the separation
lk —ll, cf. Eq. (I-4.22),

(4.1)

In the quantum regime, the quantity cr,q(k, l) depends on
the damping constant inside boundary layers of thickness
fiP/rr at both ends of the chain. Outside these boundary
layers, i.e., for fiP/it&k, I &N fiP/ir, we fi—nd two
different regimes defined by the separation lk —ll, cf.
Eqs. (I-4.23),

—[ln( Ik—ll )+2]
p(p)

o, (k, l)= .
lk —llT+—»

(4.2a)

(4.2b)

0.0
8 10

According to Eq. (2.10), the part o +(k, l) of o(k, 1) that
transforms evenly under the exchange of the heat baths is
determined by its equilibrium expressions,

o+(k, 1)=—,'[o,q(k, l)]ti +o, (k, l)Iti ] . (4.3)
FIG. 3. Dependence of the partial contribution of one heat

bath at T= 1 to the classical heat flux as a function of the damp-
ing constant.

Hence the oddly transforming part o (k, 1) remains to be
determined.
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Because x =x ' +x " is antisymmetrical with
respect to the reflection about the middle of the chain, cf.
Eqs. (2.13), (2.15), (2.17), (2.30), (2.40), and (2.41a), k and 1

may be restricted to k, l &N/2. Together with Eqs.
(2.32) we obtain cr (k, 1)= ,' (—T,—TN )

(k—1)
y' k—I (y . (4.7)

For large damping constants 1/y=5«1, we distin-
guish two cases. First, for k +I & y, we set the exponen-
tial function in Eq. (4.5) equal to unity,

'pN ]( &+I ~ For k +1 & y we find2

+[D "t'(k +1,P, )—D "~(k +1,PN )], (4.4) o (k, l)= (T,-T,—) e-'"+' 1-'" k 1&—y
(k—1)
r'

o (k, 1)=2( T&—TN )sinh2 (k—1)—e

(4.5)

For small damping constants, 1/y =exp(5/2))) 1, we
find in leading order

o (k, l)= —,'(T,—TN)y ', k &1 . (4.6)

That is, cr (k, l) decreases exponentially with a rate
determined by the smaller one of the two particles labeled
k and l.

where the quantities D' (m, p) and D" (m, p) are given
by Eqs. (2.7a)—(2.7c) and Pz(m ) by Eqs. (2.35) and (2.36).
(i) Classical limit. If both heat baths are at very high

temperatures tip; «1, i =1,N, the only nonvanishing
diffusion matrix element is D' (l,p)=yT; cf. Eqs. (I-
3.16a) and (I-3.16b). In this case, from Eq. (4.4) we find

lim P„(m)=5&r~0 (4.9)

Inserting Eq. (4.9) into Eq. (4.4) and using the low-
temperature approximation of Appendix C of I, we find

(4.8)

Hence, in the classical case, the quantity o (k, l) van-
ishes both in the weak- and strong-coupling limit.
(ii) Quantal limit In .this case, we assume that both

heat baths are at very low temperatures fig, , fipN &)1.
Consequently, the temperature difference is very small
too. We investigate o (k, 1) only outside the boundary
layers, i.e., for k, 1 )Rp; /m. , so that the quantities
D"~(m,p), m =1,2, . . . do not contribute to Eq. (4.4).
We can analytically evaluate the series in Eq. (4.4) for
small and large damping constants.
For small damping constants, from Eqs. (2.35) and

(2.36) we have

—32y —(k—1)2& 2
'5
exp

1

2m(k +1)
rip,

5
2n(k +1)

ik—li & (4.10a)

o (k, l)= '

Sy2
'3

4m
exp — I

Rp)
exp

N

477
1 k 1

I
ApN

'
rr

(4.10b)

For large damping constants, from Eqs. (2.35) and (2.36) it is readily shown that

Pl k
k, m)k.

The quantity o (k, 1) then has the same dependence on k and 1 as in Eqs. (4.10),

(4.11)

8—(k—1)
3

2m(k +1)
Rp,

'3
exp

2m.(k +1) Ap;
(4.12a)

o (k, l)= '

fi2— 4m.
I

Ap; tip,
1, k—1&4~ ~p;

N
(4.12b)

In any case we find only small corrections to the average
thermal equilibrium contribution.
Finally, we come back to the discussion of the covari-

ance matrix 8 in the weak- and strong-coupling limit. In
Sec. III, we showed that for all temperatures, the heat
flux through the chain vanishes in the weak- as well as in
the strong-coupling limit. From Eqs. (4.6), (4.7), and (4.8)
we see that in both limits the classical chain is in the
average thermal equilibrium state, for A—+0,

limB= lim —,'[B, ~p+B, ~p ],r-O r-o'
lim B= lim ,'[B, ~& +B, ~& ] .—p, — p

(4.13)

