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Activated rate processes are often described in terms of a generalized Langevin equation. The
concept of an optimized planar dividing surface in conjunction with variational transition state
theory has been demonstrated to be useful in understanding the effects of nonlinearities on reaction
rates. A different approach is based on the Rayleigh quotient method, in which one varies the
trial functions. We prove a restricted identity of the two methods. The restrictions are that the
variational transition state theory method is limited to planar dividing surfaces. The Rayleigh
quotient method is restricted to the class of Kramers functions. These functions are constructed
by replacing the true potential with a parabolic barrier and using the known eigenfunction for the
parabolic barrier. The parameters of the parabolic barrier are used as variational parameters in the
Rayleigh quotient for the true nonlinear potential.

PACS number(s): 05.40.+j, 82.20.Db, 82.20.Fd

I. INTRODUCTION

The theory of activated processes has been extensively
developed in recent years. The prototypical model is that
of a one-dimensional particle with coordinate q trapped
in a metastable potential well of a potential function
V(q). The dynamics of the particle is described by
a Langevin equation. The particle experiences a fric-
tional force characterized by a damping constant p and
an external Gaussian white random force. The particle
can escape &om the well by crossing a potential barrier.
Kramers [1] showed that, when the damping is weak, the
escape rate is limited by the rate of transfer of energy to
the particle from the bath and so is proportional to the
damping. When the damping is moderate or strong, the
process is limited by the spatial rate of difFusion of the
particle across the barrier.

In this paper we will concentrate on the moderate to
strong damping limit, also known as the "spatial difFusion
limit" for the dynamics. Kramers, in his paper, estimated
the escape rate using the "lux over population" method.
He found a nontrivial solution of the Fokker-Planck equa-
tion in phase space, which has the property that the flux
associated with it is stationary and it obeys the boundary
condition which is that deep in the well, the particle is in
thermal equilibrium. The famous Kramers expression for
the rate was just the flux associated with his distribution
function divided by the density of reacting particles.
In the strong damping limit, it is well known [1] that

the Fokker-Planck equation may be reduced to a Smolu-
chowski equation in which the distribution function is
dependent only on the coordinate of the particle. The
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strong damping causes the momentum to relax inlnitely
quickly to equilibrium and so it may be ignored. The
Smoluchowski equation has the same formal structure as
the Schrodinger equation. It was thus natural that in
this limit, the Rayleigh quotient method was used to ob-
tain improved estimates for the escape rate [2—6]. The
central advantage of the Rayleigh quotient method over
the flux over population method is that in the former, a
first-order error in the trial (stationary fiux) distribution.
leads to a second-order error in the estimate for the rate
which bounds the rate constant from above. In the fIux
over population method, the sign of the error is unknown
and it is of Brst order.

In recent years, the Rayleigh quotient method has been
generalized to include also the moderate friction limit of
the dynamics [7,8]. In this case, the Fokker-Planck op-
erator is no longer Hermitian and care must be taken
to ensure the correct orthogonality relations of the trial
functions [8,9]. The general structure of the theory is
the same as in the Smoluchowski limit and in the re-
sulting expression, a 6rst-order error in the distribution
function leads to a second-order error for the rate. It
is thus very useful as a variational principle. The gen-
eralized Rayleigh quotient method has been utilized to
obtain an analytic expansion for the rate in terms of the
inverse barrier height [9]. There is though a price to
be paid. The non-Hermitian character of the operator
destroys the bound property. The generalized Rayleigh
quotient method gives a variational estimate, not an up-
per bound.

Kramers's problem may be generalized by introducing
memory &iction. Instead of the Langevin equation of
motion, one may consider a generalized Langevin equa-
tion (GLE) in which the friction function is no longer
Markovian. The effect of memory friction on activated
rate processes has been studied extensively during the
past decade [10,11]. Grote and Hynes [12] generalized
Kramers's expression for the rate in the spatial diffusion
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limit. They pointed out that the rate for spatial diffusion
across a barrier is a function of &equency-dependent &ic-
tion and is determined by the component of the &iction
at the barrier frequency rather than the static &iction as
in Kramers's original theory.

A Axrther refinexnent of Kramers's theory xnay be ob-
tained by introducing a space-dependent &iction. The
equation of motion, as derived by Zwanzig [13] and oth-
ers [14,15] is substantially more complex looking than
the GLE. Although some theoretical developments were
made by Carmeli and Nitzan for this problem [16], they
were primarily limited to the energy diffusion limited
regime.

