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Decay of metastable states with discrete dynamics
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We consider the escape from invariant sets of one-dimensional piecewise linear maps which are addi-
tively disturbed by weak Gaussian white noise. The escape rates from point attractors and from strange
invariant sets in the vicinity of the crisis at fully developed chaos are analytically determined and com-
pared with results from numerical simulations. Both situations are combined resulting in a model with a
point attractor which has a strange invariant set as basin boundary. Numerically a nonexponential de-
cay of the attractor is found that can be described by a Markovian three-state model with transition rates

known from the previous analysis.
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I. INTRODUCTION

A basic property of many nonlinear dissipative dynam-
ical systems is the coexistence of different basins of at-
traction. In a realistic description of most experimental
situations one has to include the influence of random fluc-
tuations on the system which may lead to transitions be-
tween these basins. Hence the decay of metastable states
is of interest for various scientific areas and has been the
subject of investigations for many decades [1,2].

In this paper we consider a one-dimensional dynamics
in discrete time in the presence of Gaussian white noise.
In comparison with a time-continuous system, a map
may show a much richer behavior in one dimension such
as, for example, periodic and strange invariant sets. At
the same time, a nonlinear noisy map violates the princi-
ple of detailed balance even in one dimension [3] and, as a
consequence, is much more difficult to handle [4-7] than
the corresponding time-continuous system [8]. Both the
rich dynamical behavior and the difficulties due to the ab-
sence of detailed balance are also found in continuous-
time systems in more than one dimension [9].

Further, we restrict ourselves to piecewise linear maps
which are disturbed by weak additive noise. The assump-
tion of weak noise is crucial since at a too high noise level
metastable states lose their identity and the rate concept
becomes meaningless [2]. The other assumptions, name-
ly, piecewise linearity of the map and additive noise cou-
pling, are of a technical nature since, due to the lack of
detailed balance, closed analytical expressions for rates
are usually not available for more general processes in
discrete time [10].
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In Sec. II we consider the simplest case of escape from
a basin of a point attractor. We adapt the basic idea of
the reactive flux method [11] to processes in discrete time
and in this way not only obtain the leading order
behavior of the rate in the noise strength [10,12] but also
all algebraic finite-noise corrections. In Sec. III we study
hyperbolic maps in the chaotic regime near the crisis at
fully developed chaos, considering in particular a strange
attractor below the crisis, a marginally stable strange in-
variant set at the crisis, and a strange repeller beyond the
crisis. In the latter case there is transient chaos governed
by exponential decay even in the absence of noise [13].
The analytical results are compared with numerical simu-
lations and the relation to previous investigations of simi-
lar'systems is discussed.

In Sec. IV the situations considered in Secs. II and III
are combined: Starting at a point attractor we investigate
the decay of this metastable state in the case where the
escape paths have to cross a strange invariant set. In par-
ticular this includes the case in which the basin boundary
of the point attractor is a fractal set. We believe that this
scenario is of rather broad interest due to the ubiquitous
presence of both fractal structures [14] and noise [15] in
nature. The escape over fractal basin boundaries has
been observed in Josephson junctions [16], in a model for
bistable chemical reactions [17], in the driven damped
pendulum [18], and in a discrete-time version of
Newton’s second law including friction and fluctuating
forces [19]. A similar two-dimensional situation has re-
cently been investigated in [20]. We show in a numerical
simulation that, in contrast to Secs. II and III, the decay
can no longer be described by a single rate, i.e., it does
not follow an exponential law if the time to reach the
strange invariant set is comparable to the time to leave it
again. We describe this behavior by means of a Markovi-
an three-state model which, in combination with the
analytical results of Secs. II and III, leads to excellent
agreement with the numerical simulations. We close
with a summary of our main results and a discussion of
some interesting related problems for future investiga-
tions in Sec. V.
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II. DECAY OF A POINT ATTRACTOR

In this section we consider a piecewise linear map with
a point attractor and an unstable fixed point disturbed by
weak Gaussian white noise. While in [5,10,12] the rate of
escape from the point attractor over the unstable fixed
point was determined by means of Kramers’s flux-over-
population method [1], here we treat a nonstationary sit-
uation in which an initial ensemble of particles is distri-
buted near the stable fixed point and eventually decays
away. This approach not only gives the weak-noise limit
of the decay rate but also all algebraic finite-noise correc-
tions and turns out to agree very well with numerical
simulations.

We consider a one-dimensional dynamical system in
discrete time n additively coupled to independent, identi-
cally distributed Gaussian noise &, :

_g2
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The noise strength € is assumed to be small and the map
f(x) to be piecewise linear with simple stable and unsta-
ble fixed points at x; >0 and x, =0, respectively,

(2.1

flx)=x,+s(x—x,) for x>x,, ,
2.2)
f(x)=ux forx=<x, ,

where x,, is the matching point of the two linear pieces

1_
Xm =7 _i X, . (2.3)

The stability properties of the fixed points x, and x, re-
quire # >1 and —1<s <1. For the sake of convenience
we further restrict ourselves to non-negative values of s.
Then, R, is the basin of attraction of the stable fixed
point x, whereas R_ may be considered as the basin of an
attractor at — oo.

From the discrete-time Langevin equation (2.1) one
finds for the transition probability P(x|y) to get from y
to x in one time step that

P(xly)= [ des(x—f(y)—EIP(E)

—_1 e —x—fPre
i3

(2.4)

The time evolution of the probability densities W,(x) to
find the system in state x at time n is governed by the
master equation

J
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Both integrals on the right hand side (rhs) of (2.9) can
be exactly expressed as products of a Gaussian and a
complementary error function. Unfortunately, the fur-
ther time evolution of the density cannot be followed ex-
actly. Therefore we give an approximate form of W,(x)

Wl(x )=

172
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W,(x)=[" dy P(x|y)W,(») . 2.5

The time-dependent decay rate k(n) is given by the rela-
tive decrease of the population within the basin R of the
point attractor x;:

f;dx W,,_l(x)—fowdx W,(x)
fowdx W, _i(x)

k(n)= (2.6)

Since the total population is conserved the decrease of
population of R, equals the increase of population of
R_. Therefore the rate can equivalently be expressed as

[® axw, - [° dx W, (x)
k(n)=-"== e
fo dx W,_,(x)

2.7)

In the limit of small noise, in which a rate description is
meaningful, the rate itself is very small, i.e., the number
of particles leaving R, in one time step is always much
smaller than the actual population of R . Therefore the
numerator of (2.6) is given by the difference of two large
numbers. On the other hand, when the initial distribu-
tion is concentrated about the attractor x, the population
of R_ remains much smaller than that of R for quite a
large number of iterations. Being the difference of the
smaller populations of R_ the numerator of (2.7)
represents a more reliable expression of the flux, particu-
larly when the time dependence of the density is only ap-
proximately known.

