
PHYSICAL REVIE%' E VOLUME 51, NUMBER 3 MARCH 1995

Transition-state recrossing dynamics in activated rate processes
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In the framework of the transition-state theory (TST), the rate of thermally activated escapes
from a locally stable state in phase space is determined by the unidirectional Qux through a con-
veniently chosen dividing surface. It is known that the occurrence of trajectories that recross this
surface renders the true rate smaller than the TST rate by the so-called transmission factor. By
means of a statistical theory we show how the mean number of recrossings can be related to the
transmission factor. Formulas are derived for the average number of recrossings at the top of a
parabolic barrier and through an energy surface in phase space. The former case is relevant for the
spatial diffusion regime and the latter for the energy diffusion regime. The resulting transmission
factors are in good agreement with the exact ones.

PACS number(s): 05.40.+j, 82.20.Db, 82.20.Fd

I. INTRODUCTION

An activated rate process is one in which a system
changes &om one stationary state to another by crossing
a barrier located between the two states. The necessary
energy to cross this barrier is supplied by the surrounding
medium. At the same time, the medium exerts a drag
on the system, preventing it from crossing the barrier.
Kramers [1], in his famous paper of 1940, modeled this
process in terms of a Langevin equation. The surround-
ing medium is modeled by a Gaussian random force with
zero mean and memory, resulting in a damping term in
the equation of motion with damping strength p. He then
proceeded to estimate the rate of escape and showed that
the "standard" transition-state theory (TST) expression
for the rate must be modified by a prefactor which in
the strong damping limit is inversely proportional to the
damping strength.

The standard TST expression [2] is obtained by placing
a dividing surface at the barrier top of the potential of
mean force felt by the system. The fact that the damping
modifies the TST result implies that the assumption of
no recrossing of the barrier, implicit in the TST result,
is violated. This of course makes sense. Especially in
the strong damping limit, the system is diffusing over
the barrier top. This means that it must be recrossing it
many times before ending up in the reactants or products
zone.

Kramers original formulation has been generalized to
include memory friction by Grote and Hynes [3] and oth-
ers [4]. The resulting expression, when the friction is
not too small, is again a product of a standard TST ex-
pression multiplied by a prefactor that is smaller than
unity. In this spatial difFusion limit, the prefactor has
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been referred to as a correction factor for solvent induced
recrossings of the barrier [5].

Recrossing occurs also in a different context. Consider
the energy diffusion limited regime of the activated rate
process. In this limit, the damping is very small and the
rate limiting step is the rate at which the medium trans-
fers to the system the energy needed to cross the barrier
[1]. It is well known [2] that in this limit the rate is again
a product of the standard TST result and a prefactor
which i.s proportional to a small dimensionless parame-
ter denoted b, known as the energy loss parameter. This
parameter is proportional to the product of the damping
strength and the barrier height.

In this limit, it might seem that a good idea would
be to change somewhat the dividing surface used in the
TST. Instead of putting it at the barrier top, as appro-
priate for the spatial diffusion limit, one might consider
using a dividing surface in energy space [6]. The rate
determining step in this limit is obtaining the necessary
energy to cross the barrier. Once this energy is obtained,
the system reacts immediately so one might choose the
dividing surface to be the system Hamiltonian at the bar-
rier energy V~. The only problem with this choice is that
the resulting TST expression diverges if the &iction is
Ohmic [6,7]. There is nothing "wrong" with this diver-
gence. The TST is a theory guaranteed to give an upper
bound and oo is also an upper bound. Clearly the sys-
tem must be recrossing this dividing surface an infinity
of times too.

To date, almost all work dealing with activated rate
processes was centered about estimates for the rate. The
recrossing dynamics, which as sketched above is ubiqui-
tous, was assumed to properly account for the prefactors.
However, we are not aware of any direct analysis of the
recrossing dynamics. This is the topic of this paper.

There is a way of essentially eliminating the recross-
ings in the spatial diffusion limit. As noted elsewhere
[8], instead of choosing the dividing surface q = 0 (where
q denotes the system reaction coordinate) one may use
the dividing surface p = 0, where p is the unstable nor-
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mal mode that diagonalizes the system bath Hamilto-
nian [9,11] at the barrier top. Along the unstable normal
mode, if the barrier height is large compared to k~T,
there really are no recrossings and the TST estimate us-
ing this dividing surface is exact and identical to the the-
ory of Kramers and Grote and Hynes [8].

One might thus be tempted to use the unstable mode
also in the energy difFusion regime and choose as the di-
viding surface in energy space the efFective Hamiltonian
for the unstable mode at the barrier energy. This turns
out to be better than the previously chosen surface along
the system coordinate; the prefactor is proportional to
~h and is thus much smaller than unity, however still
much larger than the correct answer, which is 8 [6]. Ob-
viously, there must be of the order of —recrossings of
this surface. Is there a practical way of estimating the re-
crossings and thus obtaining a new estimate for the rate
in the energy difFusion limited regime'?