The generalized Rayleigh quotient method is applica-
ble as long as one has a well defined Fokker-Planck op-
erator. The operator is known for space and exponential
time-dependent friction [17]. The space dependence in-
troduces a coordinate dependence into the transport co-
eKcients. Exponential memory &iction is handled by in-
troduction of an additional variable such that the Fokker-
Planck operator is well defined in the enlarged space. If
the time dependexce of the &iction is described by a sum
of exponentials one must introduce an additional variable
for each exponential, but the Fokker-Planck operator re-
mains weO defined and the Rayleigh quotient method is
applicable, although in practice it does becoxne some-
what cumbersome. General memory &iction can system-
atically be approximated by sums of exponentials [18,19].
Hence the Rayleigh quotient method is in principle ap-
plicable for any GLE.

A very different theoretical treatment is based on the
variational transition state theory (VTST) approach to
activated rate processes in the spatial diffusion limit
[20,22]. Instead of dealing with a stochastic differential
equation, one may recast the GLE in terms of a Hamilto-
nian in which the system is coupled to a harmonic bath
[13,23]. The stochastic dynamics may be represented as
the continuum limit of the Ham~&tonian dynamics.

Transition state theory [24—26], which is applicable
to Hamiltonian systems, provides an upper bound [27]
to the decay rate by considering the unidirectional Qux
across a dividing surface between "reactants" and "prod-
ucts". TST is exact if the particle does not recross the
dividing surface. Otherwise, it gives an upper bound to
the rate, since any recrossing is counted as a reactive
event. By varying the dividing surface one xnay find a
minimal upper bound, hence the name variational tran-
sition state theory.

In general, especially for a system as coxnplicated as
the Hamiltonian equivalent of the GLE, one might ex-
pect that the variational procedure is rather cumbersome
and diKcult. Substantial progress xnay be achieved by
optimizing a planar dividing surface in the full configu-
ration space of the system and the bath [28,29]. For high
barriers, such an optimization reduces to the Kramers-
Grote-Hynes expression. In the presence of nonlinearity,
optimized planar dividing surfaces account correctly for
the effects of memory [30] and space-dependent friction
[31] and anisotropic friction [32].
The connection between the Hamiltonian dynaxnics

and the Fokker-Plsnck equation has been recently stud-

II. OPTIMIZED PLANAR DIVIDING SURFACE
VTST

The GLE for a one-dimensional system is of the form

q+ + dt'q(t —t')q(t') = ((t).dV q
dq

(2.1)

Here q is the (mass weighted) system coordinate and V(q)
is the system potential. The Gaussian random force ((t)
is related to the friction kernel p(t) through the second
fluctuation dissipation theorem (((t}((0))= hp(t) and
P—:& & throughout this paper.

The dynamics of the GLE (2.1) is equivalent to the
dynamics of the system bath Hamiltonian [13,23]

ied for the parabolic barrier potential [33]. One may
show that a solution for the dynamics in the Hamiltonian
system may be used to construct eigenfunctions of the
Fokker-Planck operator. Kramers's stationary fiux distri-
bution was shown to be identical to the projection of the
characteristic function of reactive phase points onto the
physical phase space of the reacting particle [33]. Tan-
nor and Kohen have recently derived this same property
directly from the Fokker-Planck equation [34].

At this point though, there is no clear connection be-
tween the generalized Rayleigh quotient method and the
VTST method for estimating the rate. Both are varia-
tional in character: in the Rayleigh quotient method one
is varying parameters of a trial distribution function, in
VTST one is varying the dividing surface. The purpose
of this paper is to demonstrate that there is a close con-
nection between the two methods. If one restricts the
VTST method to planar dividing surfaces and the trial
functions for the generalized Rayleigh quotient method
to belong to a restricted class of parabolic barrier trial
functions, one will find that the two xnethods are identi-
cal. The VTST method leads to an upper bound to the
rate, so through the identity we prove that for the re-
stricted class of functions the generalized Rayleigh quo-
tient method also gives an upper bound to the rate.