At sufficiently small noise a clear-cut separation of two
different time scales can be observed: A very slow one is
determined by the inverse 1/k of the asymptotic rate
k=lim,_, ,k(n) and a fast one describes the rate of con-
vergence towards this limit. These time scales are clearly
related to the fast relaxatiorial motion inside the basin
R,, which establishes there a quasi-invariant density
W(x ), and to the infrequent escape from R, , which leads
to a slow exponential decay of the quasi-invariant state
[2,11].

In order to determine the asymptotic rate k we start
with a Gaussian initial distribution Wj(x ):

172

1—s2 e-—(l—sZ)[x—xs]z/e

Wo(x)= , (2.8)

which according to the master equation (2.5) goes in one
time step over into W,(x ):

e —((1=sDy—x,P+[x—up}) /e

(2.9)

I
whose time evolution can be determined for a sufficient
number of time steps with a relative error being exponen-
tially small in the noise strength €. In the first integral of
(2.9) the error function assumes the constant value 2 be-
sides exponentially small deviations provided x <x, with
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_ I+ (u—s)u—1)
= x
u

x, - (2.10)

Consequently, for x <x, the first integral is well approxi-
mated by a Gaussian function which reads as follows:
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where a,=(1—s2)/[1—s2+u?]. For x >x, the error
function rapidly decreases, and consequently the right
hand side of Eq. (2.11) represents an upper bound to the
first integral.

The second integral of Eq. (2.9) can be approximated in
an analogous way. As we restrict ourselves to nonnega-
tive s the integral coincides with W(x) for all x > x, be-
sides an exponentially small relative error:

12
f © dy |1=s®
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(2.12)
where
o dts—u (2.13)

s m:

For x values smaller than x, the multiplying complemen-
tary error function decreases and the right hand side of
(2.12) represents an upper bound to the second integral of
Eq. (2.9). With s >0 one finds x, <Xx,, i.e., the ranges of
validity of the Gaussian approximations (2.11) and (2.12)
overlap. The Gaussians intersect in the point x:

(1—s*+u?)!?—y
(s +ud) A1

Xo= , (2.14)
which falls into the interval [x,,x, ] for s 20. For x <x,
the first integral of Eq. (2.9) dominates and for x > x, the
second one. The matching point x,, is always larger than
xq. Since sufficiently far away from x, the Gaussian ap-
proximations (2.11) and (2.12) differ from each other by a
factor which is exponentially large in €, the first term in
(2.9) may be neglected for x > x,, and the second one may
even be replaced by the Gaussian contribution (2.12) for
x <x,. In this way we find the following approximation
for W (x) which deviates only by an exponentially small
function from its true form:
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W (x)=06(x,, —x)

3
(2.15)

where O(x) equals unity for positive x and vanishes oth-
erwise. The further time evolution can now be obtained
by means of the same arguments leading to the following
recursive relation:

1/2
—a, [x—u"xg

— ]2/6
W (x)=0O(x,, —x) e +W, _(x),

(2.16)

where a,=(u?—1)(1—s?)/[u*(u?—s?)—(1—5%)]. A
different derivation of the density W,(x) in the limit
n — o may be found in Ref. [10].

With (2.16) the rate k(n) readily follows from Eq. (2.7)
yielding besides exponentially small corrections in €

(u2—1)(1—s2) 2

[u?—s2—(1—sHu "]e

k(n)=serfc |x,

2.17)

where erfc(x):=27"'2 [ exp{ —y?}dy is the comple-
mentary error function. Indeed, this result shows the ex-
pected convergence for large n and yields for the asymp-
totic rate k =lim,, _,  k(n)

k=1lerfc(V'Ad/e) , (2.18)

where A¢=xXu?—1)(1—s2)/[u?—s?] is the difference
of the so-called generalized potential at the fixed points
x, and x=0 [3,10]. In an equilibrium system the ratio
A¢ /e corresponds to the barrier height divided by the
thermal energy. Since this quantity is larger than unity,
one may use the asymptotic series expansion of the com-
plementary error function:

e * 11 131
i =—|l-——+=-=—
erfc(x) Vo 22 T2k
135 ] 219
x
This yields for the rate £
172 2
=|_¢€ ~Ad/e 1 e (3] € | _
47Ad 2 Ap 4 | Ap
(2.20)

The factor in front of the square brackets on the right
hand side represents the leading part of the rate as it was
obtained in Ref. [10]. As for the rate of a one-
dimensional Smoluchowski process in continuous time
the leading part is exponentially small in the barrier
height measured in units of the noise strength [1,2], but
in contradistinction to a Smoluchowski rate the preex-
ponential factor depends on the noise strength. In the
square brackets a series in powers of the ratio of the noise
strength and the barrier height describes the algebraic
finite € corrections to the leading order behavior.
Without going into further details we note that the ex-
pression (2.18) remains valid for negative values of s pro-
vided s > —u /[u +1]. For smaller values of s Eq. (2.18)
is no longer correct as may be seen from Table III below.
The particular form of the time-dependent rate (2.17)
only applies for the initial density (2.8). Although in gen-
eral different initial densities lead to different time-
dependent rates, we may nevertheless expect that not
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only the asymptotic rate k but also the time scale n, on
which the convergence of k(n) takes place are indepen-
dent of the initial density provided it is concentrated
around the stable fixed point x;. From Eq. (2.17) one

finds for n,
/ Inu .

For small noise this time scale is always much shorter
than the inverse rate 1/k confirming our assumption
about a clear-cut separation of time scales, see the discus-
sion below Eq. (2.7). Finally, we note that for a super-
stable fixed point with s =0 any initial distribution that
vanishes for x <x,, is mapped in one time step on the
density Wy(x) given by (2.8) and consequently leads to
the time-dependent rate (2.17).

For a numerical check of our results we proceed as fol-
lows: We numerically simulate trajectories of the
Langevin equation (2.1) with initial condition x,=x; un-
til a trajectory passes a threshold x,,, which lies well
beyond the unstable point x, =0, or until a properly
chosen maximal time T has elapsed. The threshold x,;, is
chosen such that the probability of return into the initial
domain of attraction becomes negligible. From N realiza-
tions we estimate the probability P(n) that the threshold
xy, has been passed for the first time after n time steps,
n =T. Typical values in the simulations leading to Figs.
1 and 3 and Table IV are 10*< T <10*and N=5X10°.