Strictly speaking, in the quantal case this is true only in
the weak-coupling limit, cf. Eqs. (4.10), while in the
strong-coupling limit 8 approaches a finite value, cf.
Eqs. (4.12), whose magnitude is infinitely small.
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V. TEMPERATURE PROFILE lim &p„')=T .$~0
(5.2)

X & kk('Vn ) X X k, k+i('V }n
1 4
P n =1

2 X +k, k—1(1v
n =1

+ [—D "l'(2k + 1,P)+2D "~(2k,P)
—D "~(2k—1,P)] . (5.1)

We recall that these expressions are obtained for k &X/2
in the limit N~oc. Only in the classical limit this ex-
pression becomes k independent,

Even if both heat baths are at equal temperature
p, =plv, the kinetic energy of a particle varies with its po-
sition in the chain according to Eqs. (I-4.7b), (I-4.13b),
and (I-4.14),

It is easily checked numerically that for every fixed
damping constant, &pk ) decreases monotonically with
temperature,

&Pk)~g&&Pk) p, ~&8 (5.3)

In nonequilibrium states. this one-to-one correspon-
dence can be used to define a local temperature at each
site k,

(5.4)

where &pk ) is the second moment of momentum at the
site k in the considered nonequilibrium state. We em-
phasize that in Eq. (5.4), the dependence on the particle
label k comes about from both gk and &p„). In the none-
quilibrium state, from Eqs. (2.8}, (2.10), (2.13), (2.15),
(2.17), (2.19b), (2.25), (2.30), (2.32), and (2.41b) we find

)= -'[g (p )+g (pN)]+ [D'»(2k —l,pi)—D»(2k —l,plv)]— g [D' ~( mp )iD' »(m—,pz)]pz k l(m)1 1

2y 2f
+—,

'
I
—[D" (2k + l,p, )—D'~(2k + l,plv)]+2[D "l'(2k, p) D "l'(2k, 1—3~ )]
—[D' (2k—I,pl)—D" (2k—1,plv)] j, (5.5)

where the pk(m)'s are given by Eqs. (2.36) and (2.37).
An analytic result for the temperature profile can be

obtained only in the high-temperature (classical) limit. In
this case, the only nonvanishing element of the diffusion
matrix is D'»(1,P)=y T, cf. Eqs. (I-3.16), and thus from
Eq. (2.5) we recover the result obtained by Rieder, Le-
bowitz, and Lieb,

1
&pi) =—T(1 r}=T1 i(Tl TN) y' (5.6a)

—(2k—1)6&pk) =—T(k r)=-,'(Ti+Tw) l(Tl Tlv)— —
y'

1(y)= 1 (5.7)

k =2, 3, . . . ,—. (5.6b)' ''''' 2

This is a quite unexpected result because the kinetic tem-
perature drops below the average temperature near the
hotter end and raises above near the colder one. The ki-
netic temperature is constant in the middle of the chain
and varies only over a length 1(y ) near the ends,

t

and T, =0.1 and T~=0.02, and determine numerically
the temperature profile from Eqs. (5.4) and (5.5) for fi= 1.
The results are represented in Figs. 4(c)—4(f).
For small damping constants, we see in Figs. 4(c) and

4(e) that quantal fluctuations enhance the temperature as
we move from the middle of the chain towards its ends.
The enhancement is smaller near the end which is cou-
pled to the heat bath held at the higher temperature.
For large damping constants, the temperature profile

has more structure. If the temperature of one heat bath
is high while that of the other one is low, the temperature
increases as we move from the middle of the chain to-
wards the colder end while it starts to decrease towards
the hotter one but increases for the second nearest parti-
cle from the end; cf. Fig. 4(d). If the temperatures of
both heat baths are low, the temperature starts to in-
crease towards both ends of the chain and drops near the
colder end; cf. Fig. 4(f}. As in the classical case, a deeper
understanding of these strange findings is lacking. The
definition of kinetic temperature has been ruled out as a
possible reason by numerical computation in Refs.
10-12.

which approaches its limits as

1
y—+0

1(y) . 41n(1/y) '

P—+ 00 (5.g)

In Figs. 4(a} and 4(b), the temperature profile is shown for
a small (y =0.1) and a large (y = 10.0) damping constant,
respectively.
In the remaining temperature regimes, we choose typi-

cal pairs of temperature, namely T, =10.0 and T&=0.1,

VI. SUMMARY AND CONCLUSIONS

In this paper, we investigated in detail stationary prop-
erties of a one-dimensional quantum-mechanical harmon-
ic chain in a nonequilibrium state. We started from an
algebraic equation for the matrix of the second moments
which was derived in the preceding paper where primari-
ly thermal equilibrium was considered.
In thermal equilibrium, in accordance with the predic-