The question is not an idle one. In the presence of
very long memory &iction, the Kramers turnover theory
derived by Pollak, Grabert, and Hanggi (PGH) [10] is
not necessarily valid [12]. Any new methodology for es-
timating the rate might become useful for extension to
the long memory case.

In Sec. II we review the formalism needed to estimate
the average number of recrossings. A statistical theory
is then used to relate the average number of recrossings
to the reaction rate. The application to the parabolic
barrier in the presence of memory &iction is given in
Sec. III. The energy difFusion limited regime is considered
in Sec. IV. The TST result with a dividing surface in the
energy space of the unstable normal mode as well as an
estimate of the recrossing dynamics is given. We end
with a discussion of the implications of the results to the
long memory problem.

0 (k) = ) e*" p (K)
N=o

OO

exp ik
0

(2.3)

where the second equality on the right-hand side follows
from Eqs. (2.1) and (2.2).

We are specifically interested in the number of recross-
ings of the threshold a. Let pq(x, x; a) denote the joint
probability density that the particle initiated at a at time
t = 0 is found at time t at x with associated velocity x.
By definition, this probability density takes the form

(8[x —x(t)]8[x —x(t)]h [a —x(0)])
pq(x, x; a) =

(~[a —x(o)])
(2.4)

The average number of recrossings of the threshold a is
obtained by taking the first derivative of the characteris-
tic function Eq. (2.3) with respect to k, at k = 0. This
gives [13]

(N ) = dt dv~v~p, (a, v; a).
0 —OO

(2.5)

(N") = dt's dt„dvi
0 0 —OO

dv„/vg/

This will be the working expression for the rest of this
paper. The variable z will be either a coordinate q or
an energy E of the system and. the variable v will be the
associated time derivative.

For the sake of completeness, we note that higher mo-
ments of the distribution may be obtained in a similar
fashion. Specifically, the nth moment of the distribution
may be written as

x lv-lp~„ ,~. [(a ») ". (a v-) a] (2.6)
II. THE RATE AND THE RECROSSING

D ISTRIBUTION

A. The recrossing distribution

N. [x(t)] = «l*(t) 1~[x(t) —a]. (2 1)

The overdot denotes difFerentiation with respect to time
and h is the Dirac delta function. If x(t) is a stochas-
tic process, the probability of finding a trajectory that
crosses the threshold a altogether A times is given by

The total number of times X [x(t)] that a trajectory
x(t) crosses the threshold a in the time interval [0, oo) is,
by definition,

where pq, q [(a, vq), ..., (a, v ); a] is the joint probability
distribution for a trajectory initiated at a to be at a, vt,
at time ty for A: = 1, ..., n.

Although the definitions are straightforward enough,
there is a slight conceptual problem. Consider the ac-
tivated rate process with Ohmic &iction in the strong
damping limit. In this case, the path of a given trajec-
tory is continuous, but nowhere difFerentiable so that x
is seemingly not well defined. We will circumvent this
problem by evaluating all averages using a finite damp-
ing strength and considering the strong damping limit
only at the end.

B. A statistical estimate of the rate

pa(+) (~N [z(t)],N). (2.2)

The angular brackets denote an average over the process
and b;z is the Kronecker delta function. All moments of
the distribution p (N) may be generated from the char-
acteristic function

The average number of recrossings of a dividing sur-
face gives an indication of the extent of validity of the
TST estimate for the rate, but is insufIicient for a precise
evaluation. One must either obtain higher moments of
the distribution, a nontrivial exercise, or one can resort
to some simple statistical assumption.

We will adapt the unified statistical theory of Miller
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[14—16] to the dissipative dynamics. To do so, we assume
that on either side of the dividing surface, labeled c, there
exist two additional surfaces, to the left and right of c,
labeled l and r, respectively. These additional surfaces
will have the property that any trajectory crossing them
in the direction away &om the central surface c will not
recross the central surface. Furthermore, we will assume
that the probability p that a trajectory leaving c towards
the ith surface will immediately exit through surface i, for
i = l, r, is the same. In other words, the dynamics with
respect to the dividing surface c is determined locally and
is symmetric with respect to either direction.

These assumptions are valid as long as one can assume
that the fate of the trajectory is determined once its en-
ergy has changed by k~T after crossing the dividing
surface. A central assumption in any analytical theory
of activated rate processes is that the barrier height is
large with respect to kgyT [2]. This implies that indeed
the trapping is determined locally with respect to the
dividing surface. Although the neighborhood on either
side of the central surface c may be somewhat different,
the usual smoothness of the potential ensures that such
a difference will be small and so may be ignored.

At this point it becomes straightforward to adapt the
unified statistical theory to our problem. We denote the
total flux leaving the central dividing surface in either
direction as 2F, where 2F is the unidirectional flux es-
timated using the standard TST formula. This flux may
be further subdivided such that

say, M times, contributes equal fluxes to all F for all
N ( M. The second equality on the right-hand. side
follows &om the symmetry.