In order to find a reasonable value for x,;, we note that
the probability p(x,,) to leave the interval [ — 0 ,x,, ] is
approximately given by the probability to leave it in one
step: Since for sufficiently large values of x,; the proba-
bility flows almost deterministically, a flow out of the in-
terval in two or more steps can safely be neglected.
Hence one finds

Ag 1-s

€ yl—gs?

ny=In (2.21)
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[u—1)xy \/Ee_[“—llz"tzh/e
plx)=serfe | =2 ]Z 2Walu—1xgl
(2.22)
where we made use of (2.19) (e.g., for [u —1]2x% /e=5

and 10, p(x,,) is about 1073 and 10~>, respectively). In
the simulations we choose x,, such that p(x,,)<107*
The escape probability P(n) coincides with the flux out
of the interval [x,;, o ]. It reads in terms of the densities
at times n —1 and n, which follow from an appropriate
initial density by means of the master equation (2.5):

n)—f dx —W,(x)].
In analogy to Eq. (2.6) the flux is given by a time-

dependent rate k(n) and the population of the interval
[xhy o0 ] at time n —1:

[Zdx(w,_(x)—W,
Xth

(%) (2.23)

x)]=k(n) [ “dx W,
*th

—|(X) :

(2.24)

With the initial condition [ x,@% Wo(x)=1 the rates
k(n) can be expressed in terms of the escape probabilities
P(i),i<n:

En)=—2t)

1-3 P(i)

i=1

(2.25)

We note that this relation is useful for the determination
of the time-dependent rate and its asymptotic limit from
numerical simulations. On the other hand, Egs. (2.23)
and (2.24) can be solved for the escape probabilities P(n)
as a function of the rates k(i), i <n:

P(n)=[1—k(D][1-k(2)]- - [1—k(n—1)]k(n) .

(2.26)

TABLE I. The time-dependent rates k() defined in Eq. (2.24) for the noisy map (2.1) and (2.2) with
x,=1, s=0, u=2, €=0.1, and initial distribution (2.8). Columns (1) and (3): results from numerical
integration of the master equation according to (2.28) with thresholds x,;, = —0.5 and — 1, respectively
(the numerical error is below 0.1%). Columns (2) and (4): theoretical results (2.27) for the same thresh-
olds x,;, =—0.5 and — 1, respectively. In agreement with the theory, for large n the rates approach an
asymptotic value independent of the threshold. Note that for x,;, = —1 the rates are approximately
shifted by one time step in comparison with x,;, = —0.5.

n (1 ) (3 4
1 2.864% 1077 2.867X1077 9.867Xx 10710 9.866 X 10710
2 5.623X107¢ 5.627X10°¢ 5.318%x1077 5.318 X 1077
3 1.860X 1076 1.869X10~¢ 6.321X107° 6.338X107¢
4 3.185%107° 3.222%107° 1.905x 1073 1.919% 1073
5 4.115X107° 4.187X107° 3.204X107° 3.242X 1073
6 4.662X107% 4.743%107° 4.121X107° 4.184X107°
7 4.957%X107° 5.051%107° 4.663X107° 4.745X107°
8 5.110x 1073 5.211%107° 4.957X107° 5.051x107°
9 5.188X10°° 5.292X107° 5.110x107° 5211X107°
10 5.228X107° 5.334X107° 5.188Xx107° 5.293%x107°
15 5.266X107° 5.374X10°° 5.265X107° 5.373X 1073
20 5.267X107° 5.376X10° 5.267X1073 5.376xX107°
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FIG. 1. The probability P(n) to leave the domain [x,, ] at
time n for the first time 0=<n < T=100 for the noisy map (2.1)
and (2.2) with initial condition x _; =x;. The values of the pa-
rameters are ¥ =2, s=0, x;=1, x;,;,=—1, and €=0.15. The
dots represent the numerical results from N=5X10° realiza-
tions of the Langevin equation (2.1) and the solid line is the
theoretical prediction (2.26) and (2.27).

Starting from the initial condition Wy (x) given in Eq.
(2.8) one can determine the rate k(n) in the same way as
k(n)in Eq. (2.17) with the following result:

12
k(n)="lerfc (u?—D(1—s?)
2 [u?—s?—(1—sHu 2"
x
X |x, ==, (2.27)
u

which is displayed for a particular choice of parameters
in Table I. Note that the rate k(n) approaches the same
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large-n limit (2.18) as k(n) in Eq. (2.17). Inserted into
Eq. (2.26) the time-dependent rates determine the
theoretical escape probabilities which are compared to
the corresponding results from a numerical simulation in
Fig. 1.

If € is small or if a high accuracy of the rate k(n) is re-
quired, the simulation of the Langevin equation (2.1) be-
comes extremely expensive. Alternatively, one may nu-
merically iterate the master equation with an absorbing
region for x <x,;,. Then the rate k(n) is given by the ra-
tio of the probability being absorbed at time n and the
population of the interval [x,, « ] at time n —1:

[N [ dy PxlyIW, )
- [Paxw, \(x)
*th

k(n) (2.28)

It turns out that this procedure needs less numerical
effort for small noise € than simulations of the Langevin
equation. Starting with the initial distribution (2.8)
[strictly speaking with an additional factor ©(x —x,,) on
the rhs] it is possible to compare the numerical results
from (2.28) with the theoretical prediction (2.27) also for
s7#0. Table I shows the convergence of k(n ) for different
values of the threshold x,,. Tables II and III give addi-
tional numerical evidence that the asymptotic values of
the rates k(n) and k(n) are independent of x,, and agree
with each other. In summary, the numerical results of
Fig. 1 and Tables I-1II agree very well with our analyti-
cal time-dependent and asymptotic rates. For sufficiently
small noise the deviations indeed are exponentially small
in the noise strength in accordance with the prediction.

TABLE II. The asymptotic decay rate k =lim,_, ,k(n)=lim,_, ,k(n) for noisy maps (2.1) and (2.2) with x,=1 and different
values of €, u, and s. The first number is the numerical rate k,,, from iterated probability densities evaluated according to (2.28).
The number below is the relative difference in percent 100[k — k&, ] /K um to the theoretical results k in (2.18). For sufficiently small
values of the noise strength € the agreement between numerical simulations and analytical results is essentially limited by the finite
numerical accuracy. The agreement is particularly good for small |s| and large u. The number in parentheses gives the same relative
difference in percent but for the leading part of the theoretical result on the rhs of (2.20) without the algebraic corrections in
parentheses. As predicted by (2.20), this relative difference becomes proportional to the noise strength € for sufficiently small e.

