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Abstract.  The question is investigated whether the dynamics of turbulent wind fields in the atmo- 
spheric boundary layer can be satisfactorily described by a low-dimensional deterministic system. 
Special emphasis is laid on the detection of a possibly existing, underlying strange attractor. Fast 
response wind measurements of an ultrasonic anemometer with a sampling rate of 21 Hz were carried 
out over periods of several days in the near surface boundary layer. The correlation dimension of 
the resulting time series, several million data points long, is estimated by means of the Grassberger- 
Procaccia algorithm. No sign of a low dimensional attractor can be detected. By comparison with 
different types of random noise, the existence of an attractor with dimension lower than six can be 
excluded in the present data sets. 

1. Introduction 

The seminal paper by Lorenz (1963) is one of the earliest works describing chaotic 
motions on a low-dimensional attractor. Chaotic motion is characterized by an 
intrinsic instability causing the system to be sensitive to initial conditions. As a 
consequence, trajectories from nearby initial points separate exponentially in phase 
space. At that time, it came as quite a surprise that a dynamical system with three 
degrees of freedom only, i.e. described by three ordinary differential equations of 
first order, could exhibit completely unpredictable motions. Since Lorenz (.1963) 
employed his model as a crude approximation of the dynamics of a convective 
fluid layer, it was soon conjectured that also the atmosphere might have an intrinsic 
limit of predictability and it was even speculated that atmospheric dynamics might 
be governed by a low-dimensional attractor. Later, tools were developed by means 
of which the attractors of dynamical systems can be characterized (Hentschel 
and Procaccia, 1983). These concepts were generalized in order to test whether 
observed time series might have a deterministic origin and if so, to characterize the 
respective attractor by its possibly fractal dimension (Grassberger and Procaccia, 
1983). Nicolis and Nicolis (1984) reported the existence of a climatic attractor 
from an isotope record of a deep-sea core extending over the last million years but 
their work was soon criticized (Grassberger, 1986). The main objection against the 
validity of the findings of Nicolis and Nicolis (1984) is the small number of data 
points they used in their analysis (Grassberger, 1986; Tsonis et al., 1993). Many 
subsequent papers reported low-dimensional attractors of the climate system and of 
the atmosphere, some of which are mentioned below. Fraedrich (1986) claims the 
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existence both of a climate attractor with dimension 4.4, based on data from a deep- 
sea core covering the last 800,000 years, and of a weather attractor with dimension 
of about 3--4, estimated from daily meteorological elements. Based on other daily 
meteorological data sets, a weather attractor of dimension 5-6 was reported in Essex 
et al. (1987) and a weather attractor of dimension 7-8 in Keppenne and Nicolis 
(1989). Even for very short time scales, it was claimed that a low-dimensional 
attractor governs the dynamics of the atmosphere. In Tsonis and Elsner (1988), 
10 s averages of wind measurements were analysed and a attractor dimension of 
7.3 was found. In Poveda-Jaramillo and Puente (1993), wind and temperature 
data, sampled every 0.1 s, led the authors to the conclusion that a 4-6 dimensional 
attractor governs the short-term dynamics of the atmosphere. The discussion still 
continues whether a low-dimensional climatic attractor or weather attractor exists. 
Some of the results of different analyses and critiques are summarized by Ruelle 
(1990) and Tsonis (1992). 

Among the physical arguments indicating the possibility of low-dimensional 
attractors in turbulence is the existence of large-scale structures that might act as 
rigid objects being describable by only a few degrees of freedom, as for example 
in Rayleigh-Bdnard convection. However, the mathematical and physical under- 
standing of fully developed turbulence as the high dimensional phenomenon per  
se (Temam, 1989), though yet incomplete, is at variance with the picture of low 
dimensional dynamics which can describe various aspects of so called weak tur- 
bulence (Manneville, 1990). The prominent scaling property of the power spectral 
density is traditionally modelled by means of hierarchical models with the num- 
ber of levels increasing with the strength of the turbulence (Richardson, 1922; 
Kolmogorov, 1941). 

