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ABSTRACT

The method of optimal interpolation, which is widely used in meteorological data assimilation, relies very
much on good approximations of spatial correlation functions. Therefore, many models for such functions have
been developed. These models should fulfill certain mathematical constraints; particularly, they should be positive-
definite functions. For the classes of homogeneous and isotropic processes, the positivity property and its con-
sequences are reviewed. A special class of correlation models based on so-called spatial autoregressive processes
is critically examined. It is shown that models of this type are not positive definite on the meteorological relevant
spaces. Some other models taken from the literature are shown to lack this property also. Three strategies to
obtain models that have the appropriate mathematical properties are outlined.

1. Introduction

In the last two decades, optimal or statistical inter-
polation has become a widespread tool in atmospheric
data assimilation. Eliassen ( 1954 ) introduced this con-
cept in meteorology; a comprehensive presentation of
the method is given in Gandin (1965). One of the
essential prerequisites to optimal interpolation is an
approximate knowledge of spatial correlation or co-
variance functions. A large number of analytical func-
tions for modeling the spatial correlations have been
proposed and investigated (e.g., Buell 1972; Schlatter
1975; Julian and Thiébaux 1975; Thiébaux 1975;
Thiébaux 1976; Thiébaux et al. 1986; Mitchell et al.
1990; Bartello and Mitchell 1992). A variant of optimal
interpolation is optimal averaging (Vinnikov et al.
1990), a method in which no gridpoint values are ap-
proximated but some spatial mean value is estimated.

One of the strict mathematical restrictions on the
choice of possible analytical forms of correlation func-
tions is the requirement that such a function must be
positive definite (Yaglom 1986) in order that all re-
sulting covariance matrices are positive definite (Stuart
and Ord 1987). Additionally, it may be required that
their spectral behavior must resemble that found in
observations, or that they must be differentiable at the
origin and must be able to conform with geostrophy
(Julian and Thiébaux 1975; Thiébaux 1975).

In an analogy to temporal autoregressive processes
of order N, AR(N), with continuous time, Thiébaux
(1976) introduces autoregressive models with distance
instead of time as continuous parameter. Thiébaux’s
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spatial AR (2) model is also cited as an example of a
model for climatological background errors in Daley
(1991). In this paper, some correlation function mod-
els—among them the spatial AR (2) model—are crit-
ically examined, and the conditions under which they
are positive definite on meteorological relevant spaces
are determined.

The paper is outlined as follows. Section 2 sum-
marizes general mathematical properties of correlation
functions and gives the spectral transformation for-
mulas of isotropic homogeneous correlation functions.
Section 3 reviews possible spatial analogs to autore-
gressive processes in time. Section 4 discusses whether
certain correlation models are positive definite on the
meteorological relevant spaces. Section 5 describes
three feasible ways of obtaining models of correlation
functions, and section 6 gives a summary of the paper.

2. Positive-definite functions on various spaces

The theory of isotropic homogeneous correlation
functions is discussed in great detail in Yaglom (1986).
Here we will review some important results for scalar
random fields. For a random field Y (x) defined on the
n-dimensional Euclidian space R”, the correlation
function is defined in the usual way as

B(x;, xi)

_ ¥ (%) = (Y)Y (%) — (Y (x)HD
(Y (x) = Y (x)H1%>

XY (%) = (Y (x))1%) 172

where the () denotes the expectation value and x;

and x, are two points in R”. In many applications like
ones in meteorology, the correlation function is as-

» (1)
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sumed to be homogeneous, which means that it de-
pends only on the difference vector x; — x; of the two
points x; and x, (Yaglom 1986, p. 323):

B(x;, x¢) = B(X; — Xg). (2)
The meteorological fields themselves are in general not
homogeneous since the smgle point variance {[Y (x;)
— {Y(x;))]*) and the covariance function in general
depend on the position in space. Only the standardized
fields [Y (x;) — (Y (x;))1{{{Y (x)) — (Y (x,)))*>}~/?
are often assumed to be homogeneous on horizontal
or quasi-horizontal surfaces.