It now becomes evident that the flux F, is related to
the average number of times that trajectories initiated
on either l or r recross the central surface c [15]:

) FM c
F e FM=O

i=l, r (2.11)

i = l, r. (2.12)

Our purpose is to obtain the net reactive flux through
the central dividing surface. Clearly, only trajectories
emanating from the left or the right that cross c an odd
number of times are reactive. Thus the probability for
reaction K is

F2N+1
F )'

N=O
i = l, r. (2.13)

where explicit use has been made of Eq. (2.10). Similarly
one finds that the average number of recrossings (K,) is
related to the second moment of the average number of
recrossings of trajectories initiated on either l or r [16]:

) plV
N=O

(2 7)

where F is the unidirectional flux that leaves the di-
viding surface and recrosses it % times before getting
trapped at either the l or r surface. By definition, the
average number of recrossings as defined in Sec. IIA is

The statistical assumption is that any trajectory initi-
ated on the surface c in the direction of surface i has a
probability p of immediately exiting through i for both
the left and right surfaces. It is a matter of straightfor-
ward algebra to see that the probability p; of exiting
through i after N crossings of c is

(2.s)
One therefore finds that

i = r, l. (2.14)

Similarly one may subdivide the unidirectional flux
F, , i = l, r, that reaches c, leaving either l or r in the
direction of the central surface c such that

(N, ) = —, i = l, r
p

(2.i5)

(2.16)
) ~IV
N=1

i = l, r (2.9)
(N, ) = (2.17)

where F; is the flux leaving the surface i = l, r in the
direction of c, crosses the surface c altogether N times,
and then reexits through either l or r. The assumed
symmetry of the dynamics implies that E& ——F„ for
any ¹

There is a clear relation between the distribution F
andF;, i=r, l:

1
2(N. ) + 1 (2.is)

The last two equations give us the central result of this
subsection. We can now express the correction to the
TST result in terms of the average number of recrossings
as

) (~M PM) 2 )~ yM (2.10)
M=N+1 M=N+1

This relation is obtained. by noting that any trajectory
'initiated on either the left or the right that crosses c,

This result has a very reasonable structure. As (1V,) -+
oo the probability of exiting through either the left or the
right is the same and. the TST expression must be modi-
fied by the average number of recrossings and a factor of
2 reflecting the equal probability of exiting through the
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left or the right. On the other hand, if (N, ) = 0, then
the TST is exact and the transmission factor K is in fact
unity.

rier top (q = 0) of the potential V(q). In this case the
dividing surface takes the form f = q = 0 and the rate
expression (3.4) is known as the one-dimensional TST
result

III. RECROS SING S AND THE PARABOLIC
BARRIER

A. Preliminaries

—PV(0)1 ~tI'gD = (2z.p) =—e ~~
dq0( —q) e Pv(q)

(3.5)

The generalized Langevin equation (GLE) for a one-
dimensional system has the form

t
q+ + dt'q(t —t')q(t') = ((t).

dq
(3.1)

Here q is the (mass weighted) system coordinate and V(q)
is the system potential. The Gaussian random force ((t)
is related to the friction kernel p(t) through the second
fluctuation dissipation theorem (((t)((0)) = hp(t) and
P—:& z throughout this paper.

The dynamics of the GLE (3.1) is equivalent to the
dynamics of the system bath Hamiltonian [9,17]

Pq .1II = 2' + V(q) + ).—, p'., +
l
~' x'—

2

2

(3.2)
~~ )

2

(t) = ). ( 't). (3.3)

where the system coordinate q is coupled bilinearly to
a bath of harmonic oscillators with &equencies u~. The
summation is in principle over an infinite set of bath os-
cillators which tends towards a continuum. The bath co-
ordinates x~ are mass weighted. By an explicit solution
for the time dependence of each of the bath coordinates,
one can show that Hamilton's equation of motion for the
system coordinate q reduces to the GLE (3.1), with the
identi6cation that

where u is the &equency at the bottom of the well.
The Kramers-Grote-Hynes expression for the rate in

the spatial difFusion limited regime may be derived from
the TST formulation by noting that for a purely parabolic
barrier

(q) = V(o) —— "q'
2

(3.6)

the Hamiltonian (3.2) is a bilinear form which may be
diagonalized using a normal mode transformation [8].
In the diagonal form, one finds one unstable mode, de-
noted p, with associated momentum p~, and barrier fre-
quency A~. The N stable normal modes have coordinates
and momenta y~ and p&, , respectively, and &equencies
A~. The normal mode form of the Hamiltonian for the
parabolic barrier is thus

II» =
2

(P', —&"S
' + ).L,', + &,'y,']).

2

(3.8)

where p(s) denotes the Laplace transform of the friction
kernel with frequency 8.