Even if the dynamics of a physical system evolve chaotically on a low- 
dimensional attractor, it is still not guaranteed that this behaviour can be discovered 
from a finite set of values of a single observable of the system which is discretely 
sampled and measured with finite accuracy. One of the most severe restrictions 
to the estimation of an attractor dimension is the number of available data points 
(Smith, 1988; Ruelle, 1990; Nerenberg and Essex, 1990). Different and contradic- 
tory upper bounds to the attractor dimension that can be reliably estimated from 
a given number of observations were derived from theoretical reasoning. Without 
entering this controversy, we choose another way of finding limitations to the esti- 
mation of attractor dimensions. The primary question to be answered is whether 
the observed signal can be distinguished from random noise, which in principle 
has infinite dimension. Any numerical algorithm which estimates dimensions from 
time series can only handle a finite number of data. Therefore, pseudorandom noise 
of finite length will not yield an infinite dimension, but finite size effects reduce 
the observable dimension. As these finite size effects can hardly be analytically 
estimated, we perform numerical simulations to see their influence on the dimen- 
sion estimates. We take therefore appropriate types of random noise of the same 
length, variance and number of digits as the observed time series and compare the 
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Fig. 1. Ten-minute averages of a horizontal wind component (in m/s) for the measurement period 
#1 as described in Table I. The time series starts on 15 January 1993 at 10:45 Central European time. 

results of the corresponding dimension calculations for the observed time series 
with those for the random noise. 

2. W i n d  D a t a  

We measured Wind fields in the atmosphere by means of an ultrasonic anemometer 
by Gilt Instruments Limited. This type of instrument measures the flight time of 
ultrasonic pulses along a short path (about 15 cm) which allows one to determine 
the wind velocity along the path direction by means of the Doppler effect. As three 
crossed paths are used, the full three-dimensional wind vector can be reconstructed. 
Due to the geometry of the instrument, the vertical wind component is determined 
with much less accuracy than the horizontal components. Therefore, only one of 
the horizontal components of the wind vector is analyzed. The instrument was 
placed on top of a 10 m high mast on the roof of a three-storied building on the 
grounds of the Paul Scherrer Institute. 

The sampling time of the anemometer is 0.048 s, corresponding to a sampling 
rate of about 21 Hz. Four periods, each five to six days long, were selected for 
dimension analyses. A summary of their characteristics is given in Table I. The time 
series of 10-min averages of the horizontal wind component for the first of the four 
selected periods is shown in Figure 1. A Clear diurnal cycle of the horizontal wind 
component can be seen, indicating that the wind is thermally influenced. In the 
upper chart of  Figure 2, the autocorrelation function of the first ten minutes of  time 
series #1 is Plotted. The first zero crossing occurs roughly after 1500 time steps (or 
72 s). This zero crossing time depends strongly on the length of the interval used for 
computation of the autocorrelation function. The autocorrelation estimated from 
the whole time series is shown in the lower chart of Figure 2. The first zero crossing 
occurs after about 300,000 time steps (or !4,400 s). This discrepancy between the 
different zero crossing times is already an indication that there is no intrinsic time 
scale present in the dynamical system. 
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Fig. 2. (a) Autocorrelation ftmction estimated from the first 10 min of time series #1. All lags from 
0.048 s up to 240 s are shown, i.e., from 1 to 5000 in units of the sampling time of 0.048 s. (b) 
Autocorrelation of time series #1 estimated form the whole time series. Only lags that are multiples 
of 960 s are considered. 

TABLE I 
Specifications of the four selected observation periods 

Number Starting Starting Length Number of Standard 
date time (CET) in hours data points deviation 

#1 15 Jan. 1993 10:45 143 10,742,500 1.30 m/s 
#2 05 Feb. 1993 16:25 141 10,580,000 0.83 m/s 
#3 26 Mar. 1993 9:05 123 9 ,187 ,500  1.32 m/s 
#4 05 Jan. 1993 15:35 137 10,270,000 1.44 m/s 

To shed further light on the nature of  the observed time series of  horizontal wind 
components,  a power spectral analysis is performed. The observed time series are 
split up into segments of  16,384 data points (about 13 rain). In each segment, the 
mean is subtracted, which automatically eliminates the diurnal cycle present in 
the time series. The power spectrum of each segment is computed by applying a 
Welch window to the data and a Fast Fourier transform (Press et al., 1992). The 
power spectra of all segments are averaged in order to reduce the statistical error 
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Fig. 3. Power spectral density (psd) of a horizontal wind component for observation period # 1. 

of the spectral estimate. In Figure 3 the power spectral density of time series #1 
is shown. There is no clear peak in the spectrum, which shows again that there is 
no prevailing frequency in the time series. Over a wide range, the power spectral 
density has a scaling behaviour ~ f - ~  with oe = 1.54. For the other three time 
series, the estimated c~ ranges from 1.53 to 1.58, which is somewhat below the 5/3 
resulting from Kolmogorov's theory for isotropic and homogeneous turbulence 
(Kolmogorov, 1941). 