For a given function B(x) (where x = x; — x; denotes
the difference vector between two points) to be con-
sidered as a homogeneous correlation functidn of some
random field, the function B(x) must be positive def-
inite. This means that for any integer m, any set of
points X, . . . , X,», and any complex constants ¢, . . . ,
Cm, the following sum must be nonnegative (Yaglom
1986, p. 327):

2 B(x - (3)

Juk=1

Xk)Cj =0,

where ¢, denotes the complex conjugate of ¢x. The pos-
itive definiteness is an immediate consequence of the
definition of the correlation function for homogeneous
random fields. It must not be confused with the ordi-
nary positivity property of a function to take only pos-
itive values. Obviously, the latter is in general not true
for a correlation function, and not every function tak-
ing only positive values is positive definite and can
therefore be considered a correlation function.

For the property of a function to be positive definite,
its Fourier transform must be a positive function in
the ordinary sense, and vice versa. Strictly speaking,
the Fourier transform of a homogeneous correlation
function does not need to be an ordinary function, but
can always be represented as a nonnegative spectral
measure on the space of wave vectors. This is the es-
sential content of Bochner’s theorem (Yaglom 1986,
p. 329). It generalizes the well-known Wiener Khinchin
theorem from stationary temporal to homogeneous
spatial processes.

Many of the correlation functions used in meteo-
rology are furthermore assumed to be isotropic in hor-
izontal or quasi-horizontal surfaces, with the conse-
quence that the correlation function depends only on
the Euclidian distance x between the points x; and xy.
For isotropic homogeneous random fields, the theo-
retical framework is much better known than for gen-
eral homogeneous random fields. As there is no phys-
ical reason for meteorological fields to be homogeneous
and isotropic on the globe, these assumptions may seem
too restrictive. However, one should keep in mind that
optimal interpolation is usually done with data from
a small neighborhood of grid points, and optimal av-
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eraging is done within latitude belts and not on the
whole globe. Within these smaller domains the ob-
served correlation functions are in general reasonably
homogeneous and isotropic on horizontal or quasi-
horizontal surfaces. Deviations from isotropy are dis-
cussed; for example, in Thiébaux (1976).

For isotropic homogeneous fields on R”, the Fourier
representation of the correlation function simplifies
considerably. Provided the correlation function B(x)
decays rapidly enough for large distances x ( Yaglom
1986, p. 357), its spectral representation reads

® Jin—2y2(kx)

B(x) = (2w)"? (kx) (=212

kK" f(k)dk, (4)

where J, is a Bessel function of the first kind and the
spectral density f(k) is a nonnegative function j(k)
=0 for all scalar wavenumbers k = (k? + - -
+ k2)'/2 = 0. Conversely, f(k) follows from B(x) ac-
cording to

* J(n-2)/2(kx)
(kx)(n—Z)IZ

flk) = x"'B(x)dx. (5)

(27[')"/2

Though the correlation function and the corresponding
spectral density of isotropic homogeneous random
fields depend only on a scalar variable, namely, the
Euchidian distance x and the scalar wavenumber k,
respectively, the relations (4) and (5) connecting these
functions depend on the dimension » of the space. As
a consequence of this dependence, one finds that a
positive-definite function B(x) on R” is also positive
definite on R”"!, but not vice versa (Yaglom 1986,
p. 354).

Isotropic and homogeneous random fields may be
defined on more general manifolds than the Euclidian
spaces R” (Yadrenko 1983). For the sphere $"!
embedded in the Euclidian space R”, there is a general
representation of isotropic homogeneous correlation
functions due to Schoenberg (1942):

B(0) = § InCl 2 (cos8),

m=0

(6)

where the C},(x) are Gegenbauer’s polynomials, the
[ are nonnegative constants satisfying 2 5-o /i < 00,
and @ is the spherical distance ( or great circle distance)
between two points on the sphere. If the function B, (x)
is positive definite on the Euclidian space R", then the
function B(#) = B,[2a, sin(0/2)] is positive definite
on the sphere $”~! embedded in R”, where a, denotes
the radius of the sphere (Yaglom 1986, p. 389). In
particular, if a function is positive definite on R?, it is
also positive definite on R? and S? [with the correct
substitution of the Euclidian distance by the spherical
distance by means of x = 24, sin(6/2)]. For the Eu-
clidian spaces R? and R3, the corresponding spectral
transformation formulas (4) and (5) take the form
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B(x) =2« fow Jolkx)Ykf(k)dk,