The rate may be obtained by choosing the dividing
surface f = p = 0. The resulting expression is [1,3,8]

The normal mode barrier frequency A~ is the solution of
the equation

The transition state theory uses the flux over popu-
lation expression for the rate. The flux is the equilib-
rium unidirectional flux through the dividing surface and
the population is the equilibrium population of reactants
[18—20]:

dpqdq dp . dx, b(f)(p Vf)0(p Vf)e ~H.~ ~

2

fdpqdq dp . dx~8( f)e—
2

(3 4)

The Dirac delta function b(f) localizes the integration
onto the dividing surface f = 0. The gradient of the
surface (V'f) is in the full phase space, p is the gen-
eralized velocity vector in phase space with components
q, p~, (x~,p,. ), j = 1, ..., N, and 0(y) is the unit step func-
tion which chooses the flux in one direction only. The
term (p Vf) is proportional to the velocity perpendic-
ular to the dividing surface. The TST expression is an
upper bound for the rate [21].

The standard choice for the dividing surface is the bar-

The normal mode coordinates are an orthogonal
transformation of the original system bath coordinates
q, xz, j = 1, ..., N, appearing in the equivalent Hamilto-
nian (3.2). The transformation matrix is denoted as U
such that the system coordinate q may be expressed in
terms of the normal modes as

q = +00p+ .&jGgj. (3.10)

The matrix element u00 is given in terms of the Laplace
transform of the time dependent friction as [10]

a&(s)1+-I, +
~=pt )

(3.11)

It is also convenient to de6ne a normal mode friction
function [10] as
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K(t) = ) u, o cos(A, t). (3.12) form of the Hamiltonian while performing the averaging.
The b functions are easily handled by using their Fourier
expansion, for example,

This friction function is related to the velocity autocor-
relation function of the parabolic barrier 1

8[q —q(t)] =—
27r

dKe ~('~too[&—P(&)j+z, o[tI —tI (&)I)

( .(t) .) = —[ '" h(A' t) + ~(t)] (3.13) (3.19)

The Laplace transform of the velocity autocorrelation
function is

The resulting integrals are Gaussian integrals. After
some straightforward algebra one finds

« "9' (t)& (0)) = — „, - (314)~ ~+s +sp s
2 P 2

p, (q, v;0) = e~~ e (3.20)

The combination of Eqs. (3.13) and (3.14) shows that
the normal mode &iction function is well defined in the
continuum limit in terms of Laplace transforms of the
time dependent &iction. Finally, it is useful to de6.ne a
collective bath mode &equency 0 as

Here we have used the following notation:
2 DL = ) 2 cos(A, t) — cosh(Att), (3.21)

) W14 p

0 21 —
tripp

1 ( u~pp (3.15)

where the second equality on the right-hand side follows
&om properties of the normal mode transformation; see,
for example, [11].

B. The average number of recrossings

To estimate the average number of recrossings at the
barrier top of the parabolic barrier potential (q = 0) one
must know the joint probability distribution pq(q, v; 0)
[cf. Eq. (2.4)] for the particle to be at the barrier and
have velocity v at the time t. First we note that the
denominator of Eq. (2.4) is, in our case,

(~[q(0)]) = 1 (3.16)

The averaging is over the thermal distribution of the ini-
tial values of the Hamiltonian. The result is easily ob-
tained by using the Hamiltonian in the original system
bath coordinates as in Eq. (3.2).

To obtain the numerator of Eq. (2.4) one must in
principle know the time dependence of the coordinate q.
A straightforward way of obtaining the distribution is
to use the trivial time dependence of the normal modes
of the Hamiltonian. The separability of the parabolic
barrier Hamiltonian in the normal modes implies that

(3.22)

The function L(t) may be obtained from the velocity au-
tocorrelation function [cf. Eq. (3.12)] by a double in-
tegration over time. A specie. c example, using Ohmic
friction, will be given in the following subsection.

The average number of recrossings is now obtained by
integrating the distribution over the velocity and the time
[cf. Eq. (2.5)]

1(~,=o)pe =—
'lt

QA(t)
A(t) + L(t)

(3.23)

This is the central result of this section. For any time
dependent &iction, obtaining the average number of re-
crossings for the parabolic barrier involves an integration
over a known time dependent function. We have used
here the Hamiltonian formulation to derive the average.
One may also derive the same result directly from the
GLE as sketched in Appendix A.

C. Recrossing and Ohmic friction

Ohmic friction is instantaneous in time:

(3.24)

where p is the damping constant. Kramers's equation
[Eq. (3.8)] is quadratic with two solutions. The positive
solution gives the unstable mode barrier frequency

p(t) = p(0) cosh(Att) + —sinh(Att).&~(0) . (3.17)

Similarly the time dependence of each of the stable modes
1s

12
A' =

~

—+~"
q4 2

The modulus of the negative solution is

(3.25)

y~(t) = y, (0) cos(A, t) + "' sin(A~t),
A~

1
~

~ ~ ~ y ¹

(3.18)

In this case, it is convenient to use the normal mode

1

A+ ——
/

—+ cu
(~'

4 ) (3.26)

and appears also in the normal mode friction function
K(t); cf. Eq. (3.12).
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The projection matrix element uoo [cf. Eq. (3.11)] is

uoo —— 1 + (3.27)

and the collective bath mode frequency Eq. (3.15) turns
out to be simply

(3.28)

It-(t) uoo (p — (t( pt —At (t() (3.29)

One then finds that the function L(t) [cf. (Eq. 3.21)] is

At+ A+ qAt A+
(3.30)

We were not able to integrate Eq. (3.23) analytically
for all values of the damping strength. Instead, in Table
I we provide results &om numerical integration for the
average number of recrossings as well as for the rate as
predicted by the statistical theory expression Eq. (2.18).
One notes that for the whole friction range, the error
in the statistical theory is at most 50Fo even though the
Kramers prefactor itself varies by orders of magnitude.