3. Dimension Calculations 

In general, an attractor can be described by an infinite set of dimensions, which 
may possibly take non-integer values (Hentschel and Procaccia, 1983). As most of 
them will indicate whether the system is low-dimensional or not, one can choose 
a dimension which is easy to compute for the analysis of some given data. As in 
many other analyses, we also choose the well discussed and analysed correlation 
dimension D 2. 

The record of a single horizontal wind component constitutes a scalar time 
series. The first task in the dimension calculation is to embed the dynamics of 
the system in a multidimensional phase space, the embedding space (Mane, 1981; 
Takens, 1981). This is done by the method of delay coordinates (Takens, 1981; 
Grassberger and Procaccia, 1983). Given the scalar observations zi (i = t , . . . ,  N), 
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a time series of vectors v+i (i = 1 , . . . ,  N - (m - 1)r) with m components is 
constructed by m consecutively following ~--th neighbors: 

--.-> 
V i = ( X i ,  Z i + r ,  :;Ci+2"r,  9  9  9 , X i + ( r n - 1 ) T ) ,  ( 1 )  

where r is the so-called delay time. The components of the vector are thus the time- 
delayed values of the scalar observations. The m dimensional Euclidian space in 
which these vectors lie, forms an embedding space. If the time series is generated by 
the motion on an attractor of a finite dimensional dynamical system, the trajectory 
in the embedding space displays many of the properties of the original dynamics, 
provided the dimension of the embedding space is sufficiently large (Mane, 1981; 
Takens, 1981). Especially the dimension of the embedded attractor coincides with 
that of the true attractor. 

No definite answer has yet been given to the question of which delay time is the 
right choice. For an infinite number of noise-free data points, there is no restriction 
for the delay time (Takens, 1981). Clearly, for a finite set of data, r cannot be 
chosen arbitrarily large. On the other hand, a too small delay time introduces strong 
correlations of the components of the vectors -~+i. This may change the dimension 
estimate in an unpredictable manner. Often a scatterplot of zt+~- against zt (return 
map) can help to choose a delay time. For many low-dimensional systems, the 
points in the return map are centered close to the diagonal for small delay times T, 
due to short-term correlations, and start to spread out with increasing delay time, 
indicating that the correlations decrease. The value of the delay time where this 
transition takes place gives a reasonable estimate of the delay time to be used in the 
embedding procedure. Return maps with different delay times ranging from 1 to 
5000 were made for portions of the data sets. In Figure 4 two examples are shown 
with delay time 1 and 1000. Already for a delay time of 1, the points are not too 
close to the diagonal. For increasing values of the delay time, no clear transition 
as described above occurs. Return maps of the other time series give the same 
result, which confirms the conclusion that there is no characteristic correlation 
time scale in our measurements of atmospheric turbulence. Hence, the return maps 
do not reveal a characteristic delay time. Therefore, we choose the time of the first 
zero-crossing of the short-term autocorrelation function as delay time. To test the 
influence of the choice of delay time, the dimension calculations are carried out 
with different delay times as discussed below. 

For a fixed embedding dimension, the time series of vectors ~+i in the embed- 
ding space is used to calculate the so-called correlation integral proposed by Grass- 
berger and Procaccia (1983): 

1 
C ( r , N ) -  N2 ~ H ( r - [ 7 i -  751 ) , (2) 

% 3 : 1  

where H(x) is the Heavyside step function and 171 denotes a distance measure 
in the embedding space. Hereafter the Euclidian distance is always used. The 
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Fig. 4. Return  map of  a hor izontal  wind componen t  for observat ion  per iod #1. In the left chart, the 
delay t ime is 1 ; in the right chart  the delay t ime is 1000. 

correlation integral (2) counts the relative frequency of pairs whose separation is 
smaller than the scale r. The correlation dimension is then defined as 

D2 = lim lim l o g C ( r , N )  (3) 
~- -+oN~ logr  

In practice for a finite set of data with discrete time resolution and finite accuracy, 
neither of the limits in (3) can rigorously be performed. But in a plot of log C(r,  N)  
versus log r, a linear part appears for intermediate values of r. Its slope is taken 
as an estimate of  the correlation dimension. The range of this linear region can 
be enlarged by changing the original definition of  the correlation integral (2) by 
considering only vectors which are at least W time steps apart (Theiter, 1986), 

2 N N - n  

n = W  i=1 
(4)  

For W = 0, self-pairs are included, whereas W = 1 corresponds to the standard 
Grassberger-Procaccia algorithm. A discussion of the effect of inclusion of self- 
pairs is given in Smith (1988). 