1 o0
0 =5 [ wtkoxBoas )
™ Jo
for the plane R?, and
B(x) = 4= fow Sin(xkx) kf(k)dk,
_ 1 [®sin(kx)
S(k) = 53 fo A xB(x)dx (8)

for the three-dimensional space R3. On the usual sphere
S? the spectral representation (6) is given by

B(O)= 5 fynPn(cost),
m=0

2m

Jm =

2+ ! J; P,(cos®)B(0) sinddb, (9)
where the P,,(cosf) are the Legendre polynomials. Re-
call that for the Euclidian spaces R? and R? it is nec-
essary but not sufficient that the correlation function
model is positive definite on the line R*.

Although each model of an isotropic homogeneous
correlation function will depend only on a single vari-
able, namely, an appropriate distance in the space
where it is defined, its spectral representation and the
answer to the question whether the function is positive
definite depend very much on the underlying space.
In other words, the same function may represent a
proper correlation in one space but may fail to do so
in some other space.

3. Spatial autoregressive processes

In Thiébaux (1976), correlation functions of con-
tinuous AR (1) and AR(2) processes in time are used
as spatial correlation function models. The time pa-
rameter is identified as spatial distance with the inten-
tion to get models of isotropic homogeneous correlation
functions. In Thiébaux et al. (1986) a similar AR(3)
process was used to obtain spatial correlation functions;
see also Thiébaux and Pedder (1987). The isotropic
correlation function of the AR(2) process given in
Thiébaux (1976) has the form

B(x) = [cos(ax) + 2 sin(ax) | exp(—cx),

forc> 0, (10)

where x is the great-circle distance between two points
on the sphere, measured in units of 1000 km.

The simple analogy of processes in time and in space,
which was used to derive the model (10), needs some
comment. As clearly outlined in Yaglom (1987, p.
325), there are significant differences between a time
variable and a spatial variable. Whereas for a time
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variable a distinction between past and future may be
drawn, no such distinction is meaningful for spatial
variables. A function in time that describes a process
in nature is known to depend only on the past but not
on the future (causality ). However, this notion of cau-
sality has no analog in space. A function describing a
process in one-dimensional space can depend on values
from the left and right of a reference point. In higher
dimensions even more freedom exists for the locations
having influence on the value at a reference point.

As an example, a two-dimensional spatial general-
ization of a continuous autoregressive process in time
may be described by a differential equation of the type

9% | 9
(5}? Tad” aZ)Y(xl,xz) = E(xi, %), (11)

with spatial white noise E(x;, x;) (Yaglom 1987, p.
334). In a discretized version of (11) all nearest neigh-
bors of a given point x;, x, contribute to the value of
the random field at that point. They are known as
nearest neighbor models in the literature. Model (11)
is treated in Whittle (1954 ); more complicated models
are investigated in Heine (1955). The correlation
function of the random field Y (x;, x»), which is a
solution of (11), is given by B(x) = axK,(ax), where
K, denotes the modified Bessel function of second kind
or MacDonald function (Abramowitz and Stegun
1965), and x = (x? + x3)!/2.

Even if the model (10) and other correlation func-
tions of AR () processes are derived from a too simple
analogy between temporal and spatial stochastic pro-
cesses, they might still be useful candidates for spatial
correlation functions if they fulfill the conditions men-
tioned in section 2. In the following, it will be shown
that the AR(2) correlation function (10) of Thiébaux
(1976) is, however, not positive definite on the Euclid-
ian space R? and the sphere S2, at least not for the
parameter values given in Thiébaux (1976).

4. Positive definiteness of some correlation models

In Julian and Thiébaux (1975), Thiébaux (1975),
and Thiébaux (1976) the one-dimensional spectral
transform of correlation models is compared with the
one-dimensional spectrum obtained from observations
as a possible aid to select the best model. In Thiébaux
(1976) the one-dimensional spectral representation of
the correlation function of the AR(2) model (10) is
given and shown to be nonnegative for all wavenum-
bers. This is a necessary but not yet sufficient condition
for the model ( 10) to be positive definite on the plane
R2. In the following it shall be investigated whether the
AR(2) model is positive definite on the plane R? and
the sphere S? by means of the corresponding spectral
transformations.