€ s=0,u=2 s=0,u=5 s=0.5,u=2 s=0.5,u=S5 s=—0.5u=2 s=—0.5,u=5
0.4 2.093X 1072 1.376 X102 2.216X 1072 2.021X1072 3.202X1072 2.584 X 1072
26 (51) 3.4 (20) 88 (132) 40 (68) 30 (61) 9.5 (32)
0.2 2.789X 1073 9.668 X 10™* 4.605%X1073 2.930x1073 5.760x 1073 3276X1073
11 (23) 0.6 (10) 55 (76) 20 (33) 24 (41) 6.9 (19)
0.1 5.268X107° 5.885X107¢ 2.093x107* 6.461X107° 2.261%107* 6.681X107°
2.0 (8.1) 0.02 (4.8) 27 (36) 5.9 (12) 18 (26) 2.4 (8.7)
0.05 2.158X 1078 2.882X 10710 4.817x1077 3.424X 1072 4.313X1077 3.443%1078
0.1 (3.3) —0.001 (2.5) 9.8 (14) 0.9 (4.1) 12 (16) 0.3 (3.5)
0.025 4.743X 1071 9.459x 1071 2.092X 10712 1.195x 10~ 14 2.064X 10712 1.195x 1074
—0.005 (1.6) —0.001 (1.3) 1.9 (3.9) 0.03 (1.7) 3.3 (5.3) 0.004 (1.7)
0.0125 3.163x 10728 1.416x10°3 5.739x 1072 1.978x10~% 5.688 X 1072 1.978xX10°%
—0.007 (0.8) —0.001 (0.06) 0.09 (1.1) —0.005 (0.8) 1.0 (2.0) —0.002 (0.8)
0.00625 1.967 X105 4.448X10°%° 5.818X 10~ 7.578X10™% 5.815X 10~ 7.578 X 10733
—0.006 (0.4) 0.002 (0.3) —0.005 (0.5) —0.002 (0.4) 0.05 (0.6) —0.002 (0.4)
0.003 125 1.068 X 10106 6.176 X 107136 8.377X1078¢ 1.563 107103 8.377X 1073 1.563 107103
—0.008 (0.2) 0.005 (0.2) 0.006 (0.03) 0.004 (0.2) —0.006 (0.3) 0.004 (0.2)
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TABLE III. The relative difference in percent 100[k —k,, ]1/k pum Of the theoretical result k in (2.18) and the numerical rates k,,
from iterated probability densities in (2.28) for the noisy map (2.1) and (2.2) with x; =1 and different values of s and u for three fixed
theoretical rates kK =1073, 1076, and 107! (from above). As in Table II, the best agreement between theory and numerics is achieved
for small |s| and large u. Theoretically, the deviations are predicted to be given in leading order by a sum of terms of the form
exp{ —c/€}, where c is a non-negative number depending on x;, u, and s but not on €. It follows that at least one of the ¢’s approach
zero for u—1,s—1, or s——u/[u+1]. In agreement with the theoretical prediction mentioned in the main text, the rate formula

(2.18) fails for s < —u /[u +1] and the relative differences explode.

§=09 5§=0.7 s=0.5 s=03 5s=0.1 s=0 s5s=-0.1 s=—03 s=—0.5 s=—0.7 s=—09 u/[u+1]
448 205 132 95 71 62 56 50 63 156 6X10° _
u=1.2 272 113 63 37 22 18 15 15 40 265 6X10° 0.54
187 69 34 17 7.6 5.6 4.3 6.6 38 599 2% 108
275 109 63 38 24 19 16 15 32 146 2X10°
u=1.5 156 54 25 11 4.8 3.0 2.1 3.9 26 282 2X10° 0.6
103 28 10 3.4 0.8 0.4 0.2 1.4 21 507 1Xx10°
210 71 35 18 9.2 6.6 5.1 6.0 20 113 1x10* _
u=2 108 29 11 3.7 1.0 0.5 0.3 1.2 12 159 3X10° 0.6
63 13 32 0.6 0.06 0.009 0.007 0.2 6.6 188 3%x10’
168 48 20 8.7 34 2.1 1.5 2.3 11 66 2X10°
u=3 77 16 4.5 1.0 0.2 0.05 0.03 0.2 3.6 53 1x10* 0.75
40 54 0.8 0.07 0.001 —0.002 —0.002 0.008 0.8 41 1X10°
144 36 13 4.6 1.3 0.66 0.41 0.89 50 31 6X10? _
u=5 59 10 2.0 0.3 0.03 0.005 0.003 0.04 0.8 14 9X 102 0.83
29 2.4 0.2 0.009 0.001 —0.001 —0.001 —0.001 0.06 6.3 2X10°

III. DECAY IN THE VICINITY OF A CRISIS

In this section we study noisy piecewise linear maps
near the crisis at fully developed chaos. It is well known
that above the crisis both with and without noise the sys-
tem rapidly approaches a pseudostationary state obeying
an exponential decay law [13,21]. The analytical and nu-
merical investigations of this section confirm the ex-
ponential decay for noisy maps at and below the crisis.
In the main part we confine ourselves to a particularly
simple map consisting of two linear pieces. Results for
more general cases are stated at the end.

We consider the Langevin equation (2.1) for the hyper-
bolic map f(x ) given by

ux forx=—L/2

flx)= u(x+L)—L forx<—L/2, 3.1)
where the slope u is assumed to be close to 2,
lu—2]<<1. (3.2)

The map f(x) has two unstable fixed points at x =0 and
—L and is symmetric about x=—L /2. For u <2 there
is a strange attractor with basin /=[—L,0]. At u=2
one has fully developed chaos at a crisis, i.e., the unstable
fixed points collide with the marginally stable strange at-
tractor [22]. For u >2 the map f(x) has a strange repell-
er on the interval I [13].

Independent of the actual value of u, the probability
density W,(x) obeys the master equation (2.5). The
time-dependent decay rate k(n) is given by an expression
analogous to Eq. (2.6) in which the integrals are extended
over I rather than R,. In an expression for k(n) corre-
sponding to Eq. (2.7) the integral over R_ is replaced by
one over the complement of I. When one starts with an

initial distribution Wy(x) that is symmetric about
x=—L/2, W,(x) retains the same symmetry for all
n >0, and the rate (2.7) takes the form

L]mdx W;(x)—fnwdx W, _i(x)
f /2dx W"_I(X)

k(n)= (3.3)

Note that the rate k(n ) includes both the escapes to + o«
and — 0 which for symmetry reasons occur with equal
probabilities.

For u >2 there is a decay even without noise. For
large n the rate k(n) converges towards an asymptotic
value k and in the same limit the density W,(x) ap-
proaches a constant value times e ~*" on the strange re-
peller 7 [13]. Hence the asymptotic decay rate k is simply
given by the fraction of the interval I that is mapped out-
side I under f(x), i.e.,
u—2

.

