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Num«ical test of finite-barrier corrections for the hopping rate in a periodic potentiai
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It is demonstrated that a recent finite-barrier expansion for jump rates accounts quantitatively for
the observed discrepancy between numerically determined exact rates and the Kramers estimates of
these rates.
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There has been recent interest in the hopping rate of a
particle in a periodic potential which is coupled to a heat
bath. Ferrando, Spadacini, and Tommei [1] have ob-
tained a numerical solution for the jump rate out of one of
the wells as a function of the damping and the height of
the barrier separating between wells. They have also com-
pared the numerical solution with their analytical solution
for the escape rate of a particle trapped between two
symmetrically displaced barriers. The analytic theory is
an extension of the Kramers [2] turnover theory developed
by Mel'nikov and Meshkov [3] and by Pollak, Grabert,
and Hanggi [4,5].

There is very good qualitative agreement between the
exact numerical results of Ferrando, Spadacini, and Tom-
mei and the analytic theory. However, there is also a no-
ticeable quantitative discrepancy which becomes larger as
the barrier height is lowered. One can think of a few
reasons for this difference. The theory used is really
correct only for a particle in a single well trapped between
two barriers. It is not "exact" for the periodic potential.
It is also true that the Kramers turnover theory is really
an asymptotic theory valid only for high barriers. The
fact that agreement between theory and numerical experi-
ment improves as the barrier height increases suggests the
latter possibility.

The purpose of this Rapid Communication is to quanti-
fy this assertion and show that the recent finite-barrier ex-
pansions for the decay rate developed in Refs. [6-9] leads
to excellent agreement between the theoretical expression
and the numerical result. The finite-barrier expansion for
the decay rate has thus far been developed only for the
moderate to strong damping regime also known as the
spatial diffusion regime so that this paper will deal only
with this range. Finite-barrier expansions for the rate in
the low-damping-energy diffusion regime are not known.

The hopping dynamics of the particle with mass m,
coordinate x, moving under the influence of the potential
U(x) are assumed to be governed by the Langevin equa-
tion:

mx+ +mrtx =g(t) .
dU(x)
dX

The Gaussian random force has zero mean and is &
correlated at temperature T with the friction g
[(g(t)g(r)) =2mkttTrtb(t —r)]. Ferrando, Spadacini,

and Tommei [1]use the symmetric infinite chain potential

U(x) =—A cos 2Ãx (2)

which has wells at x/a =0, + 1,~ 2, . . . and barriers at
x/a = ~ 2, + 2, ~ 2, . . . . The height of the barrier
relative to the well bottom is

V~ =22 .

The barrier frequency n~ is seen to be
r i )/2

2z
N

a m

(3)

(4)

Ferrando, Spadacini, and Tommei also define a reduced
barrier parameter g and friction constant y as

I/2
q Vtg=—~ pv ~

x—= (5)

(a2+ 1 ) I/2

The depopulation factor Y [3-5] is unity in the spatial
diffusion regime and so need not be considered any further
here.

The expression for the rate given in Eq. (6) is based on
the first term of a steepest-descent estimate of the parti-
tion function for the particle trapped in the well and a
steepest-descent estimate of the barrier dynamics and is
thus denoted with a 0 subscript. The "large parameter" is
the reduced barrier height PVt. To obtain the first correc-
tions for the well and barrier dynamics one must expand
the potential around the well and the barrier, respectively:

The expression for the rate of escape of a partic1e
trapped in a bimetastable potential (one well, two sym-
metric barriers, and equal barrier and well frequencies)
derived in Ref. [1] is

CO~ (6)

The Kramers [2] friction-dependent barrier frequency ).~
1s
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TABLE I. Comparison between analytic finite-barrier corrections and numerically exact results for
the hopping rate.

yb

1.41
2.00
3.00
4.47
6.32
8.16
9.00
9.50
10.0
10.5
1 1.0
14.1

5.102 x 10-3
4.268 x 10
3.274 x 10
2.389 x 10
1.761 x 10
1.388 x 10
1.265 x 10
1.201 x 10
1.143 x 10
1.091 x 10
1.043 x 10
8.188x 10