In Sec. II we review the optimized planar dividing
surface VTST. We note that it is identical to a VTST
in which one uses the normal mode parabolic barrier &e-
quency as in the Kramers-Grote-Hynes theory, but treats
the parabolic barrier &equency and location as varia-
tional parameters. In this way, optimized planar dividing
surface VTST may be mapped to an equivalent optimized
parabolic barrier fitting for the nonlinear potential act-
ing upon the particle. In Sec. III we review the gener-
alized Rayleigh quotient method for the Fokker-Planck
equation. The identity of the optimized planar dividing
surface VTST method and the generalized Rayleigh quo-
tient method is demonstrated explicitly for exponential
memory friction in Sec, IV. This implies also identity for
the (white noise) Langevin equation, which is just a spe-
cial- case of exponential memory &iction. We end with
a discussion of the relative merits of the two approaches
and further generalizations.
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where the system coordinate q is coupled bilinearly to
a bath of harmonic oscillators with frequencies ~~ T. he
summation is iu principle over an infinite set of bath os-
cillators which tends towards a continuum. The bath
coordinates x~ are mass weighted. By explicit solution
for the time dependence of each of the bath coordinates,
one can show that Hamilton's equation of motion for the
system coordinate q reduces to the GLE (2.1), with the
identification that

r
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where we have used the notation

where p(s) denotes the Laplace transform of the friction
kernel with &equency s. The rate may now be obtained
by choosing the dividing surface f = p = 0. The resulting
expression for the rate is [21]

C2
p(t) = ) —'~ cos(ur~t). V(q) = ——~t q + Vg(q)2

(2 8)

8—PV(0) a IBV&
( P) f/8( ) Pv'( ) ! (2.5)

Transition state theory uses the fiux over population
expression for the rate. The fiux is the equilibrium uni-
directional fiux through the dividing surface, the popu-
lation is the equi»brium population of reactants [24—26].

fdpsdqg dp dz, b(.f)(p .Vf)8(p Vf)e
f dpqdqP dp dzq8.( f)e—

(2.4)

The Dirac delta function b(f) localizes the integration
onto the dividing surface f = 0. The gradient of the
surface (Vf) is in the full phase space, p is the gen-
eralized velocity vector in phase space with components
q, ps, (is, p~, ),j = 1,....,N, and 8(y) is the umt step func-
tion which chooses the fiux in one direction only. The
term (p Vf) is proportional to the velocity perpendicular
to the dividing surface. The TST expression is an upper
bound for the rate. The VTST is obtained by varying the
dividing surface f looting for that dividing surface which
gives the least upper bound.
The choice for the dividing surface implicit in

Kramers's paper is the barrier top (q = 0) of the po-
tential V(q). In t4s case the dividing surface tates the
form f = q = 0 and the rate expression (2.4) is just the
one-dimensional result

and the generalized &equency 0 is given in terms of the
barrier &equency

2
g—2 +00 (2 9)

1 &i(~' )»( )sso= 1+ t + Ds
(2.10)

the limit of a very high (reduced) barrier height
(pVt » 1)Eq. (2.7) reduces to the usual Kramers-Grote-
Hynes result [1,12] for the spatial diffusiou hmit

F1D (2.11)

The Kramers-Grote-Hynes solution has been obtained
by replacing the one-dimensional dividing surface f =
q = 0 by a dividing surface in the full space of system
and bath f = p = upoq +Q uo~ z~ = 0, where the u;~ 's
are elements of the orthogonal normal mode transforma-
tion matrix. To obtain a generalization of this approach,
iu the presence of a finite reduced barrier height one poses
the following question: What is the optimal planar divid-
ing surface? The most general planar dividing surface (in
configuratio space) may be written as

Here the matrix element u00 is also given in terms of
Laplace transforms of the time-dependent friction

f = aoq + ) a&2;z —po ——0, (2.12)

where ~ is the kequency at the bottom of the well.
The Kra~ers-Grote-Hynes expression for the rate may

be derived from the TST formulation by noting that for
a purely parabolic barrier [V(q) = V(0) —~z~t q2] the
Hanultonian (2.2) is a bilinear form which may be di-
agona¹~ed using a normal mode transformation [20]. In
the diagonal form, one finds one unstable mode, denoted
p, with associated barrier frequency, denoted At, and
N stable modes. The oo subscript will serve to remind
us that this is the solut&on for the purely parabolic bar-
rier or, equivalently, for an infiuite reduced barrier height
(PVt). The normal mode barrier frequency (At ) is the
solution of the equation