On the plane R? the spectral density (7) of the AR(2)
model (10) can be given in closed form (Prudnikov et
al. 1992):
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sy = 2 R ~(a+ S)sin(26)]., (12)

. a P sin 2 ,
with R* = (k* — a® + ¢?)* + 4a*c? and tan¢ = (—2ac)/
(k* — a* + ¢?) with — 7 < ¢ < . In Thiébaux (1976)
some correlation models for 500-hPa geopotential are
given: the parameters of the model (10) are @ = 1.4123,
¢ = 0.5666, and a multiplicative scale parameter R,
= 0.9625. For these parameter values the correspond-
ing two-dimensional spectral density ( 12) is shown in
Fig. 1. For small wavenumbers it is negative; hence,
the function (10) with the parameters of Thiébaux
(1976) is not positive definite on the plane R2. It is
positive definite on the plane if a? < 3¢? holds, as a
closer inspection of (12) reveals.

On the sphere $%, a numerical integration of the
spectral representation (9) gives negative expansion
coefficients f,, for m < 4; therefore, the AR(2) model
(10) is not positive definite on the sphere, at least not
for the parameter values given in Thiébaux (1976).

In Table 4.1 of Thiébaux and Pedder (1987) other
correlation models for 500-hPa geopotential height are
listed. The one-dimensional spectrum was compared
with the spectra obtained from observations, and some
conditions were imposed on the correlation function
in order to make it conform with geostrophy. However,
it was not tested whether the functions are positive
definite on the plane or the sphere. The second entry
of Table 4.1 of Thiébaux and Pedder (1987) gives the
correlation model

B(x) = [ccos(ax) + Ry — c] exp(—bx?), (13)
with the parameter values a = 1.252, b = 0.151, ¢
= (.778, and Ry = 0.98. The result of a numerical in-
tegration of the two-dimensional spectral transform (7)
is shown in Fig. 2. Evidently, the model (13) is not
positive definite on the plane R? and is therefore not
positive definite on any R” with n = 2. On the sphere
S?, the spectral expansion (9) was carried out numer-

0.12
0.10 -
0.08 |
0.06 -
0.04 |
0.02{
0.00

Sy

-.04 T —T T T
0 1 2 3 4 5

AR(2)

spectral density

2D—wavenumber

FIG. 1. Spectral density f(k) on the two-dimensional Euclidian
space as obtained from the expansion (7) of the AR(2) model (10)
as function of the scalar wavenumber k = (k% + k3)"/? (in units of
0.001 km™). The parameter values are taken from Thiébaux (1976).
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F1G. 2. Spectral density f(k) on the two-dimensional Euclidian
space as obtained from the expansion (7) of the correlation model
(13) as function of the scalar wavenumber k = (k? + k3)'/? (in units
of 0.001 km™"). The parameter values are taken from Thiébaux and
Pedder (1987), Table 4.1, the second model.

ically for some orders m, and gave negative expansion
coefficients for m < 3. Hence, the correlation model
(13) is not positive definite on the Euclidian space R?
or on the sphere S2. For both models discussed so far,
the spectral transform becomes negative for wave-
numbers k < ky [ko = 0.85 for the AR(2) model on
R2 and ko = 0.75 for the second model on R?]. If the
correlation model is used only for distances smaller
than 27/ ky, the resulting correlation matrices are pos-
itive definite as required.

A correlation model that is widely used is given by
a Gaussian function

B(x) = exp(—ax?), (14)

with a > 0; for example, Buell (1972), Schlatter (1975),
or Lorenc (1981). It is well known that the function
(14) is positive definite on every Euclidian space R”
(Yaglom 1986). It is also positive definite on the sphere
S? if the Euclidian distance x is properly replaced by
2a,sin(#/2), leading to

B(0) = exp[—4da sin?(0/2)], (15)

where the new constant is @ = aa?2. For small 8 this
correlation model (15) becomes

B(6) = exp(—ab?); (16)

the function that is actually used; for example, in
Schlatter (1975), where 8 < 0.22, and in Lorenc
(1981), where 6 < 0.1. It is interesting to know whether
this correlation model (16) is positive definite on the
whole sphere. The spectral expansion (9) cannot be
carried out in closed form, but some approximations
are possible. For large 4, @ > 1, the spectral expansion
coefficients (9) are obtained as (see the Appendix)

2m+1[i_m(m+l)]

Jm = (17)

2 2a 8a*

The spectral coefficients are in fact nonnegative as long
as d > m(m + 1)/4 holds; however, if this condition
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is violated, the approximation (17) is no longer valid.
Then both d and the order  are large and the Legendre
polynomial may be approximated by a Bessel function,

resulting in the spectral coefficients result as (see the

Appendix)

2m + 1 m?