1- d

4.721 x 10
3.914x 10
2.951 x 10
2.120x 10
1.548 x 10
1.216x 10
1.106x 10
1.050 x 10
9.986 x 10
9.523 x 10
9.101 x 10
7.132x 10

PT'
0.0749
0.0833
0.0956
0.1071
0.1146
0.1182
0.1194
0.1199
0.1204
0.1208
0.1211
0.1226

P)v '

0.0747
0.0829
0.0987
0.1126
0.1210
0.1239
0.1257
0.1257
0.1263
0.1271
0.1274
0.1290

1.41
1.69
2.58
4.47
6.32
9.00
10.0
1 1.0
14.1

7.916x 10
7.547 x 10
6.515x 10
4.907 x 10
3 872x10
2.920 x 10—s

2.667 x 10
2.453 x 10
1.957 x 10

7.777 x 10
7.412 x 10
6.388 x 10
4.795 x 10
3.772 x 10
2.837 x 10
2.589 x 10
2.380 x 10
1.896 x 10

0.0165
0.0169
0.0183
0.0216
0.0242
0.0268
0.0275
0.0280
0.0291

0.0176
0.0179
0.0195
0.0228
0.0258
0.0284
0.0293
0.0298
0.0312

'g is the reduced barrier height [cf. Eq. (5)].
"y is the reduced friction constant [cf. Eq. (5)].
'I p is the escape rate of a particle trapped in bimetastable potential [cf. Eq. (6)].
I" is the numerically exact hopping rate in a periodic potential adapted from Ref. [1,16].
Pr is the relative theoretical finite-barrier correction to the steepest-descent prediction for the rate [cf.
Eqs. (6) and (13)].
P& is the numerically exact relative correction to the steepest-descent correction for the rate [cf. Eq.
(14)] adapted from Ref. [1,16].

1 mN~—mm~ x 1— x, x=0,
2 128 (8)

U(x)= '

V~ ——mo)~ x+—1 2 a
2 2

2
mco~ a1— x +'
128 2 , x= Ta. (9)

1 U (x =a/2) (10)
8P [U (x =a/2)] '

where U " denotes the nth derivative of the potential.
Recently [6-9], this expression has been generalized for the entire spatial diffusion limit, the dependence on the damp-

ing appears only in the barrier dynamics. The resulting expression which is the central one used in this paper is

1 1 U( (x =a/2) U (x =0)1.=1,(a) I—
8P +2 [U(2)(x a/2)] 2 [U(2)(x 0)]2

r, =rp(Q))1) 1—

In the Smo]uchowski limit (a» 1) the leading-order corrections for this potential have been derived previously by a num-
ber of authors [10-15],the result is

where the dependence of the so-called nonlinearity param-

eter@g

[8,9] on the damping is

(1+ 2) 1/2
(12)

Combining Eqs. (5), (7), (11),and (12) one finds that the

ro—rPT=- r,
1 y /8g
16g 1+y /8g

I

relative correction PT to the steepest-descent estimate em-
ployed by Ferrando, Spadacini, and Tommei is
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FIG. 1. Relative correction Pr as given by Eq. (13) (solid line) and numerically exact correction PN as defined in Eq. (14) (crosses)
as function of the reduced friction constant y for reduced barrier heights g= 1 and g=4. The error bars correspond to an uncertainty
of the exact rate of l% and 0.1% for g= l and g =4, respectively.

The numerically exact results for the rate (I tv) and the
steepest-descent estimate of Ferrando, Spadacini, and
Tommei is presented in Table I. In Fig. 1 we compare the
theoretical correction Pz to the numerically exact correc-
tion P~ defined as

(14)

by the decay rate of a particle trapped by two symmetric
barriers. (b) The friction dependence of the first-order
correction term in the asymptotic expansion has been
verified from the numerically exact results. (c) There
seems to be no practical need to include higher-order
terms in the steepest-descent expansion for the rate in the
spatial diA usion limit.

The excellent agreement between the numerical result
and the predicted barrier height dependent correction
term leads to the following conclusions: (a) The hopping
rate in a periodic potential is quantitatively approximated
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