One may understand this behavior better by analyzing
the average number of recrossings in the strong and weak
damping limits. In the strong damping limit defined by

)& 1 the function L(t) is well approximated as L(t)
f2„e ~ and the average number of recrossings is

(3.31)

One then finds that K —+ —,which is the exact answer.
The situation is somewhat diferent when the damping

becomes weak. In this case one can shaw that

2 2 (1 —z +4z lnz)2
( e=o)pB, t« i

1

0.717 (3.32)

The Ohmic normal mode friction function is found to be
[22]

IV. RECROSSINGS IN THE ENERGY
DIFFUSION LIMIT

A. TST with an energy dependent dividing surface

In the energy diffusion limited regime, the natural can-
didate for a dividing surface is the energy needed to cross
the barrier. The TST expression based on such a surface
was derived in Ref. [6]; here we review briefly the relevant
results.

To construct a theory valid also for memory &iction it
is advisable to construct the energy surface in the normal
mode representation. The potential V(q) may always be
rewritten as

V(q) = —-~"q'+ Vi(q)2
(4.1)

thus defining the nonlinear part of the potential Vi(q).
It follows that the full Hamiltonian may be written as

H = Vj (ttoop + itia ) + Hpn (4.2)

the damping.
This analysis shows that the statistical theory is accu-

rate in the strong damping limit, but not so when the
damping becomes weak. The central assumption of the
statistical theory is that the probability of immediate exit
from the dividing surface is the same for all trajectories.
In the weak damping limit, this is not the case, as tra-
jectories with a velocity which is of the order of gksT
and higher will immediately leave the dividing surface
without returning. Only those trajectories initiated with
small enough velocity will feel the &ictional force and
thus may recross.

One may construct a more sophisticated theory in
which one first evaluates the average number of recross-
ings for an initial given momentum on the dividing sur-
face, next uses the statistical theory to estimate a mo-
mentum dependent transmission coefticient, and then one
must average over all initial momenta. This option will
be discussed further in Sec. V. We note though that in
the strong damping limit, the &iction is so high that the
statistical assumption is valid for a large enough range of
momenta and one obtains the correct rate.

The statistical theory for the rate in the weak damping
limit has a leading order term which goes as the square
root of the damping, while the exact result is linear in

where 0 and uI are defined as

urer = uzoy
2

2 = 21 —uoo (4.3)

0.02
0.2
1.0
2.0
10
20
200

(&~=o)»
0.102
0.328
0.810
1.295
5.118
9.947
98.87

0.831
0.604
0.382
0.279
0.0890
0.0479
0.00498

0.990
0.905
0.618
0.414
0.0990
0.0499
0.00499

TABLE I. Average number of recrossings and statistical
rates for Ohmic friction and a parabolic barrier. and HpB has been defined in Eq. (3.7). The weak damp-

ing limit is obtained when uI &( 1.
The dividing surface must have the property that any

reactive trajectory must cross it before escaping. A
dividing surface J' that has this property is the one-
dimensional Hamiltonian governing the motion of the un-
stable normal mode in the limit of weak coupling:

f(c»J ~) —= &~e( ~) = [2(p', —&"s')—+ Vi(~»S)]~(—s).
(4 4)
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A reaction may occur only if f ) 0. If f ( 0, the particle
cannot cross the dividing configuration p = O. The unit
step function limits the dividing surface to the reactants
region taken to be at negative p.

Inserting this expression into the TST rate expression
[cj Eq. (3.4)] leads to the following estimate for the rate:

I'=1 D—PHD,
(d~

where the energy difFusion transmission factor PED is
found to be

PHD =
S

uppPo 0
(2m) '

x0[-At p22

OO 0
do dpIV'(uppp+ ulo) V (uppp)Ie

—P(-,'&' '+&a(~oon+~I~) —&i(~oop)j

—Vi(uoo p)], (4.6)

where Vi'(q) = d'(~) and the frequency 0 has been de-
fined in Eq. {3.15).