For numerical purposes, some additional modifications are made to the original 
Grassberger-Procaccia algorithm. First, not the full matrix of distances between 
all pairs of vectors in the embedding space is computed, but a set of M reference 
points (some thousand) is selected for which the distances to all other points 
in the embedding space are determined. This still leads to good statistics and 
reduces the required computation time drastically. Furthermore, an additional free 
parameter is introduced in the construction of the vectors in the embedding space. 
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Not each point in the embedding space is taken into account, but only points 
___4 ----+ a t ime steps apart are used, thus v ] = ( z l , x ] + ~ - , . . . , a : ] + ( ~ _ l ) ~ )  and v 2 = 

(Zl+~, Zl+,+~-, ..  9 x ]+~+(~- l )~)  and so on. A value of a greater than one leads 
to a reduction of  required computing t ime and can also improve the extension of 
the scaling range in the log C(r, N) versus log r plot. 

Once the delay t ime is fixed, the correlation dimension of  the system is calcu- 
lated for different dimensions of  the embedding space. The maximal embedding 
dimension is chosen in such a way that there is still a reasonable scaling range of 
the correlation integral as a function of  size r. For the present data, we found 12 as 
a maximal  embedding dimension. This is in good agreement with the theoretical 
estimate of  13 given in Nerenberg and Essex (1990). 

In order to eliminate the diurnal cycle, the data are split into segments of one 
day length, corresponding to 1.8 • 106 data points. The correlation integrals are 
calculated for each one-day segment and then averaged. In Figure 5 a graph of  the 
correlation integral versus the scale r is shown for t ime series #1 with a delay time 
v = 1500 and different embedding dimensions. For each embedding dimension, a 
linear range shows up in an intermediate range of  r. 

In Figure 6, the resulting correlation dimension as a function of the embedding 
dimension is shown for all four t ime series of  horizontal wind component.  For none 
of  the t ime series does the correlation dimension saturate with increasing embed- 
ding dimension, as one would expect  for a t ime series stemming from a system 
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with an underlying low-dimensional attractor; see also the next section. How- 
ever, the results deviate quite strongly from the diagonal on which the correlation 
dimensions of infinitely long purely random time series would fall. 

As neither the return maps nor the graphs of the autocorrelation function could 
unambiguously reveal a proper delay time, the dimension calculations are per- 
formed with different delay times. In Figure 7, the correlation dimension as a 
function of the embedding dimension is shown for time series #3 for different 
choices of delay time. However, for none of the delay times between 1 and 10,000 
does the colTelation dimension saturate with increasing embedding dimension. 

4. Comparison with Random Noise 

In order to see how much of the deviations of the correlation dimensions from the 
diagonal in Figure 6 is caused by the finite length and accuracy of the measurements, 
different kinds of random noise are generated which have the same length and 
accuracy as the observed data. These synthetic data are used as a null hypothesis in 
order to decide whether the observed data can be discriminated from stochastic data 
by means of a dimension analysis. Autoregressive processes of first order, AR(1), 
and of second order, AR(2), are generated (Priestley, 1981). They are described by 

AR(1) : x~ + alX~-I = %, (5) 
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AR(2) : x,~ + c~]x~_] + OZ2Xn_ 2 = ~n,  (6) 

where ~ is white noise with mean zero. The variance of e~ is chosen in such a way 
that the variance of x~ agrees with that of the observed wind data (see Table I). 

The parameters c~i of the autoregressive processes are not obtained from the 
autocorrelation of the first few time lags as standard procedures do (Priestley, 
1981), but in an overall sense. They are estimated from the average decay and 
period of the short time autocorrelation function (see Figure 2a). In this way, we 
obtained for the AR(1) process O~ 1 = -0 .9984 and for the AR(2) process c~] = 
-1 .99839 and c~2 = 0.998395. Setting initial values equal to zero, random time 
series of length 10 7 a r e  simulated. The results of the dimension analysis is shown 
in Figure 9. There is no significant difference to the corresponding findings from 
the observed wind data. 