tions of equilibrium statistical mechanics, we find that
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thermal properties of the particles outside boundary lay-
ers at both ends of the chain are completely determined
by the Gibbs state of the free chain. Inside these bound-
ary layers properties of the particles depend both on the
temperature and coupling strength between the chain and
heat baths.
For a stationary nonequilibrium state, the covariance

matrix can be decomposed into contributions from the
average thermal equilibrium and deviation thereof. Both
contributions have parts which vanish we11 inside the
chain. In thermal nonequilibrium, the boundary layer at
each end is the same as in thermal equilibrium if both

heat baths were at the temperature of the heat bath at
that side. The boundary layer contributions vanish in the
classical limit. The deviations from the average thermal
equilibrium state determine the moments (x, Jp; ),j =1,2, . . . , which are constant along the chain. Most
interesting is (x,. Ip, ), which is proportional to the heat
flux through the chain. We find that the heat flux ap-
proaches a finite value as the length of the chain goes to
infinity. That is, we recover the mell-known fact that the
thermal conductivity of a harmonic crystal is infinite. If
both heat baths are at very low temperatures, the heat
flux is strongly reduced compared with its classical value.

(a) (b)
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FIG. 4. Temperature profile along the chain for W= 1 for di6'erent values of the dimensionless temperatures and damping constant:
(a) Tl =200 Ty =50 y =0.1 (b) Tl =200 T~ =50, y = 10.0; (c) Tl = 10.0 Tp' =0.1 y =0.1' (d) Tl = 10.0, T„=0.1, y = 10.0; (e)
Tl =0.1, T~=0.02, y=0. 1; (f) T) =0.1, T~=0.02, y=10.0.
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For large separation ~k—l~, the mean square of the
difference of displacement operators ( (xi,—xi ) ) is
determined by the contribution from the average thermal
equilibrium state, ((xk—xi) ) =T~k —1~, where
T=—,

' ( T, + TN ) is the mean temperature of the heat
baths. This absence of long-range order is common to all
one-dimensional systems with short-range forces. Final-
ly, for all temperatures, the mean kinetic energy defines a
local temperature at all sites. If the temperatures of the
two heat baths are different, we find in accordance with
the infinite thermal conductivity that the temperature is
constant inside the chain. That is, similar to the Kapitza
resistance between dissimilar substances at low tempera-
tures, the temperature varies only near the ends of the
chain.
The deficiencies of the harmonic approximation are

well known and for classical systems have been removed
by different means. Most analytical work was done on
isotopically disordered harmonic chains, i.e., chains with
randomly varying mass of the particles. For fixed con-
centration of impurities, the thermal conductivity k is in-
vestigated as a function of the length X of the chain. For
a chain with fixed ends one finds k ~N' and for a chain
with free ends A, o-N ' . ' ' The latter tells us that a
disordered harmonic chain is a poorer heat conductor
than ordinary bulk material. These results are in good
agreement with numerical calculations. " In chains with
nonlinear interactions evidence for Fourier's law of heat
conduction was found numerically in Refs. 10—12 and 16.
Neither in disordered nor in nonlinear quantum sys-

tems has the heat flux been investigated up to now. We
expect that quantum-mechanical interference enhances
the effect of disorder which might lead to a normal heat
conductivity. It is therefore important to study in detail
quantal versions of isotropically disordered harmonic
chains. Generalizations to non-Ohmic heat baths with
frequency-dependent damping and the treatment of
finite-size effects are straightforward.
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(b )ln (b )N+)—n, N (A3b)

Hence only X—1 quantities determine b. Because we are
looking for antisymmetric solutions,

X = X (A4)

Xi—l,j Xi + l,j +Xi,j +1+Xi,j—1 b&j (A5)

Using the antisymmetry of x, we find for i =j,
—2(x, 1,+x;+, ;)=b,; .

Hence, for i =2, 3, . . . ,X—1,
i + l, i Xi—l, i Xi, i —1

(A6)

(A7)

i.e., the elements on the first codiagonal are identical.
From Eq. (A5) we find for i =1,N,

—1$X12—~ u11 (A8a)

l l
N—1,N 2 uNN (A8b)

which is in accordance with Eq. (A3b) because
N—I,N X )12'
We proceed further by induction. We show that ele-

ments on the nth codiagonal are identical assuming that
the same holds for the n 'th codiagonal n ' & n. Since it
has been shown for the first one, the proof is then com-
plete. That is, we assume

I
Xi, i + n' Xi—1, I—1+n'~

We set j =i + n —1 in Eq. (A5) and obtain

(—x;-1,;+.-1+x;,, +. )

(A9)

+ ( r l+, i + ((+n —2)+Xi, i +1+(n—2)) bii+n —1,

the solution x of Eq. (Al) is uniquely defined.
In component form, the matrix equation (Al) reads

[(x), =x, , (b), =b; ],weset
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APPENDIX A: TOEPLITZ MATRIX