In the absence of noise the strange repeller in I can be
left only through a small vicinity of x =—L /2. A later
return into I is impossible. In the presence of noise, es-
capes are possible both for ¥ >2 and u <2. As in the
deterministic case, a typical noisy escape path also visits
the neighborhood of x =—L /2. From there it continues
to the neighborhood of either x =0 and —L. Each of
these unstable points may be recrossed several times until
the path either definitely leaves the interval I or is again
captured in I. Escape paths that do not visit the neigh-
borhoods of x=—L /2 and x=—L or 0 are extremely
infrequent so that they can be neglected. However, the
influence of the dynamics in the vicinity of the unstable
fixed points on the escape rate is important and we take it

k=

(3.4)
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fully into account. In previous works it has often been
neglected [23-25] or has been dealt with only approxi-
mately [26,27].

Before discussing the general case we briefly mention
two limiting cases that should be contained in the full re-
sult: if ¥ >2 and € is sufficiently small, direct escapes
from the vicinity of x=—L /2 without backscattering
near either x =0 or — L dominate; under these conditions
we expect to recover the deterministic rate expression
(3.4). On the other hand, for u <2 and € sufficiently
small, direct escapes from x =—L /2 are rare and the
rate is dominated by the exits over the unstable points at
x=0 and —L. In this case, the rate can be determined
along the line of reasoning outlined in Sec. II. It results
n [10]

372
k ‘/E u2 e—(uz—l)uz/uz (3 5)
2VruLv? | u?—1 ’ )
where
_ L u-2
v Ve 2 (3.6)

The assumptions in the derivation of this result are
1>>2—u>Ve/L,ie,v<<—1.

Now we come back to the general case and construct a
time-dependent symmetric solution of the master equa-
tion (2.5) for the map (3.1) from which the rate can be
determined in an analogous way as in Sec. II. For this
purpose we differentiate the master equation with respect
to x and obtain

W’I,+1(x)=f_ L/Z_LW (y)

—[x+L- u(y+L)]

© _dy 9 ~lx—uwlte 3.7
n Ve (y)axe . 3.7
The derivatives with respect to x on the right hand side
can be expressed in terms of the derivative with respect
toy: 3/0x — —u " '3/dy. A subsequent partial integra-
tion then yields

W'I‘H(X):—f—wuzu\/n—e W (pe™ [x+L+up)/e

®©

W (y)e—[x uy1?/e

—L/zuv e
wW,(—L/2) 2
4+ e—[x+Lu/2] /€
uvVmre {
_e—[x—L(u'—Z)/Z]l/E} , (3.8)
where we used the symmetry W, (—L/2+y)

=W,(—L /2—y) in the first integral on the rhs.
Next we show that the function

. w3 =1 "1
W"(x)z_ul/;r_e ,»§0 uz—u'Zil el
2_
Xexp —;?t;%
u—2 ’
y x—u‘L—2—~
u¥e

(3.9)

solves (3.8) in good approximation if x = —L /2, n >>1,
and the noise strength is sufficiently small,

Ve<<L . (3.10)

Here W is a yet undetermined normalization constant.
As a consequence of the conditions (3.2) and (3.10),
W,(x) has a very narrow peak near x =0. Hence the
lower boundary —L /2 of the second integral in (3.8) can
be replaced by — o for all x €[ —L /2, » ], and the first
integral can be neglected. Similarly, the first term in the
curly brackets is negligibly small compared to the second
one. The integration of (3.9) from x to + o gives

172
_ul=l
2i

ul—y "

W « . —i
Wn(x)=zl—2u erfc{

xu”’
Ve
where v is defined in Eq. (3.6) and W,() has been set
equal to zero in order to obtain a normalizable density.
For x=—L /2 the complementary error functions that
notably contribute to the sum in Eq. (3.11) can be ap-
proximated by erfc( — o« )=2. Since u differs from 2 only
by a negligible amount, one finds W,(—L /2)=W for
n >>1. Finally, it remains to show that W,(x) as given
by (3.9) fulfills the following integral equation:

X —v

l , (3.11)

W,(x)= f_wu\/_ W, (y)e Lxmwive

W —lx—Lw-2/277

- (3.12)
uVme
This can be easily verified by inspection. _
In summary, for x> —L/2, n>>1, Ve<<L, and

|lu—2] <<1, Eq. (3.11) represents an approximate solu-
tion of the differentiated master equation (3.8). With the
symmetry about x =—L /2 the density W,(x) is deter-
mined for all values of x.

In the limiting case v << —1, near the unstable fixed
points, the density W,(x) in Eq. (3.11) has the same
structure as the corresponding one for the escape over a
single fixed point; see Eq. (2.16). This is in agreement
with the findings of Refs. [3,10]. In the opposite limit
v>>1, W,(x) approaches a constant value on the inter-
val I=[—L,0] and in particular on the strange repeller
as one may expect from the noiseless case as discussed in
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the paragraph above Eq. (3.4). However, it does not
properly decrease in time with the fact e ~kn_ But this er-
ror is completely negligible on the relevant time scale on
which the time-dependent rate k(n) converges to its
asymptotic value; see Egs. (3.13) and (3.15). A similar
method for the determination of invariant densities of
higher-dimensional noisy maps has recently been em-
ployed by Garcia-Pelayo and Schieve [28], however, with
much less explicit results than those presented here.

Next we evaluate the time-dependent rate (3.3) follow-
J

o e nert Wie1 172 u"
kin)= J, o ecl wiou Ve v”
ulL
By means of the identity
fowdx erfc(ax +b)= exP{_bz}/‘Z}—berfc(b) ,
a>0 (3.14)

the remaining integral can be performed. In the limit

ing from the density (3.11). The integral in the denomi-
nator of the rate (3.3) is easily performed. As the deriva-
tive W,(x) has a dominant peak near x =0, on the inter-
val [ —L /2,0] the density W,(x) almost equals the con-
stant value W except within a small vicinity of x =0.
Hence the denominator of the rate can be approximated
by WL /2. In the numerator of the rate all but one term
stemming from the sum in Eq. (3.11) cancel each other
leading to the following expression for the rate valid for
n>1:

(3.13)
!
n— o the resulting asymptotic rate reads
‘/;. u2 l/ze—(uz——lluz/u2
k=—=
ulL ul—1 Vi
24 172
+v erfc [— u 3 vl , . (3.15)
u

