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Theory of Correlated Hops in Surface DifFusion
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Scanning tunneling microscopy observations of long hops in the difFusion of Pb atoms on Ge
surfaces are explained by the model of a Brownian particle in a periodic potential. The classical
turnover theory for barrier crossing predicts a large correlated hopping probability in the under-
damped limit, consistent with experiment and in agreement with simulations. The corresponding
quantum theory predicts that in the underdamped limit the rate is dominated by tunneling. This
causes the quantum correlated hopping probability to vanish in this limit and may be thought of as
a new form of quantum localization.

PACS numbers: 68.35.Fx, 05.40.+j, 66.30.—h, 82.20.—w

The diffusion of adatoms on surfaces is of central im-
portance in epitaxial growth and in catalytic reactions.
Recent scanning tunneling microscopy observations [1]
of the diffusion of Pb on Ge surfaces show that the
Pb atoms can make a surprisingly large number of long
jumps. Long jumps have also been observed in computer
simulations [2]. In this Letter we suggest that a sim-
ple Langevin equation of motion in a periodic potential
provides a proper framework for the description of such
correlated hopping.

There is a long history of stochastic modeling of surface
diffusion and reactivity, which has been comprehensively
reviewed in Refs. [3, 4]. Recent work on the diffusion
of a classical particle in a periodic potential [5—7] has
indicated that correlated hopping could be important.
In contrast to previous approaches we will utilize the
Kramers turnover theory for activated processes [8—11).
This enables us to address the correlated hopping dy-
namics of a particle interacting with a quantum bath.

The basic idea is that correlated jumps are the result of
competition between energy activation and deactivation
of the diffusing particle through its interactions with the
bath. In the underdamped regime, the average energy of
classical particles crossing the potential barrier between
adjacent sites is proportional to the square root of the
damping constant (p) [8, 9, 12—14], whereas the average
energy loss of a particle moving from one barrier to the
next is linearly proportional to p [9, ll). This implies
that for suKciently low damping a classical particle will
get activated infrequently but when it does cross a bar-
rier it will usually have more than enough energy to cross
the next few barriers before again becoming trapped in
a well. A quantum particle may tunnel through the bar-
rier. We will show that even for temperatures above the
"crossover temperature, " in the underdamped limit, the
average energy of the escaping particle is loaner than the
barrier energy [ ln(p)] and thus lower than the classical

dtv(q)
Gg

d~p(t —~)q(~) = ((t). (2)

The quantum rate for hopping out of one of the wells
[5] at temperatures above the crossover temperature [15]
(@Pub ( 2x) may be written as [8, 9, ll, 15, 16]

I' = ((u/vr)e ~ (A~/~):-T. (3)
Here, A~ is the usual Kramers-Grote-Hynes reactive fre-
quency [17],

A~/~ = [1 + j(A~)/A~] (4)
where the caret denotes the I aplace transform of the
time dependent friction, and P =—1/kIsT. The ratio of
quantum partition functions at the barrier and the well
(:-) is expressed in terms of the Matsubara frequencies

energy. Paradoxically, the quantum tunneling prevents
correlated hopping, which is probable only for high par-
ticle energies.

In this Letter we present a theory for these correlated
hops, valid at temperatures above the crossover tempera-
ture between tunneling and thermal activation [15]. The
classical limit of the theory is compared with accurate
numerical simulations. The predicted correlated hopping
probability is in qualitative agreement with the experi-
mental observations.

The particle is assumed to be trapped initially in one
of the wells of a one dimensional periodic potential which
is generically characterized by a frequency u at the bar-
riers and wells, barrier height V~, and distance l between
adjacent barriers. The specific results presented in this
Letter will be for the periodic potential of form

m(q) = —
2 V~ cos(2vrq/l).

The time evolution of the particle (with unit mass) is
determined by the generalized I angevin equation:
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w„=2mn/hP and the Laplace transform of the time de-
pendent friction [18]

The quantum rate [cf. Eq. (3)] is found by solving a
master equation for the population per unit time of parti-
cles f(e) with (reduced) energy e at the top of the barrier.
This leads to the integral equation [16]

The last factor T in Eq. (3) is the "depopulation factor"
which has the quantum form

T = exp a sin( —)
G

in[1 —P(t —-')]
[cosh( ) —cos( —)]

(6)

P(is)—: (7)

In the classical limit the probability kernel (using the
dimensionless energy variable e—:/3E) is a Gaussian
function

The reduced average energy loss of the particle 6 as it
traverses from one barrier to the next depends on the
damping and the particular form of the periodic poten-
tial and will be specified below. The depopulation factor
simplifies considerably in the classical limit:

1 ~ dy & (1+v')T,] = exp — ln(1 —e 4 )1+y2 (9)

In the underdamped limit, for which the energy loss pa-
rameter 6 &( 1, one finds that Y,~ 6. This reflects the
large reduction of the escape rate due to the very slow
energy diffusion process. The quantum depopulation fac-
tor is larger than the classical in the underdamped limit,
T = 6 "~" ~ [16]. In the overdamped limit, the en-
ergy relaxation rate is fast and the depopulation factor
tends rapidly to unity.