The other type of random noise is constructed by generating a process with sim- 
ilar power spectrum like the observed one but with random phases (Percival and 
Walden, 1993). The Fourier transform of the phase-randomized signal is construct- 
ed by taking the amplitude proportional to the square root of the power spectral 
density of the observations, and the phases are randomly chosen from a uniform 
distribution of the interval (0, 2~r). The time series is obtained by a Fast Fourier 
backtransform. In order to demonstrate how a phase-randomization influences the 
estimation of the correlation dimension of a low-dimensional chaotic signal, a time 
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series of length 20,000 of the Lorenz model (Lorenz, 1963) was generated. The 
Lorenz model is described by three ordinary differential equations (Lorenz, 1963) 

2 = - a X  + aY, 

? = - X Z  + ~ X  - Y ,  

(7) 

(8) 

2 = X Y -  bZ. (9) 

The parameters are chosen as in Lorenz (1963), namely ~r = 10, b = 8/3 and ~ 
= 28. The numerical integration is performed using a fourth-order Runge Kutta 
method (Press et al., 1992) and a time step of 0.01. The X variable is taken 
as a scalar time series stored every 0.25 time units. The power spectrum of the 
resulting time series follows closely an exponential decay S ( f )  o< exp( -5 .55f ) .  
The correlation dimension of the original time series and the phase-randomized 
time series (of length 214 ) are shown in Figure 8. The dimension of the original 
time series saturates with increasing embedding dimension at the known value of 
D2 = 2.05 (Grassberger and Procaccia, 1983), whereas the dimension of the phase- 
randomized signal follows closely the diagonal as is expected for a random signal. 
Hence, for a system governed by a low-dimensional attractor, the dimensions from 
the phase-randomized time series clearly deviate from the dimensions obtained 
from the original time series. 

The phase-randomized signal modelling the observed wind data is generated by 
a power law f -  2.54 for the power spectral density and random phases as described 
above. A time series of length 22o is obtained by Fast Fourier backtransform. The 
resulting correlation dimensions for the phase-randomized signals are shown in 
Figure 9. They also deviate strongly from the diagonal and show a very similar 
behaviour as the ones of the observations in Figure 6. In contrast to the phase- 
randomized data from the Lorenz system, the phase-randomization of the wind data 
does not lead to an increase in the correlation dimension. No difference between the 
dimensions of the three kinds of random noises in Figure 9 and the measured wind 
data can be seen. Thus, the time series of observed horizontal wind components can 
not be distinguished from random noise with the same autocorrelation function. 
The same dimension calculations are also performed for the absolute value of 
the horizontal wind vector. Qualitatively the same picture emerges; no sign of a 
low-dimensional attractor can be detected. 

5. Conclusions 

Fast-response wind measurements were performed in the lower atmospheric bound- 
ary layer with an ultrasonic anemometer. The time series of single horizontal wind 
components as well as of the horizontal wind speed were analyzed with tools 
developed in the investigations of deterministic chaotic systems. The correlation 
dimension was estimated by means of a modified Grassberger-Procaccia method. 
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The length of  the t ime series al lows a reliable est imate of  the correlation dimen-  
sion up to about  six, or correspondingly up to an embedding  dimension of  about  
thirteen. This is far beyond  the l imit  reached by  earlier, shorter data sets as can 
be seen in Figure 3 of  Tsonis et al. (1993). No sign of  a low-dimensional  attrac- 
tor could be detected within this range. Different types of  random signals with 
similar  autocorrelation or s imilar  power  spectrum like the observed ones, were 
numerical ly generated. A compar ison of  the dimension estimates from the random 
t ime series revealed no differences to the dimensions  obtained for the wind data. 
Therefore,  with these methods  the wind data can not be dist inguished f rom random 
noise. Similar  negative results for other t ime series on different t ime scales were 
reported in Zeng et al. (1992). In Poveda-Jaramil lo  and Puente (1993) sonic wind 
data like the ones presented here were investigated and a low-dimensional  attractor 
was found, however,  for rather short t ime series of  18,000 data points. The impor-  
tance of  the amount  of  required data for  the est imation of  attractor dimensions has 
been reviewed in Tsonis et al. (1993). In this paper, we emphasized the impor-  
tance of  compar ing  the natural data with random noise having the same statistical 
characteristics. 
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