TABLE IV. The theoretical rate k given by (3.15) at different values of the parameters e/L? and
v=(L/V'€)[u—2]/2. The number below the theoretical rate is the relative difference in percent
100[ K,y —k ]/k to the numerical rate k,,, from numerical calculations of the probability densities
W,(x) as described at the end of Sec. II but for the hyperbolic map (3.1). The numerical precision is
about 0.1%. The numerical effort becomes very large for small e/L? and large negative v. For v=1
and —2 the relative differences 100[kym — Kasymp ]/ Kasymp t0 the asymptotic theoretical rates k,gym, in
(3.4) and (3.5) are of the order 4% and 40%, respectively. Theoretically, the relative difference between
the numerical and analytical rates are predicted to be of the order O(k) for u=2 and
[O(k)+O0(2—u)] for u <2, where the additional term O(2—u) is introduced through the approxima-
tion of the denominator in (3.3) by W, _,(—L /2)L /2. When one uses the same approximation also for
the evaluation of the numerical rate k., one obtains considerably smaller relative differences
100[ k., —k ]/k to the theoretical rate k in (3.15) as given by the numbers in parentheses. Also for
u =2 the results are slightly improved in this way. For large negative v the deviations are now mainly
governed by exponentially small terms in € similar to the situation in Sec. II. For some parameter
values for which the numerical effort remains reasonable, we also determined numerical rates K.,
from simulations of the Langevin equation (2.1) analogous to those described at the end of Sec. II.
These results are again given in the form of relative differences 100[ k., —k ]/k to the theoretical rates

k in (3.15) as third lines in the table.

L u-—2
=== — -1
v Ve 2 2 0 1
ﬁ =102 5.410x10™* 5.569x1073 3.257X1072 9.449X 1072
82 (12) 36 (4.7) 10 (1.6) 1.3 (0.3)
78.5 35
ﬁ =10"3 7.871%X1073 1.479X 1073 1.030X 1072 3.194X 1072
28 (2.1) 15 (1.2) 4.9 (0.5) 0.7 (0.1)
15.3 4.2
% =10"* 2.068X10™3 4.450X10™* 3.257% 1073 1.033%X 1072
11 (0.7) 5.9 (0.3) 2.0 (0.1) 0.3 (<0.1)
6.1 1.9
267_ 1073 6.194Xx10°° 1.386X10™* 1.030X 1073 3.289x1073
4.2 (0.2) 2.3 (<0.1) 0.8 (<0.1) 0.1 (<0.1)
0.7
§= 10°¢ 1.926 X107 4.363X107° 3.257Xx107* 1.042Xx1073
1.6 (<0.1) 0.7 (<0.1) 0.3 (<0.1) <0.1 (<0.1)
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This rate expression is compared in Table IV with the
asymptotic rates both from numerical integration of the
master equation and similar simulations of the Langevin
equation, such as those explained at the end of Sec. II.
The different numerical methods yield basically identical
results which can be viewed as the exact ones. For
sufficiently small noise strengths €, the theoretical rate
(3.15) agrees very well with the numerical results. For
large €, the deviations of the theoretical rates from the
exact values have two origins, namely, the deviations of
the approximated density (3.11) from the exact time-
dependent solution of the master equation (2.5) for the
map (3.1) and the approximate treatment of the integral
in the denominator of the rate (3.3). In order to estimate
the influence of the latter approximation, we implement-
ed the same approximation in the rate calculation based
on the numerical integration of the master equation. The
resulting rates deviate considerably less from the theoreti-
cal rate; see Table IV. Hence a major part of the errors
can be avoided by a more careful evaluation of the
denominator of the rate. Closer inspection shows that
the approximate solution of the master equation leads to
a relative error of the order of the rate itself.

For u >2 both conditions ¥ —2<<1 and L >>¢€ are
necessary for a sufficient separation of times scales,
whereas for u <2, the condition u —2 <<1 is of technical
nature in order to simplify the determination of the rate.
In the excluded parameter range rates may be obtained
by means of the methods developed in Ref. [10]. The re-
stricted range of parameters considered here still allows
arbitrary values of v, in particular, [v| may be consider-
ably larger than unity. For v >>1 the first term on the
rhs of (3.15) can be neglected and the complementary er-
ror function approaches erfc(—oo)=2, yielding the
correct limiting behavior (3.4). For v << —1 one can
make use of the expansion (2.19) in the second term on
the rhs of (3.15) leading to the correct limiting behavior
(3.5).

For u=2 one has v=0 and (3.15) takes the simple
form

Ve
k=—=—.
V3rL

(3.16)

This case has also been investigated in [23] with the result
[see Eq. (4.6) in [23] with =0, B=1, and 2¢/L instead
of €]

p=_Ye 5=V
2

(3.17)

This differs by about 20% from (3.16) and also from the
numerical simulations in Table IV. In the numerical
simulations shown in Fig. 8 of Ref. [23] such deviations
can hardly be distinguished. The case v << —1 has also
been considered in Ref. [23] resulting in an exponentially
leading part of the form exp{ —v?} [see Eq. (4.5a) in Ref.
[23]] in  contrast to our analytic result
exp{ —[(u?—1)/u?v?}, see (3.5), and also our numerical
simulations. As already stated below (3.4), the reason for
these deviations is that in Ref. [23] only direct exits that
pass near x =—L /2 are taken into account while those

crossing the unstable points as well as possible recross-
ings are neglected.

If in Eq. (3.15) u is approximated by 2, but not in v, the
rate assumes a scaling form as a function of the two small
parameters ¥ —2 and Vie/L:

k=Ve/L g([u—2]L/Ve) . (3.18)

For fixed L this agrees with the general scaling law
k=e€%F([u—2]e P) found in [26). The dependence of
the rate on the ratio of L /V e is a consequence of the in-
variance of the Langevin equation (2.1) under the param-
eter rescaling L+>cL,e—>c 2¢, with an arbitrary ¢ > 0.

The same analysis can be generalized to maps f(x)
consisting of M =2 linear pieces with unstable fixed
points at x =0 and —L. On the intervals I,:=[x;_,,x;),
i=1,2,...,M, xog=—o, —L<x;<x,< """ <Xp_,
<0, xpy =+ o the map f(x) may have different con-
stant  slopes f'(x)=u; and extremal values
A :=max,e, f(x) and A;:=—L—ming,f(x). As
for |u—2| in the previous case with M =2, the moduli
|AE| are assumed to be small. For the asymptotic escape
rates k. and k_ towards * oo, respectively, one finds
that

1 Mg uje |
ki=—3 >
2L 2wl | [ (ug— D
w1
Xexp | ——— (A])?
uMG
Az{_l 1/2
+Aferfc | — > AF L,
uMG
(3.19)
. = 1 § 1 u%e 172
T 2L &l | |-
-1
-2
Xexp | ——5— (A7) ]
)
+A; erfc | — 5 A;
uje
(3.20)

The full escape rate k is given by the sum k=k , +k_.