FP0=
1D

1

&p~2& *
dqexp[ PV.Xt(q, po)], —(2 13)

2K )

where p0 denotes the distance of the dividing surface &om
the origin. A generalization of the Kra~ers-Grote-Hynes
theory is obtained by minimizing the TST expression for
the rate with respect to the coefBcients a0, a~, j = 1, ...,N
and the. shift p0. The details are given explicitly in Ref.
[29], here we summarize the results.
The TST expression for the rate (2.4) using the planar

dividing surface (2.12) is
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where the effective potential has the form &(q) = --~'(q —qo)'+ &1(~,qo, q).2
(2.23)

122ff(q po) —= 2~ & (q qo) +&(q). (2.14) The transmission probability (2.13) may be rewritten as

The eH'ective frequency A and coupling constant C are
expressed in terms of the coeKcients of the planar divid-
ing surface

(2.15)

P(ur, qo) =
1 1

( gs ) ' fp(/san~ ~~)) '
(AsCs —(us) ( 2z.

—P[—(A C —~ )(q—qo) +Vx(~ qo, q)]

(2.24)

C=ap+)
2

(2.16)
It is a matter of some straightforward algebra, using
Eqs. (2.18), (2.19), and (2.21) to see that

The projection of the shift of the dividing surface onto
the system coordinate q is de6ned as

and

g2g2 ~2 ~2 (2.25)

Po
qp =—.

C (2.17)

A
A~

ap| —1 ' (2.18)

After varying with respect to the transmission coefBcients
a~, j = 1, ..., 1V, ooe 6nds that the frequency A, coupling
constant C, and transformation coefBcient ap may all be
expressed in terms of an efFective barrier frequency A&:

2( ) g2g2 2
2 - —1

ap 1
A~' (2.26)

P(ur, qp)—:F(ld, qp)I'xD

At PA((u)'
hp 2x

The transmission probability may now be rewritten as

&=ao
I
1+( j(At) )

At )' (2.19)
x cue ~[~( )'(q—qo)'/2+v ( qo q)] 2 27

1 (p(A ) O'Y(s)ap= 1 —) a. = 1+—
t +

(2.20)

At this point the transmission coefficient in Eq. (2.13)
is a function of only two variables: the barrier frequency
A~ and the shift qp. Optimization with respect to these
two variables has been carried out in Ref. [29]. Our inter-
est here is not the end result of the variational procedure,
but rather to bring the VTST result based on the planar
dividing surface to a form which is identical to the one
obtained in the generalized Ritz method.

To do this we de6ne a new variable cu such that

, + &(A') (2.21)

1+1(~,qo, q) = V(q) + ur (q —qp)—2 (2.22)

such that

The variationa? parameter will now become the frequency
~ instead of A~. %e can use this frequency to define an
efFective nonlinear part of the potential V1 (tu, qo, q)

This is the central result of this section. The trans-
mission probability has been factorized into two parts.
The 6rst part is a Kramers-Grote-Hynes parabolic bar-
rier term (—"). The second part is a shifted Gaussian
average of the nonlinear part of the potential. Compari-
son of Eqs. (2.7) and (2.27) shows that the optimal planar
dividing surface VTST is identical to a VTST which is
based on the unstable normal mode dividing surface but
such that the system parabolic barrier frequency and lo-
cation become vanational parameters. The transmission
probability is a function of the two variables u, qp and
may be minimized with respect to them. This minimiza-
tion will give exactly the same result as obtained by opti-
mizing the transmission coefficient as given in Eq. (2.13)
with respect to the transformation coeKcient ap and shift
pp. For each planar dividing surface there exists a cor-
responding parabolic barrier frequency and shift. Op-
timizing the planar dividing surface is thus identical to
optimizing the parabolic barrier frequency and shift.
In summary, we have demonstrated that the optimized

planar dividing surface approach to VTST is identical to
finding the best parabolic barrier representation for the
rate. This is in a way very similar to the Bogoliubov-
Feynman variational principle for the free energy where
one often uses it to find the best harmonic oscillator rep-
resentation for a nonlinear oscillator [35]. The optimized
parabolic barrier representation depends explicitly on the
friction and the nonlinearity in the potential.
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III. THE RAYLEIGH QUOTIENT METHOD