4a exp( 4&) '
which are always nonnegative. Hence, for large 4 the
spectral coefficients f,, are always nonnegative, and the
correlation model (16) is therefore positive definite on
the sphere. For small @ the spectral coefficient f, is
obtained as f, =~ —104/9 (see the Appendix) and is
thus negative for all positive values of 4. Numerical
integration gives negative spectral coeflicients for values
of d < 1. In correlation models of geopotential height
(Schiatter 1975; Lorenc 1981; Thiébaux and Pedder
1987) the values of 4 range from 25 to 82; in this pa-
rameter range the correlation model (16) can be as-
sumed to be positive definite from the results discussed
already. For smaller values of @ the model (15) should
be used on the sphere. It is known to be positive definite
on the whole sphere for all nonnegative parameter
values.

I = (18)

5. Some strategies to obtain positive-definite
functions

Three strategies to get positive-definite functions as
possible correlation models on a given space are out-
lined in the following. :

First, one may take one of the parametric models
that are known to be positive definite on a given space.
In Yaglom (1986) and Yadrenko (1983) such corre-
lation function models for the Euclidian spaces and
the sphere S? are given. In Table | some functions that
are positive definite on the Euclidian space R? are listed.
In Table 2 some functions that are positive definite on
the sphere S? are given. All the functions listed in Table
1 are also positive definite on R? except for the second
last model, for which a stronger constraint « = V§w0
holds, and the last model, for which » = 1 in R>, As
already mentioned, all positive-definite functions on
R3 are also positive definite on the sphere S2, if the

TABLE 1. List of positive-definite functions on the Euclidian space
R? together with constraints on the parameters from Yaglom (1986).
The K/(x) denote modified Bessel functions of the third kind
(MacDonald functions); J, are Bessel functions of the first kind.

Model on R? Constraints
exp(—ax) a>0
(ax)’K (ax) a>0,v=0
exp(—ax?) a>0
exp(—ax™) a>0,0<m=<2
1/(a? + X2 a>0,v>0
exp(—ax) cos(wpx) wp >0, @ = w
(ax)™ J(ax) a>0,v=0
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TABLE 2. List of positive-definite functions on the sphere S° together
with constraints on the parameters from Yadrenko (1983). The P,(x)
are Legendre polynomials.

Model on $? Constraints
B = (1 — 2g cosf + ¢*)'”2 0<g<l
1 1-4°
B(@O) = — a 0<g<t

4z [1 — 2g cos(8) + g%
B(#) = P,{cosf)

Euclidian distance x is properly replaced by the spher-
ical distance 6 (great circle distance): x = 2a, sin(8/
2) (Yaglom 1986, p. 389).

Any linear combination of positive-definite func-
tions with nonnegative constants is also a positive-def-
inite function (Yaglom 1986, p. 58). These parametric
models have some disadvantages, however. Most of
them do not change sign, whereas observed correlation
functions, especially the ones of climatological back-
ground errors, often do so; for example, Schlatter
(1975) and Julian and Thiébaux (1975). Furthermore
these models have only a few free parameters, and are
therefore not sufficiently flexible to fit arbitrary ob-
served correlations. Some of the listed models are pos-
itive definite only if the parameters fulfill certain con-
ditions, which means that they require the use of fit
procedures with restrictions.

A second strategy may be to expand the observed
correlation function into a set of spectral basis functions
(4) or (6); for example, Rutherford (1972), Hollings-
worth and Lonnberg (1986), Lonnberg and Hollings-
worth (1986), and Bartello and Mitchell (1992). The
resulting expansion coefficients should be nonnegative,
but “due to scatter in the data,” as stated in Bartello
and Mitchell (1992), sometimes negative values may
occur with negligible small amplitudes.