As an example we consider a map f(x) with M =35
linear pieces of constant slope u;=u close to 5 and the
same value for all quantities A;" and A; [see Fig. 2, but
with f(x)=ux for x 20]. Then Egs. (3.19) and (3.20)
simplify to read

2 u’e 12 21
k =k_=_— ex — A2
+ Lu | | (u2—1)r P 2e
1/2
u—1
+Aerfc | — 3 A ,  (3.21)
u‘e

where A:=L[u—5]/8. This formula is compared with
numerical results in Table V.
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TABLE V. The theoretical rate k. given by (3.21) for a map
with five linear pieces at different values of the parameters e/L?
and AL/Ve. The full theoretical escape rate is given by
k=2k_. The number below is the relative difference in percent
100[ k pum — k 17k to the numerical rate k,,, from iterations of
the master equation. For comparable values of the parameters
the rates k =2k, are rather close to those of Table IV, whereas
the relative differences of the theoretical and numerical rates are
reduced by about a factor of 2.

A-‘% ~1 0 1

%= 1072 2.694X1073  2303X1072  7.081X 1072
2 5.9 0.6

% =10"3  7.345x10™*  7.283X107®  2.473X1072
8.8 2.8 0.3

% =10"*  2227X107*  2.303X107®  8.089X107}
3.8 1.1 0.1

Note that for A>0 the ratio of the rates at noise €
and at zero noise, k=K, (€)/k(0), only depends on
the system parameters through the combination
V'u%e/(u*—1)/A. Moreover it increases monotonically
with increasing noise and hence does not exhibit a stabili-
zation of transient chaos by noise [21]. It can be shown
that this atypical behavior is caused the piecewise lineari-
ty of the map f(x) in the neighborhood of the extremal
points [29].

IV. DECAY OF A POINT ATTRACTOR
ACROSS A STRANGE INVARIANT SET

In this section we investigate the Langevin equation
(2.1) for a piecewise linear map f(x) which is a combina-
tion of the maps considered in Secs. II and III: On
R, f(x) has a point attractor at x; >0 with an unstable
fixed point at x=0. On R_ f(x) is a hyperbolic map
near the crisis at fully developed chaos. It has a strange
invariant set located between the unstable fixed points at
x=0and —L. Thus, beyond the crisis the strange repell-
er on I:=[—L,0] represents the basin boundary of the
point attractor x,, whereas at and below the crisis there
are two distinct attractors separated by an unstable fixed
point at the origin. A particular example is shown in Fig.
2.

Now we ask about the probability P(n) of a trajectory
starting at the stable fixed point x; to pass a threshold x,
after n steps for the first time. The threshold x,, lies
sufficiently far below —L such that a recrossing of —L
can safely be neglected. Numerical results for P(n) ob-
tained from simulations of the Langevin equation are
shown in Fig. 3.

In order to understand the behavior of P(n) we discuss
a typical realization of the Langevin equation (2.1) for
weak noise: A trajectory starting near x; will stay in R
for a long time until it eventually passes the unstable
fixed point at the origin. Though the trajectory will typi-
cally stay for quite a number of times steps within a small
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FIG. 2. Typical example of a piecewise linear map f(x) con-
sidered in Sec. IV. At x,=1 there is a superstable fixed point,
f(x)=1 for x 21/u, and below x=1/u there are five linear
pieces of constant slope ¥ ~5 with unstable fixed points at x =0
and —L and discontinuities at y;:=—L[2i(u—1)
—(u—5)])/[8u], i=12,3,4, defined by f(x)=ux for
n<x<1l/u, f(x)=u[x—(y;+y;+1)/2]1—L/2 for y;,;;<x
<y, i=1,2,3,and f(x)=u[x+L]}—L for x <y,. The particu-
lar parameter values we have chosen in this plot are L =4 and
u=5.4.

vicinity of this fixed point and may recross x =0 several
times, it will leave the neighborhood of x =0 after a
much shorter time than the one spent at the attractor and
will either return to the attractor or go to the invariant
set within the interval [ —L,0]. There it stays for anoth-
er long period of time. Eventually, the trajectory will
again visit a boundary region for a comparatively short
time, followed by the next long sojourn in one of the
domains [0, ], [—L,0], or [—,—L]. Since on the
long time scales of the visits of the intervals [0, ],
[—L,0], and [ — «, —L] the trajectory loses its memory
on where it exactly entered these intervals, each interval
can be considered as one single state. Because of this loss
of memory and because of the short sojourn times in the
boundary regions of these intervals, the coarse grained
three-state process is Markovian. The three states denot-
ed by 1, 2, and 3 correspond to the intervals [0, ],
[—L,0], and [—,—L], respectively. The transition
rate k,,; from state 1 to state 2 describes the decay of a
stable fixed point over an unstable one and hence is given
by rate (2.18), i.e., k,; =k. The rates k, and k;, from
state 2 to the states 1 and 3 describing the decay of the
chaotic repeller are given by k. and k_, see Egs. (3.19)
and (3.20), respectively. By construction, state 3 is a lim-
bo state, i.e., the probability to leave it is zero:
ky3=k,;=0. Since the probability to go directly from
the interval [0, o ] to [ — o0, —L ] is negligibly small, the
transition probability from state 1 to 3 also is zero:
k3, =0.

3'éince all inverse rates are assumed to be much larger
than the unit time step we make a continuous-time ap-
proximation of the master equations, reading
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dP(n)

T=—kP1(n)+k+P2(n), 4.1)

dP,(n)

——‘-=kP1(n)'—(k+ +k._ )Pz(n) ) (4.2)
dn

aPyn) _, Py(n) 4.3)
an TR .

where P;(n) denotes the probability to stay in state i at
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time n. Since all realizations start at x,=x,, the initial
conditions are P,(0)=1, P,(0)=0, and P;(0)=0.