We assume that the activated barrier crossing problem
may be described in terms of a Fokker-Planck equation
for the time evolution of the probability distribution of
the particle in some generalized phase space. In Sec. IV
we will be more specific, considering the explicit case of a
GLE with exponential time-dependent kiction. Here we
first set up the terminology needed to obtain the Rayleigh
quotient. This terminology is abstract and it is not nec-
essary to be specific with respect to the system studied
except for a few general properties. An important prop-
erty which must be fulfilled is that of detailed balance.
Then the Fokker-Planck operator L possesses a time re-
versal invariant equilibrium density P ~ such that

property. Just as in the usual Ritz method, it is easy
to show that if

~ f) is an approximate eigenfunction, such
that ]h) = ~f) + ~bf), thea the error in the estimate of
the eigenvalue will be of the order of (bf, bf) I.t is this
variational property which makes the Rayleigh quotient
so useful. If, furthermore, the operator L' is Hermitian
(as is the case in the Smoluchowsio limit), then one can
show that the Rayleigh quotient is an upper bound to
the absolute magnitude of the eigenvalue closest to zero.

IV. APPLICATION TO EXPONENTIAL
MEMORY FRICTION

In this section we will consider the Rayleigh quotient
method for the case of an exponential time-dependent
friction kernel

LP,q ——0, peg = &eq, (3.1)
(4.1)

L* =P, LPq (3 2)

and one may show that it coincides with the time reversed
backward operator L+:

(3.3)

where the tilde notation denotes the operation of time
reversal. (Under this operation, coordinates remain in-
variant while momenta change sign. )
It is useful to define the transformed operator

where ~ is the correlation time of the memory friction
and p is the static friction coeKcieat [p(0) = p]. The
restriction to a single exponent is mainly for the purpose
of convenience and clarity of presentation.

For the single exponent case, the GLE Eq. (2.1) may be
rewritten as a Markovian process by introducing an aux-
iliary variable z [36,37]. This leads to a three-dimensional
phase space and the set of equations

q=v
For further details on all these relationships, see, for ex-
ample, Refs. [8,9].

The operators L' and L+ act in the Hilbert space of
phase space functions with finite second moments with
respect to the equilibrium distribution. The scalar prod-
uct of two functions of this Hilbert space is defined as

d&(q)
v =— +z

dq

z= ——v ——z+
i i ((t),(7'P)

(4 2)

(f, a) = (fg)., (3.4)
where ((t) is a Gaussian white noise

where the notation ( ),~ serves to remind that the weight-
ing function of the product is the equilibrium distribution
P,~. The operators L' and L+ are Hermitian conjugates
with respect to this scalar product and their eigenvalues
cocnccde.

Since the two operators are not themselves Hermitian,
their spectrum in principle is complex and is contained
in the left half of the complex plane. The Hilbert space
allows for a bra-ket notation. If ]h) is an eigenvector of
the operator L' with eigenvalue p then (h~ is the bra in
the adjoint space associated with the complex conjugate
eigenvalue p'. The eigenfunction 6 =const is always a
trivial eigenfunction with zero eigenvalue. For an acti-
vated rate process, the rate constant is the eigenvalue
whose negative real part is closest to zero.

The Rayleigh quotient is defined as

h(t)) = o, u(t)&(t')) = 2b(t —t'). (4 3)

B
BtP(q, v, z, t)

= L—P(q, v, z, t),
where the Fokker-Planck operator L is

(4.4)

0 8 dV(q)L = ——v+—
Bq Bv dq

1 p B+——v + —z +Bz 7 7 T PBZ (4.5)

The equivalent Fokker-Planck equation for the joint prob-
ability density P(q, v, z, t) is

(h, L'h)
(h, h)

(3.5)
The equilibrium probability density P q(q, v, z, ) satis-

fies the stationary Fokker-Planck equation

Clearly, if ]h) is an eigenfunction, thea p is the associ-
ated eigenvalue. The important point is the variational Its explicit form is

LP q ——0. (4.6)
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P,q(q, v, z) = Z exp(—PP), (4.7)

where p is a generalized energy function in the extended
phase space

P(q, v, z) = —v + V(q) +—z .=12 2
2 2~

(4.8)

|9l.' = —v—+
Bq
'Y+ —v—

dV(q) 8
dq Bv

1 8 p 8—z —+Bz r2P Bz2 (4.9)

The constant Z assures normalization of the probability
distribution P~q. The process defined by the Langevin
equation (4.2) satisfies the principle of detailed balance
since the auxiliary variable z and the coordinate q trans-
form evenly under time reversal while the velocity v is
odd.