where the quantum parameter a = 2ir/hPA~.
The magnitude of the depopulation factor is mainly

determined by the probability kernel P(E~E') which ex-
presses the probability that a particle with energy E'
initially in the vicinity of a barrier will reach the next
barrier with energy E. The two sided Laplace transform
of this kernel which appears in the expression for the
depopulation factor is defined as

de'P (e
~

s') R(~')f(e'),

where R(e) is the quantum reflection probability for a
parabolic barrier:

R(e) = [1+exp(ae)]
The transmission coefficient T(e) = 1 —R(e) is deter-
mined by unitarity. This integral equation is subject to
the boundary condition that deep in the well the distri-
bution f(e) is in thermal equilibrium. As shown in [16]
this integral equation is readily solved using two sided
I aplace transforms. The explicit expression for the rate
[cf. Eq. (3)] is then found by summing over all particles
transmitted per unit time:

deT(e) f(e).

Thus far we have reviewed the known results for the
escape rate of the particle. The detailed quantum deriva-
tion and assumptions are discussed in Ref. [16]. The the-
ory is accurate for large (reduced) barrier heights; prac-
tical applications have demonstrated [5, 19] that already
for PV~ = 5 the theory is quantitative.

At this point we adapt the theory to account for cor-
related hops. A correlated hop is one in which the parti-
cle, upon crossing the first barrier, proceeds immediately
to cross the next (second) barrier without first getting
trapped in the well separating the two barriers. The frac-
tion of particles Pi immediately crossing the second bar-
rier is determined by the flux distribution fi(e) = f(e) of
particles at the top of the first barrier and the probability
kernel for energy change upon traversing from the first
barrier to the second one:

deT(e) de'P(e ~a') T(e')fi (e'). (l3)

Since the solution of the integral equation [cf. Eq. (10)]
is known (cf. Appendix A of Ref. [16]), it becomes a
matter of straightforward but rather lengthy algebra to
find the central result of this Letter, which is an explicit
expression for the correlated hopping probability Pi.

Pi ——a sin P(t —-') [1 —P(t ——')] & 1dt cos
[cosh( ) —cos(—)] 4ir

1 1 —I' ]]t —w) —2] vow ( vow

) )dm —ln coth
[1 —P[(t + it]) ——,']

In the classical limit (a~oo) the expression for the correlated hopping probability simplifies considerably,

1~cl
2~

s(t +4)[1 —e s(t +4)]y 1dt + 4 4'
e—6'[(u) —t) ~ 4j q

&
—~|:(~+~)'+4j i

and is a function of only the energy loss parameter b. In the quantum mechanical case it is a function also of h
through the parameter a = 2ir/@PA~. Below we are mainly interested in the weak to moderate damping regime where
3300



VOLUME 70, NUMBER 21 PHYSICAL REVIEW LETTERS 24 MAY 1993

for all practical purposes one may replace the renormal-
ized barrier frequency by the bare one.

To simplify, the theory will be applied to the case of
Ohmic friction,

v(t) = 2'Y~(t)' (16)
later studies [20] will also include memory friction. The
classical correlated hopping probability is plotted in Fig.
1 as a function of the energy loss b. In the underdamped
limit Pz —+0.6944; in the large damping limit, the corre-
lated hopping probability becomes exponentially small,
Pi-2(b~) ii2e ~i4. Also shown in Fig. 1 are the results
of a numerical Langevin simulation [21] for the correlated
hopping probability using the periodic potential given in
Eq. (1), in the presence of Ohmic friction, for the re-
duced barrier height PV~ = 5. An adequate expression
relating the energy loss b to the damping constant p is
[5] 6' = p J' ti2 dq[ 2ur—(q)]ii2 = 4PV~p/a. As seen from
Fig. 1, the theoretical expression is in quantitative agree-
ment with the numerical simulation.

In the experiment, the diffusion of Pb on the Ge(ill)-
c(2 x 8) surface is anisotropic. 56%%ug of all hops were along
the 1-4 direction, and 47'%%uo of alt hops were correlated. It
is plausible to assume that correlated hops are more prob-
able along the 1-4 axis, and that the true percentage of
correlated hops in this direction is larger than 47%. Us-
ing Fig. 1 one can invert the experimental hopping prob-
ability (Pb is sufficiently massive to justify the classical
limit) to estimate the energy loss 6. A correlated hop-
ping probability in the 1-4 direction larger than 0.5 (and
approaching the underdamped limit of 0.7) would imply
a very small 6, a small depopulation factor, and thus
would help explain the very small prefactor measured for
the rate. Furthermore, one can view diffusion along the
1-4 axis as effectively one dimensional, justifying our one
dimensional approach.