The primary quantity of interest is the probability
P(n)=dP,(n)/dn that a realization arrives at the limbo
state at time n. A simple calculation yields

—A

Pm)=(A"'=a7e "—e M) 4.4)

where

0 2000 4000 6000 8000 10000

6000 8000 10000

n

4000

0 2000

0 ‘ :
0 2000

4000

n

6000 8000 10000

FIG. 3. The probability P(n) to leave the interval [x,,, « ] for the first time after n time steps from N =5 X 10° numerical realiza-
tions of the Langevin equation (2.1) with initial condition x,=x,. The map f(x) is given by the example of Fig. 2. The threshold x;,
is chosen at x,, = —L — 1. The bold curves represent the theoretical predictions (3.21) and (4.4)-(4.6) of the Markovian three-state
model. The parameter values are (a) u =5, €=0.18, and L =100; (b) u =5, €=0.18, and L =20; (c) u =5, €=0.24, and L =500; (d)
u=4.8, €=0.2,and L =17; and (e) u=5.05, €=0.2, and L =71. Thus for (a), (d), and (e) k =k, ~1072%; (b) 10 2~k , <<k=10"3;
and (c) 1072~k <<k, =~1073, according to Egs. (3.21) and (4.6). The very small values of the numerical P(n) for the first few n are
an initial effect similar to the behavior shown in Fig. 1. The differences of the numerical and theoretical results are of the same order
as the respective errors of the rates k and k , at the same parameter values. In (d), the thin curve represents P(n) given by (4.4) and
(4.5) but with fitted rates k and k .., thus indicating the excellent agreement of the simulations with the Markovian three-state model.
In the other cases (a)—(c) and (e), such a fitted model cannot be distinguished from the theoretical results.
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k+k, +k_
Ay ;

2

4.5)

For a comparison of this model with numerical simula-
tions of the Langevin equation (2.1) one has to take into
account that these simulations become extremely expen-
sive for small noise strengths €. Accordingly, the map
f(x) has to be chosen such that for reasonable noise
strengths € the agreement between numerical and analyti-
cal results is already good for the single rates &, k ., and
k _. The comparison of theoretical and numerical results
in Tables II-V suggests that the map f(x) as shown in
Fig. 2 should be a suitable example for our purposes.
This map consists of five linear pieces with constant slope
u ~5 leading to a strange invariant set on [ —L,0] close
to a crisis and an additional linear piece of vanishing
slope yielding a superstable point attractor at x,=1.
Thus the free parameters are L, €, and u with the restric-
tions Ve<<L, Ve<<x,=1, and |u —5| <<1. The rate k
following from (2.18) reads

172

’ (4.6)

whereas k . and k _ are given by (3.21).

The comparison of P(n) given by (4.4)-(4.6) and by
the numerical simulations is shown in Fig. 3. We find ex-
cellent agreement and conclude that the description of
the decay as the difference of two exponential functions
(4.4) is essentially correct. This becomes approximately
equal to a simple exponential decay only for very large
times n>>1/A_, which in many situations may be
beyond the interesting regime. Possible deviations as
those in Fig. 3(d) may be traced back to errors in the
theoretical rates. Using the functional form (4.4) for
P(n) with A, as fit parameters much better agreement
with the numerical results is obtained; see Fig. 3(d). The
fitted values for A, and A_ agree with those following
from Eq. (4.5) with k, kK, , and k _ determined by numeri-
cal simulations of the decay rates of the respective indivi-
dual states. Hence the three-state Markovian model pro-
vides a correct description of the decay of a state with a
fractal basin boundary.

Finally we consider a slightly different situation with
A >0 where a reflecting boundary at x =—L is imposed.
In this way an escape to — o is prevented. In the master
equation this situation is described by putting k_ =0.
After a sufficiently long time the system reaches an equi-
librium in which the ratio of probabilities of the states 2
and 1 coincides with that of the rates k and k. Using
the explicit expressions (3.21) and (4.6) one obtains

Py _Lu erfe(V 0 /e)
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where 0:=[u2—1]/u® The ratio (4.7) vanishes for

€=0. For increasing noise it grows and even for small
values of € it may exceed unity if L is sufficiently large.
Although the transient chaos in state 2 is not directly
enhanced by noise (see the discussion at the end of Sec.
III), the destablization of the point attractor in state 1 in-
creases the population of state 2 and leads to so-called
noise induced chaos [16,30].

V. SUMMARY AND DISCUSSION

We investigated the decay of metastable states in one-
dimensional systems in discrete time caused by the action
of weak Gaussian white noise. We compared the results
of an analytical theory with the findings of both simula-
tions of a Langevin equation and a numerical integration
of the corresponding master equation. Since closed
analytical expressions are not available for general noisy
nonlinear maps [10], the theory and numerical work were
carried out for piecewise linear maps with additive noise.
We expect, however, that many qualitative aspects still
hold for more general maps. For example, the rate of de-
cay of a deterministically stable point attractor over an
unstable fixed point will have the form of an Arrhenius
law. The activation energy can be identified with the
difference of a generalized potential taken at the stable
and the unstable fixed points. The generalized potential
follows directly from the invariant density of the noisy
map [3]. The leading part of the preexponential factor is
determined by local properties of the linearized noisy
maps in the vicinities of the stable and unstable fixed
points. Additionally, the prefactor contains a globally
determined parameter which defines the location of
singularities of the generalized potential [10]. Higher or-
der corrections of the prefactor will depend on further
details of the map. For decay rates of strange attractors
and strange repellers the situation is more complicated.
There, not only the linearized maps near the unstable exit
points matter but also the analytical behavior of the map
at its critical points [29]. However, many other general
aspects are expected to be correctly described by the
piecewise linear maps such as, e.g., noise induced chaos.
The validity of a Markovian three-state model for the de-
cay of a simple attractor with a strange basin boundary
certainly holds generally. Multiplicative noise can be
dealt with by the same methods and leads to qualitatively
similar results as long as the noise couples to the system
by a bounded nowhere vanishing function of the state
coordinate x.

The theoretical determination of the decay rate is
based on the idea of the reactive flux method [11]: The
population of the basin of the initial attractor decays with
a time-dependent rate that, on a short time scale com-
pared to the inverse rate, approaches a plateau value.
From an approximate solution of the master equation for
a map with a stable and an unstable fixed point the corre-
sponding time-dependent rate has been derived which
rapidly approaches a constant value. This asymptotic
rate contains algebraic finite noise corrections to a previ-
ously obtained weak-noise result [10,12]. The extension
of this method to more general cases such as, for exam-
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ple, smooth maps and colored noise, will be presented
elsewhere.

By means of a similar method the decay of a strange
attractor and a strange repeller has been investigated. In
contrast to previous results [23-27], the present theory
fully accounts for all typical escape processes and for re-
crossings of trajectories that already had left an interval
containing the invariant set. The different limiting cases
below and above the crisis are correctly described: For a
map with a chaotic attractor disturbed by weak noise one
obtains an Arrhenius-type rate similar to that of a point
attractor; the decay rate of a strange repeller approaches
its deterministic value when the noise vanishes. In the
general case, near the crisis the rate obeys the scaling law
derived in [26].

By means of numerical simulations we finally studied
the decay law of a single attractor with a basin boundary
consisting in a strange repeller. The numerical results
agree excellently with a Markovian model with three
states; one corresponds to the interior of the basin of the

point attractor, the second one to an interval containing
the repeller, and the third one is an absorbing state. The
decay is then determined by two exponents that follow
from the individual decay rates of the point attractor and
the strange repeller. The generalization to the case of
deterministic diffusion above a crisis [25,29] disturbed by
external noise is straightforward.
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