The spectrum of the Fokker-Planck operator has a
large gap due to a separation of time scales. The barrier
crossing process is usually much slower than all other
"fast" relaxational processes. %hen the potential has
locally stable reactant and product states, the Fokker-
Planck operator (with natural boundary conditions) has
a zero eigenvalue whose eigenfunction is the equilibrium
distribution [cf. Eqs. (4.7) and (4.8)]. The eigenvalue pi
whose real part is closest to zero is related to the rate;
—p, ~ is the sum of the forward and backward rates. If
one imposes absorbing boundary conditions at the prod-
ucts well, then the zero eigenvalue disappears and the
eigenvalue closest to zero gives the escape rate from the
appropriately defined reactants well.

The rate may now be estimated &om the Rayleigh quo-
tient by demanding that all trial functions obey the rele-
vant absorbing boundary condition. The explict form of
the operator I* for the exponential memory friction case
is seen to be

ld+ -At — ~ ——
~

At ——= 0.
7 7) 'T

(4.1S)

will henceforth refer to the function ( as the
"Kramers function. " It is evident that the function (
obeys the correct boundary conditions. It is unity in the
reactants well and goes to zero in the products region.
For a fixed value of the parameters 7., p of the exponential
time-dependent friction, the Kramers function ( depends
on the barrier frequency u and location q0. It therefore
may be used as a trial function in the Rayleigh quotient,
where these two parameters will be considered as varia-
tional parameters. The true potential V(q) may always
be rewritten as a sum of a parabolic barrier potential and
a remainder, as in Eq. (2.2S). The rate expression will
take the form

r[,q, ] = -v, [q]=- (( L'C)((,()
(4.14)

As long as the location of the barrier q0 is not too far
in the region of the well or too far out in the products
region, the denominator in Eq. (4.14) will give the usual
population of the well

0 OO OO

((,() = — dq dv dze ~ '+
—OO —OO —OO

1

p ( p~ ) ZI'iD' (4.15)

where I'iD has been defined in Eq. (2.5).
It is now a matter of some lengthy algebra, whose de-

tails are given in Appendix A, to show that the explicit
expression for the rate obtained from the Rayleigh quo-
tient using the Kramers function takes the form

If the potential V(q) is a purely parabolic barrier, located
around q0 such that

P( qo) —= ' =—((e ~ ' '"")).v
I'qD (4.16)

V,s(q) = —-~ (q —qo)
1 2
2

(4.10)

then following Kramers [1] one finds that the operator
L'& has a nontrivial eigenfunction ( associated with a
zero eigenvalue whose form is

The double angular brackets denote a Gaussian average
over the coordinate q such that ((q)) = qs and (((q-
qo)2)) = P iA(u) z. For exponential memory friction,
the frequency 0 [cf. Eq. (2.26)] is related to the friction
parameters through the relation

&P~2i ~

t,'(q, v, z) =
~ ~

exp
(

——P~ u
~

du. (4.11)(2z) „, i 2 )
( )z z 2At r+At

(~ —Pt ) (2$tr + 1)
(4.17)

The lower limit of integration is

(xt7/~') l w& r (
tC( q —q0 ——e+ —

I

1—
Ai cd

z
(d

(4.12)

The frequency A~ is the solution of the Kramers-Grote-
Hynes equation [1,12] [cf. Eq. (2.21)], which for expo-
nential time-dependent friction takes the form

Equation (4.16) is the central result of this paper since
it is identical to the expression obtained using the optixnal
planar dividing surface VTST; cf. Eq. (2.27). The iden-
tity of the two approaches proves that for the restricted
Kramers class of trial functions, the Rayleigh quotient
provides an upper bound to the rate. This result follows
from the upper bound property of the VTST method. We
know of no other way of proving this bounding property
except in the Smoluchowski limit.
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V. DISCUSSION