The last and very pragmatic method consists of sim-
ply taking some analytical functions that fit the ob-
served correlations well, but for which the positive def-
initeness is not proven (e.g., Buell 1972) for a list of
candidate functions. Then it may be tested numerically
whether they are—with the parameter values as ob-
tained from the fit—positive definite on the appropriate
space like R? or S? and therefore positive definite on
any subset of the corresponding space, too. Alterna-
tively, one can determine the eigenvalues of each re-
sulting covariance matrix and see whether they are
nonnegative (Lorenc 1981; Weber 1992); this proce-
dure gives additional information about possible al-
gorithmical instabilities (Lorenc 1981) due to eigen-
values very close to zero.

6. Conclusions

The important property of positive definiteness for
a correlation function model was reviewed. A method
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of testing this property by means of spectral transfor-
mation on the underlying spaces was discussed. It was
outlined that the spatial AR(2) model of Thiébaux

(1976) was derived from a too simple analogy between °

temporal and spatial processes. As a consequence, the
correlation function of the spatial AR(2) model with
parameters as given in Thiébaux (1976 ) is not positive
definite on spaces relevant for meteorological and other
geophysical applications. Nonetheless, the model may
still be useful; given some array of stations and grid
points, it may still yield only positive-definite covari-
ance matrices. The reduced model (Thiébaux et al.
1986; Mitchell et al. 1990) with a = 0, especially, may
still be practical in applications. But the positive defi-
niteness should, at least numerically, be tested. This
can be done either with the appropnate spectral rep-
resentation on the respective spaces or with direct cal-
culation of the eigenvalues of the covariance matrix,
which is obtained by the restriction of the covariance
function on the array of observation locations or on a
discrete lattice in space.

Two other correlation models were analyzed and
seen to be positive definite only for a restricted range
of parameter values. In summary, one finds that there
1s still a lack of flexible correlation models on the Eu-
clidian two-dimensional space or on the sphere, or even
for limited regions of these spaces.

More detailed models that determine the random
fields themselves, such as the one given by (11), for
example, provide still another approach for obtaining
mathematically consistent correlation functions. Fur-
ther, they allow simulations of these fields and provide
the basis for a variety of statistical tests.
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APPENDIX

Spectral Transform of the Gaussian Model
on the Sphere

Approximations of the spectral transform (9) of the
correlation model ( 16) on the sphere S? for both large
and small 4 are presented in the following. The integrals
to solve are given by

o = 2—m§1 J; e’ P, (cos) sinfds.
For d > 1, only contributions from small 4 are impor-
tant and the integrand is dominated by the exponential
decay as long as m is not too large. Using the sum
representation of the Legendre polynomials (Abra-
mowitz and Stegun 1965, p. 775),

(A1)

[m/2}
Pux)= 2 ax™*,
k=0
2m — 2k
with ck=*l‘(—1)k(m)( " > (A2)
m k m
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expanding x" 2% = cos” % ~ 1 — (m — 2k)8%/2, and
extending the upper limit of integration to infinity, the
spectral coeflicients become

2m + 1 M2 [1 1 m-—2k
am+ 2 . <

I = % @ 2

. (A3)
2 k=0 ]

The first term of the righ%—hand side of (A3) can be
summed up by using > L"l(/, ] ¢ = Pp(1) = 1; the second
sum can be found in Prudnikov et al. (1986, p. 632),
resulting in

fm%

2
mt 1 [1 (Ad)

_m(m+ 1)
44 )

4a

If both @ and m are large, the decay of the integrand
in (A1) is dominated by the behavior of the Legendre
polynomial, and not the exponential, as assumed
above. For large m and small 6 the Legendre polyno-
mial can be approximated by P,(cos ) =~ Jo(mB)
(Abramowitz and Stegun 1965, p. 787), where J, is a
Bessel function of the first kind. The spectral coeffi-
cients are given in this limit by

Im+1 [
fon —’"z—f exp(—a8?)Jo(m8)6do
0

2m + 1 m?
4a OP\T 4

(Gradshteyn and Rizhik 1980, p. 717), and are thus
always positive.

For small 4 the exponential function in the integrand
of (A1) can be expanded as exp(—ad8?) ~ 1 — @*. For
the lowest values of 1 the resulting integrals give

(AS)

A 3 . 10 _
foz1+<2—7)a, flwgﬂ'za, fzz—”g"a
(A6)

for the spectral coefficients.
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