Our model is also consistent with the experimental

observation of correlated hops which are substantially
longer than one site. Even the simplified approximation
(valid in the moderate damping limit) that the probabil-
ity for at least n correlated hops is (Pi)" leads to the
conclusion that longer hops are quite likely. We term
P(n) the probability that an activated particle starting
at barrier 0 will reverse its velocity for the erst time while
traveling from barrier n to n+ 1. As shown in Fig. 2, es-
pecially in the underdamped limit, the distribution P(n)
has a very long tail, leading to an even higher probability
for long hops.

The quantum kernel [cf. Eq. (7)] is determined:

P(t —s i):—exp[ —r(t)], (17)
where the exponent is

I ~ I(A)F(A) [cosh( & hPA) —cos(thPA)]
27rh sinh -hPA

1
sin[~q/(2V~) 2] = tanh((ut). (20)

The power spectrum of the force may now be found using
an integration by parts and tabular integrals:

dte'"F (t)
2~2V~ ((u2 + A2)2

A2
1

cosh ( ~z" )
(21)

OO (2 ) 18
Here, I(A) is the "spectral density of normal modes" (cf.
[16]) which in the case of Ohmic friction and weak to
moderate damping is well approximated as

I(A) = pA/(A +~ ) . (19)
It is also necessary to obtain the power spectrum of the
force [F(t) = dm/dq+~ (q —q~)] that the system exerts
on the bath. The time dependence is determined by the
trajectory at energy E = V~/2 that starts asymptotically
at t = —oo at the first barrier and ends at t = oo at the
second barrier:
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FIG. 1. The classical correlated hopping probability, Pi,
as a function of the energy loss parameter b. The line denoted
a is the classical (hour —+ 0) result and is compared with
stochastic simulations (solid circles) for t9U~ = 5. In the
simulations, Pi is defined as the fraction of trajectories whose
momentum does not reverse as they cross adjacent barriers.
Quantum results are shown for three values of the quantum
parameter her. The lines denoted 6, c, and d correspond to
hPw = 0.2n, vr, and 1.8vr, respectively.

FIG. 2. The classical correlated hopping distribution on
a logarithmic scale. P(n) is the probability that an activated
particle starting at barrier 0 will reverse its velocity for the
first time while it is moving from barrier n to n+ 1. The dis-
tributions obtained from numerical simulation are shown for
moderate (6 = 4, open diamonds) and weak (tt = 0.004, solid
circles) damping. Note the long tail of the distribution in the
underdamped case. For moderate damping the distribution
is adequately described by a single exponent.
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Combining Eqs. (18)—(21) one finds that the exponent
r(t) has the specific form

cosh( ~ hPA) —cos(thPA)
Asinh(25PA) cosh (z")

One can now evaluate the quantum correlated hopping
probability. In contrast to the classical Pi, which is a
monotonically decreasing function of the energy loss, the
quantum correlated hopping probability is a bell shaped

function which vanishes in both the underdamped and
overdamped limits. The quantum results (obtained by
numerical integration) as a function of the energy loss b
for a few different values of the quantum parameter hPu
are also presented in Fig. 1. The classical probability
for correlated hopping is always larger than the quantum
probability.

The seemingly counterintuitive quantum result may be
understood by inspection of the quantum average energy
of particles crossing the barrier:

f deeT(e) f(e)
f d T( )f( )

ir 1'ir 5 1= —coti —
[
+-

a (af a
- f i [1 —cosh( *)cos( —)]dxln 1 —P[ x ——

[cosh( *) —cos( —)]
(23)

This result is a generalization of the classical limit ex-
pression derived by Mel'nikov [8, 9]. In the underdamped
limit, the quantum average energy becomes increasingly
negative, (e) lnb. This implies that although the tem-
perature is above the so-called crossover temperature be-
tween tunneling and thermal activation, the major quan-
tum mechanism for particle escape is via tunneling. Be-
cause of the very weak coupling to the bath the proba-
bility for tunneling at an energy below the barrier height
is greater than the probability that the particle will gain
enough energy to cross above the barrier. Moreover, the
quantum depopulation factor is larger than the classi-
cal depopulation factor [16]. The quantum deactivation
of particles as they travel between adjacent barriers is
larger than the classical deactivation. The net result of
both of these factors is that in the underdamped limit the
quantum particle will not undergo a correlated hopping.

In summary, we have presented a quantum theory of
correlated hopping valid above the crossover tempera-
ture. We predict that quantum correlated hops are less
likely than classical correlated hops, implying a quan-
tum localization. The theory takes into account quan-
tum tunneling between adjacent sites but does not allow
for coherent multiple well quantum tunneling. The co-
herent process is very important for low temperatures
(below the crossover temperature) but will not signifi-
cantly affect the results presented here, valid for "high"
temperature only.

The analytic theory has been reported only for the
hopping probability to an adjacent site (Pi). The same
formalism may be used. to obtain probabilities for longer
jumps, thus also estimating the difFusion coeflicient [20].
In this Letter we described results only for Ohmic fric-
tion. The formalism of Ref. [11] allows extension of the
theory to include memory friction. Based on previous
experience, one expects that in the presence of memory
the effective damping is decreased [11],leading to a larger
range of damping parameters for which correlated hop-
ping may be important.
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