Ia transition state theory, the rate is estimated through
the ratio of a uaidirectional fIux to the population of re-
actants. The Rayleigh quotient method is based upon
the spectral properties of the Fokker-Planck operator.
Formally, these are very different methods. However,
both have a variatioaal property. Transition state theory
gives an upper bound to the rate. The Rayleigh quotient
method in the Smoluchowski limit also bounds the rate
&om above. These similarities motivated the present pa-
per in which we attempted to understaad the common
grounds of the two approaches. We have demonstrated a
restricted identity. If VTST is limited to optimal planar
dividing surfaces and the Rayleigh quotient method is
limited using only Kramers functioas as trial functions,
then the two methods are identical.
The identity has been demonstrated here only for ex-

ponential memory &iction. However, it remains true,
as long as the memory &iction appearing in the gener-
alized I angevia equation can be expanded as a series
of exponentials. If this is the case, one has a well de-
fined Fokker-Planck operator and one may construct the
Kramers function associated with a parabolic barrier.
The proof of the identity in the presence of a number
of exponential terms becomes much more tedious, since
each exponent introduces an additional degree of free-
dom. However, the structure of the quotient remains the
same, one will still find that the rate is a Gaussian aver-
age of the "nonlinear potential" Vq. It is interesting to
note that the rate expression obtained using the optimal
planar dividing surface VTST is obtained for arbitrary
memory &iction.

The physics of the identity of the two methods is rather
clear. In the optimal planar dividing surface method, the
planarity of the dividing surface implies that one is really
fitting the best possible parabolic barrier approximation
to the dynamics. The class of Kramers functions is a
class of functions also constructed &om parabolic bar-
riers. The "physics" of the two (restricted) methods is
thus the same.

From a mathematical point of view, the identity of the
two restricted methods implies that the Rayleigh method,
when restricted to the class of Kramers functions leads
to an upper bound to the rate. This is not a trivial sta, te-
ment. In the Smoluchowski limit, the Fokker-Planck op-
erator is Hermitian and the bounding property is just
the usual result of the Ritz variational principle. But
the Fokker-Planck operator in phase space is not Her-
mitian aad so the Ritz methodology does not lead to a
bound, only a variational principle. We find it interest-
ing that we are using variational transition state theory
to derive bounding properties for operators that are not
Hermitian.

We have restricted ourselves in this paper to memory
friction. It is known [17] that in the presence of expo-
nential memory and space-dependent friction, one may
also introduce an auxiliary variable which leads to a well
defined Fokker-Planck operator. In this case, one may
again use VTST to find the optimal planar dividing sur-

face [31]. One then finds that, in addition to the two
variational parameters ~ and qo, one must add another
parameter which defines an efFective (averaged) friction.
It is also possible to construct the Kramers function for
the parabolic barrier, in which the barrier frequency, lo-
cation, and efFective &iction are treated as parameters.
Here, the relation of both methods is not known yet.

Finally we note that the two approaches are not equiv-
alent. The Rayleigh quotient method, when used with a
large enough basis set, will in principle lead to the exact
rate [8,9]. The VTST method in the presence of a non-
linear potential will in general never give the exact rate
since one ignores successive recrossings of the dividing
surface. The VTST method though has the advantage
that it is more tractable and it has a bounding prop-
erty. Perhaps most importantly, unless the temperature
is too high, recrossings occur with low probability and
the VTST estimate for the rate is very good as also con-
firmed by a number of numerical studies [30—32,38].
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APPENDIX

1
f'Pu) ) ' dVi((u, qp, q) du& p

( 2' ) dq de (A1)

It therefore follows that

-dVi((u, qp, q) du&
dq dv

&+ + & ~ {q—qo) ] —PV1 {u,qo, q)

(A2)

In this appendix we outline the derivation of the central
result of this paper as given in Eq. (4.16). As noted
in Sec. IV, the Kramers function has the property thatI "z( = 0; therefore one easily notes that
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u = u+ At(q —qp), (A3)

Further progress may be made by changing variables
from q, u, z to q, u, y such that

1

1 P~zl A& Ate+1
ZP ( 2z'

~
u (~pt)k

Og2 OO OO

x dq du dy( —e t'+'& 'so s&

y 1+&&v.
~

& 3+
(A5)

z = y+ Atu+ (At —~ )(q —qp). (A4)

With this change of variables and use of the Kramers-
Grote-Hynes equation (4.13), one finds that

After integrating by parts arith respect to the variable
q, one is left with two Gaussian integrals over the vari-
ables u and y. These are readily performed and after
some manipulation [including use of Eq. (4.17)] one finds
the desired result Eq. (4.16).
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