We seek to find the solution of the matrix equation

Fori =2, 3, . . . , N—n —1,
(—x;, ; „,+x;;+„)

+( Xi + i (+((n+—2) +Xii+ 1+(n—2,) )
Using Eq. (A9), we infer

(A 10)

(Al 1)

g.X—X.g=6, (A 1) &
—l, i—1+n Xi, i +n (A12)

where g is the tridiagonal matrix

(g)J =—5, + (,+25~—6; (A2)

(b),„=(b)„,, (A3a)

and where b is a bordered matrix, i.e., it has nonvanish-
ing elements only in the first and last rows and columns,
which is symmetrical with respect to the reflection along
the diagonal and antisymrnetrical with respect to the
reflection along the crossdiagonal,

i.e., the elements on the nth codiagonal are identical. For
i =1,%+1—n, we find

X1,1+n ~1n

XN—n, N bN +1—n, N

(A13a)

(A13b)

which is again compatible with Eq. (A3b) because
XN—n, N XN +1—n, N'
As a summary, we proved that the antisymmetric solu-

tion of (A1) is a Toeplitz matrix,
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0
0

~ ~ ~ ~ ~ ~ ~ ~ ~F2 4N —2 ~N —1

(A14)

N—2
4N—2

—42
—42 0

0

where its elements are given by the elements of the bor-
dered matrix

(A15a)

(A15b)

crossdiagonal,

(b )1„=(b)

(B2a)

(B2b)

APPENDIX 8: HANKEL MATRIX

Hence N—1 quantities determine b. Under the addition-
al assumption that x is symmetrical,

Again, we consider the matrix equation
X =X (B3)

gx xg b (B1)
it follows that x is determined only up to an arbitrary
function of g,

where g is the tridiagonal matrix as given in Eq. (A2) and
where b is now a bordered matrix which is antisymmetri-
cal with respect to the reflection along the diagonal and
symmetrical with respect to the reflection along the

I

x'=x+f(g) . (B4)

Here, we verify that a particular solution x is of Hank-
el type,

02 4N —1 0

4N —1

(B5)

4N —1

0
0 4N —1

3

i.e., it has identical elements on the cocrossdiagonals.
The calculation is straightforward. In component

form, the matrix equation (Bl) reads [(x );~ =x;~,
(b), =b; ]

I

Both sets of parentheses vanish since they are differences
of elements of the matrix x of the same cocrossdiagonal.
Next, we set i=1,
X1,N+1—(n —1) ( 2,N—(n —1) X1,N+1—(n—1) )

I 1,J I + 1,J 1)J—1 I,J + 1 lJ

For j =%+2—i—n, we find
i —1,N + 2—( I —1 )—( n + 1 ) rNX2 —i+—( n + 1, ) )

(B6)

For n =2, 3, . . . ,X—1, we have
1 %—n 1,.V+1—n

b1,N+1—n (B9)

(B10)
+ ' i +1,N+2—(I +1)—(n —1) i,N+2—I—(n —1)~t—x +x

=b; N+2, „. (B7)
Inserting the explicit form of the Hankel matrix x,
P„=(x))N+) „,cf. Eq. (B5), we find

We set i =2, 3, . . . ,X—n, and obtain
Xr —1,N + 2—( t —1 )—( n +) )+rXN2 +—&

—( n ,+ 1 ) )

+ ( i+X1, N2—+(i + 1 )—f n —) )+Xi,N + 2—i—( n —1 ) )

(B&)

g„=b +)1, 1) =2, 3, . . . ,X—1

For n=1 we have
x1,N—1 x 2N b 1N

Using x, n =xN+, „N we find

(811)

(B12)
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—& s.X1,N—1
—2~1% .

It follows that

+N—1 z™1N

Similarly, for j =N—i +n,
i—1,N—(i—1)+(n +1) & ,N—i'+(n +1)

(813)

(814)

(— „+ „,)+ „,=b „.
For n =2,3, ,N—1, we have

+X,n +1 ~Nn

Using Eq. (85), we find

g„=—bNN „, n =2,3, . . . , N—1.

(817)

(818}

(819)
+( Xi+ i,N—i{+1) +( n+1)++iN , i +—{n+1) br, N—i+n '

(815}
We set i =n, n + 1, ,N—1,

Xi—1,N—(i—1)+(n+1)++i,N—i+(n+1)}

For n= 1,
—1L+%2 z ~%1

and it follows that

XN—1
—

2 ~N1 ~

(820)

(821)
+( +i+I,N—(i+1)+(n+()+Xi N—i+(n+1)) (816)

As above, both sets of parentheses vanish. Next, we set
i=N,

Note that Eqs. (819) and (821) are compatible with Eqs.
(811) and (814), respectively, because b is antisymmetri-
cal with respect to the reAection along the crossdiagonal.
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