In the weak damping limit, this expression may be fur-
ther simplified. The leading term in an expansion in the
small parameter ur is

r 2P ): dpIV" (u op) I

q vr02

x 0[2 At p —Vj (upp p)]. (4.7)

The linear dependence of this term on uI implies that it
is substantially larger than the exact result, which goes
as uI. On the other hand, the result does go to zero in
the limit of no coupling and is finite at any finite value
of the damping. The purpose of this section is to demon-
strate that the overestimate of the rate inherent in this
expression is a result of recrossing and that a suitable
estimate of the recrossing dynamics allows one to recover
the correct result.

unstable normal mode is

p —At'p = —uooV,'(uoop)—:F(t), (4.10)

while the first order equation of motion for any of the
stable modes is

y' + A, y = —u, V'(u p) = ' F(t).
uoo

(4.11)

E (t) = —) .It'„(t) + A,','(t)]. {4.12)

In other words, within the context of first order pertur-
bation theory, the equations of motion of the stable nor-
mal modes are identical to forced oscillator equations in
which the forcing function F(t) as defined in Eq. (4.10)
is determined by the zeroth order equation of motion for
the unstable normal mode.

The total energy of the bath at any time t is defined
as

B. Recrossings in the energy difFusion limit

Without loss of generality, we will assume that the bar-
rier height of the potential is taken as zero on the energy
scale. Since the dividing surface is an energy surface, the
stochastic variable x(t) becomes, in our case, the energy
E~(t) defined as

(4 8)

E~ (t) —E~(0) = A(t) + bg, (4.13)

1
A(t) = dt'dt" F(t')K(t' —t")F(t"), (4.14)

2uoo o o

The energy gained (or lost) by the bath at any time t
relative to its initial energy can be decomposed into a
systematic energy loss E(t) and a Gaussian random en-
ergy loss bq [10]:

and the probability distribution function [cf. Eq. (2.4)]
is ). ' [t., (0)F'-(t) —A y'(o)F' (t)l (4.»)

uoo

(b [E,(t)]b [E,(t) —E,]b [E,(0)]) (4.9)

To explicitly evaluate the distribution function it is
necessary to know the time dependence of the energy
E~{t) in the unstable normal mode. In general this is a
daunting task; however, in the weak coupling limit, one
may use the same perturbation theory as in the PGH
theory [10]. The zeroth order equation of motion for the

t
F~, (t) = dt'F(t') cos(A~t'),

0

F~ , (t) = dt'F(t') si.n(A~t').
0

It is also useful to note the identity

(4.16)
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&(t) = ) . ,o[+,.(') ++ .(t)]
2upp

2

(4.17)

The energy gained by the bath in the time interval [0, t]
is also the energy lost by the unstable mode so that

(4.18)

At this point all the necessary ingredients are avail-

able for evaluating the probability distribution function
pq(0, E~; 0). As usual, the Dirac 8 functions are handled
through their Fourier representations. The averaging is
over the zeroth order Hamiltonian, which is a Gaussian
with respect to the bath variables. The linearity of the
random part of the energy loss b(t) with respect to the
bath variables ensures that one will remain only with
Gaussian integrals.

After integration over all the bath variables and Dirac
b functions one obtains the following result:

p, (0,E,;0) =
0 gg g

—
2 &

—
& ~&(~)( &+&(~) I&P+ 2 &(~)j )

(4.19)

where the time dependent function B(t) is found to be +(t) (+),( ). (4.23)
2

B(t) = +( )+ ( ) +(t)
uoo 2

t t
dt' dt"E(t)F(t') [u12K(t' —t")

2upp p p
—K(t —t')K(t —t")]E(t")F(t). (4.20)

To obtain the average number of recrossings one must
still integrate over the phase space of the unstable mode,
the time, and the rate of change of the energy (E~); cf.
Eq. (2.5). The integration over the energy rate may
be done analytically, leading to an error function whose
argument in the weak damping limit is small, of the or-
der of uI. Keeping only the lowest order term gives the
substantially simplified result

2 dEpEppg (0, Ep) 0)
0

OO OO 1

dp~~[E~(0)] ~(I)' e '
1

f dp dp $[E (0)]
(4.21)

The remaining integrations over time and the phase
space of the unstable mode cannot in general be evalu-
ated analytically. To make further progress one must re-
sort to further approximation. At very short times, the
energy loss b, (t) t However, the. short time contri-
bution to the integral is negligible, the exponent decays
only on a time scale which is inversely proportional to
the energy loss, and in the weak coupling limit this is a
long time compared to the inverse well &equency.

By considering motion in the well as harmonic, one
expects that except for short times, the energy loss A(t)
will increase approximately linearly with time so that

+(t)' - (&')~, (o). (4.24)
At this point we note that the function B(t) takes the

form

2

uop 2 (4.25)

where we have suppressed the subscript E~(0) to simplify
the notation. While the first term on the right-hand side
of Eq. (4.25) grows without bound in time, the second
term stays constant and is also of the order of uI. We
will ignore it since in the weak coupling limit the main
contribution to the recrossing does not come from short
times. A more careful analysis of the short time behavior
of B(t) and the energy loss b, (t) is presented in Appendix
B.

With these approximations at hand, the remaining
time integration is a simple Gaussian integral and one
Ands that the average number of recrossings of the en-
ergy surface in the weak coupling limit is

(4.26)

The angular brackets denote an average over the initial
conditions of the unstable mode at the energy of the di-
viding surface. This average is identical also to a time
average over one period of the motion of the unstable
normal mode so the averages themselves become time
independent.

The only remaining problematic term is the square of
the forcing function E2(t), which appears in the time
dependent function B(t); cf. Eq. (4.20). Although this
term will in general oscillate as a function of the initial
conditions, it will not grow with time. As a zeroth order
approximation we will replace it too by its phase space
average turning it into a constant in time

A(t) (6)a, (o) t, (4.22)
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This is the main result of this section. One notes that
the rate of energy loss goes as ul, so that the average
number of recrossing diverges as —.

The rate in the energy diffusion limit is now obtained
by combining the TST result [Eq. (4.6)] with the statis-
tical correction [Eq. (2.18)] to 'find

We thus find that a TST with an energy dependent
dividing surface in conjunction with a correction factor
based on the mean number of recrossings does give (up
to a factor 5/32) the correct rate in the weak damping
limit. Given the crudity of some of the approximations
used, this is a very reasonable result.

Atr=r, —T,
2

(4.27)
V. DISCUSSION

0
x dplVi" (uoop) lo[2At p —Vi(uoop)] (4 28)

The depopulation factor T is now linear in the rate of
energy loss L, as it should be.

C. An example: A cubic potential with Ohmic
friction

Since the rate expression derived in the previous sub-
section does not "look" like the usual known result for the
energy diffusion limited rate, it is instructive to consider
a concrete case and show that it is essentially identical.
Consider the case of a cubic potential

V(v) = —-~ v I
1+—I. (4.29)

The barrier height is

f2 2
0 (4.3O)

For Ohmic &iction, the Kramers depopulation factor
in the weak damping limit (+ « 1) is

36 pTKramers 5 ~& (4.31)

3 6151
&ED —

4 I 2 ~l Kramers. (4.32)

To obtain an estimate for the average number of re-
crossings, we make the simplifying assumption that the
potential in the well region may be approximated as a
harmonic potential with the same frequency as the cu-
bic oscillator. With this assumption, the rate of energy
loss is L pU~. The squared average of the force is

~f2(E ) 81, and the mean number of crossings turns
Qo

out to be

6 ('6l(~~)- (4.33)
q5~y

Kramers
It follows that the depopulation factor based on the sta-
tistical theory and the mean number of crossing is

5 ~
32 ~ Kramers ~ (4.34)

The TST transmission factor [cf. Eq. (4.6)] in this same
limit is

The importance of recrossings of a d.ividing surface was
always well appreciated by anyone who considered the
theory of activated rate processes. In this paper we have
demonstrated that one can actually evaluate the number
of recrossings and use them to obtain good estimates for
rate constants. In the strong damping limit, we find the
exact answer for the rate using a combination of the TST,
a statistical theory, and the mean number of recrossings.
Similarly in the energy d.iffusion limit, apart &om a nu-
merical factor of order unity, we obtain the correct rate.

We believe though that the present &amework can
be substantially improved upon. As already noted in
Sec. III, there really is no need to assume that the mean
number of recrossings is the same for each initial condi-
tion. In the spatial diffusion limit, one understands that
the number of crossings will be reduced substantially as
one increases the initial momentum. Similarly, in the en-
ergy diffusion limited regime one understands that if one
initiates the particle close to the barrier with momentum
in the direction of the barrier, the number of crossings
will be quite small as the particle will probably escape
immediately. If though one starts it at the same point
but with momentum towards the direction of the well, the
number of recrossings will be large. Numerically, there
really is no hinderance in evaluating the mean number
of recrossings as a function of the initial conditions and
only then averaging.

Especially for the energy diffusion limited regime, we
have made no attempt to optimize the energy dependent
dividing surface. In the weak damping limit one would
expect that the surface used is reasonable. But as the
damping increases, one understands that particles find-
ing themselves at the turning point opposite the barrier
will need more energy to escape than particles in the re-
gion of the barrier. One could change the structure of
the dividing surface such that it is initially just the en-
ergy surface, but changes gradually to become the usual
dividing surface in the spatial difFusion limit. In this way
one would construct a turnover theory whose structure is
quite different from the standard (PGH) turnover theory.

All this is interesting not only &om an academic point
of view. One of the failings of the PGH theory is that it
does not treat accurately cases with very long memory
kiction. The PGH theory estimates the rate by assuming
that only the dynamics at the barrier energy is impor-
tant. If memory &iction is long compared to the typi-
cal oscillation period in the well, this assumption breaks
down. In the present approach, there is no diKculty in
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lowering the energy of the energy dependent dividing sur-
face, searching for the true bottleneck, and then estimat-
ing the efFects of recrossings.
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APPENDIX A: AVERAGE NUMBER OF
RECROSSINGS FROM THE GLE

In this appendix we rederive the expression (3.23) for
the average number of recrossings for a parabolic barrier
without using the equivalent Hamiltonian formulation of
the GLE. When trajectories are started precisely on top
of the barrier with a velocity chosen &om a Boltzmann
distribution, the joint probability density of the coordi-
nate and the momentum remains Gaussian for all times
due to the linearity of the GLE and the Gaussian nature
of the fluctuating forces. It therefore reads

(».(t)')q' —2(q(t)p. (t))qp. + (q(t)') p',
(A1)

where

D(t) = ( (t) )( (t) ) —( (t) (t)) (A2)

with the identity matrix I as the initial condition

G(o) = I. (A9)

and (q(t)2), (p~(t)2), and (q(t)p~(t)) denote the second
moments of q(t) and p~(t). Inserting (Al) into Eq. (2.5)
and integrating over pq yields, for the number of barrier
recrossings,

An equivalent equation of motion is obtained by means
of a Laplace transform of Eq. (A8), subsequent multi-
plication with the Laplace transform G(z) of the Green's
function and G(z) &om the left and right, respectively,
and finally a Laplace backtransform. It reads

For a parabolic barrier the GLE (3.1) becomes

t
G(t) = G(t)R+ dsG(s)I'(t —a).

0
(A1o)

t
r'(t) = Rr(t) + dsI'(t —s)r(s) + f(t),

0
(A4)

For the second moment of q(t) one finds, with Eq. (A7),

( o 1i
((dt 0 p

(A5)

where r(t) denotes the vector with components q(t) and
p~(t), f(t) is another vector with components 0 and ((t),
and R and I'(t) are matrices describing the instantaneous
rate of change and memory damping, respectively,

t 2

daG „,(t —a) I' (s) i

0
(A11)

(A12)

t t
= P '(G„,(t)'+ dt' ds'G, „,(t —t')

0 0

xGq~ (t —a')p(t' —s')),
and

l(t) = v(t) I 0 1 ~ (A6)
(q') = (qp. ) = o (A13)

where G,~ denotes the ij component of the Green's func-
tion and we used the initial conditions

The formal solution of the GLE (3.1) reads, in terms of
the initial condition r(0),

t
R(t) = G(t)r(0) + dsG(t —s)f(s),

0
(A7)

t
G(t) = RG(t) + dsI'(t —s)G(s)

0
(A8)

where the matrix G(t) is the Green's function of the GLE
satisfying

(p,') =P ' (A14)

the fluctuation dissipation theorem, and the fact that q
and p~ are uncorrelated with the fluctuating forces ((s)
at later times s.

The double integral on the right-hand side of Eq.
(A12) is conveniently split into two parts with t' ( s'
and t' & s' both giving the same contribution. Hence
one 6nds
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t t
dt' ds'G, „,(t —t') G,„,(t —s')~(t' —s')

0 0

{q(t) ) = ~~ P ' Gqq(t) —1 (A16)

Similarly (q(t)pq(t)) and {pq(t) ) can also be expressed
in terms of the qq component of the Green's function

(A17)

t t—t'
dt' duG, „,(t —t')G„,(t —t' u)—q(u),

0 0

(A15)

where u = t' —s'. Using the qq and the qp~ component of
Eq. (A10), the integrals in Eq. (A15) can be performed,
yielding, for {q(t) ),

where the qpq component of Eq. (A8) and the qq com-
ponent of Eq. (A10) were used. With the initial values
L(0) = 0 and L(0) = —iot, which follow from Eqs.
(3.21) and (3.15), Gqq(t) becomes

Gqq(t) = —cot L(t) . (A22)

Combining Eqs. (A16), (A19), and (A22) with (A3)
yields, with Eq. (3.23), the desired result.

APPENDIX 8: SHORT TIMES IN THE ENERGY
DIFFUSION LIMIT

The purpose of this appendix is to note that the av-
erage number of recrossings is well de6ned also in the
energy diffusion limited regime. A cursory glance at Eq.
{4.21) would suggest that since the energy loss is zero at
short times, the ratio &~ ) diverges at least as —. InQ&(t) 1

fact this is not the case. An inspection of Eqs. (3.12)
and (4.14) shows that at short times

{p (t) ) = P u)t G (t) + 1

Accordingly, D(t) becomes [cf. Eq. (A3)]

(A18)
1+t + +O{t ), (B

D(t) = art 'P ' Gqq(t) —art 'G,q(t) —1 (A19)

{P.(t)» ) = —P 'L(t). (A20)

Finally, it remains to express Gqq(t) through L(t). Com-
paring Eqs. (3.12) and (3.13) with (3.21) one finds

where E(0) = & . Note that in the continuumas'(t)

limit, even though the friction function K(t) is symmet-
ric, its derivative K(0) = "&l ) may be finite [see,t=ot
for example, the case of Ohmic friction and Eq. (3.29)].

Inserting this result into the definition of B(t) [cf. Eq.
(4.20)] leads to the conclusion that

With Eqs. (A7), {A13),and {A14) the momentum cor-
relation function becomes B(t) -O(t'), (B2)

( (t) ) =P G, , (t)
P 'Gqq(t), (A21)

so that in the short time limit, the ratio goes toQB(t)

1/v t and Eq. (4.21) is well behaved.
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